

Quantifying the diffuse continuum contribution from BLR gas:

a modeling approach

Mike Goad, Daniel Lawther, Kirk Korista, Otho Ulrich, Marianne Vestergaard

Our approach:

Build a model BLR

match the *intensities* (*variability timescale/amplitude*) of *strongest* UV/optical emission lines in NGC 5548 (***For objects of interest, no such thing as a steady-state model***)

Compute wavelength-dependent (UV-optical-IR) flux and variability timescale of DC arising from the same gas

□ Scale delays according to the fractional flux contribution

DC/(INCIDENT + DC)

 Drive with model continuum light-curves estimate statistically likely delays (CCF/JAVELIN)
 + dependence on *characteristic* timescale & *variability amplitude* of driving continuum (MC approach)

Mike Goad

Types of model:

Pressure law model : Rees, Netzer and Ferland 1989, Goad, O'Brien, Gondhalekar 1993 Kaspi and Netzer 1999 Netzer 2000

Local Optimally emitting Clouds : Baldwin, Ferland, Korista, Verner 1995, Korista and Goad 2000, 2001, 2004.

(1) Pressure Law models :

Lawther, Goad, Korista, Ulrich, Vestergaard 2017, in prep

Run of physical conditions with radius specified by simple radial pressure law

$$P(r) \propto r^{-s} \xrightarrow{\text{const Temp}} n_{\mathrm{H}}(r) \propto r^{-s} \qquad \qquad U(r) \propto r^{s-2}$$

 $\begin{array}{ll} \mbox{Assume mass conservation} & A_c(r) \propto R_c^2 \propto r^{2s/3} \\ \mbox{+ spherical clouds} & N_{col}(r) \propto R_c n_H \propto r^{-2s/3} \end{array}$

Line luminosity
$$L = 4\pi \int_{r_{in}}^{r_{out}} \epsilon(r) A_c(r) n_c(r) r^2 dr$$

Differential covering $dC(r) \propto A_c(r) n_c(r) dr \propto r^{2s/3-3/2} dr$ fraction Mike Goad Atlante

Normalization condition : specify

$$\Phi_{\rm H}, n_{\rm H}, N_{\rm col}$$
 at some r

+ inner and outer radius, and total covering fraction Ctot

Choose line radiation pattern – we assume clouds are spherical

$$\epsilon(r,\theta) = \epsilon_{totl} [1 - (2F(r) - 1)\cos\theta]$$
$$F(r) = \epsilon_{inwd} / \epsilon_{totl}$$

Mike Goad

Two cases:

s=0, constant density nh, constant column density Nh

+ s=2, constant ionization parameter U

IVIIKE GUAU

Similarly – *constant U models*

Broad range in ionization for which we can exceed the measured line luminosities

Mike Goad

Mike Goad

Mike Goad

Density dependence constant density models

Mike Goad

Constant ionization models

Mike Goad

Aside :

(2) Local optimally emitting clouds (LOC) models *Korista and Goad 2000,2001*

At any given radius there exists a range of gas densities/column densities (or simplymore than one pressure-law!)

Spectrum dominated by selection effects introduced by atomic physics and general radiative transfer within the large pool of line-emitting entities

Strengths:

Summation over cloud distribution leads to:

(i) typical AGN spectrum(ii) Ionization stratification(iii)Luminosity-Radius relation arises naturally

Deriving the spectrum:

Give each line emitting entity a weight in 2-dimensions: gas density and distance

Assume: analytic, separable, and a power-law in each variable

 $g(n_{
m H}) \propto n_{
m H}^{eta}$ Baldwin 1997 – composite quasar spectra best fit if indices in both are close to -1. $f(R) \propto R^{\Gamma}$

In our models assume : $\beta = -1$

and fit for Γ Korista and Goad (2000) found a value of -1.2 gives an Acceptable fit to the line luminosities For NGC~5548

Summary:

(1) At typical Nh,nh, U appropriate for BLR there exists a significant diffuse continuum *arising from the same gas that emits the broad emission-lines*

(2) Form of the delay spectrum (including underlying powerlaw) approximately matches that observed, especially around Balmer and Paschen jumps.

(3) Even when included, disks still appear too large for their luminosity(?)

(4) We need to find new/improved ways (fourier analysis. PCA) of isolating the major variable contributions to the observed continuum bands