

Molecule formation in AGN-driven galactic winds

Alex Richings, Claude-André Faucher-Giguère CIERA, Northwestern University

29th June 2017

Observations of fast molecular outflows

CO 1-0 line in Mrk 231

Observations of fast molecular outflows

Introduction

CO 1-0 maps in Mrk 231

Feruglio et al. (2010)

Acceleration of cold clouds

Introduction In-situ molecule formation

An energy-driven AGN wind

- > 3D simulations of an isotropic AGN wind.
- > 1.6-5.0 kpc box, periodic boundary conditions.
- > Inject wind particles, initial $v = 30,000 \text{ km s}^{-1}$, $dP/dt = L_{AGN}/c$.

Simulation Setup

- > 3D simulations of an isotropic AGN wind.
- > 1.6-5.0 kpc box, periodic boundary conditions.
- > Inject wind particles, initial $v = 30,000 \text{ km s}^{-1}$, $dP/dt = L_{AGN}/c$.

Chemistry

- Evolve time-dependent chemistry of 157 species, including 20 molecules.
- > Most importantly: H_2 , CO, OH and HCO⁺.
- > We assume a Milky Way dust-to-metals ratio.

Simulation Setup

Parameters

$n_{\rm H}~({\rm cm}^{-3})$	L _{AGN} (erg s ⁻¹)	Z / Z _{sol}
10	10^{46}	1.0
1	10^{46}	1.0
10	10^{45}	1.0
10	10^{46}	0.1

Simulation Results

nH10_L45_Z1

Simulation Results

Simulation Results H, outflow rates

Simulation Results H, outflow rates

Simulation Results H, outflow rates

С

CENTER FOR INTERDISCIPLINARY EXPLORATION

*Units: M_{sol} (K km s⁻¹ pc²)⁻¹

С

CENTER FOR INTERDISCIPLINARY EXPLORATION

*Units: M_{sol} (K km s⁻¹ pc²)⁻¹

С

CENTER FOR INTERDISCIPLINARY EXPLORATION

*Units: M_{sol} (K km s⁻¹ pc²)⁻¹

С

CENTER FOR INTERDISCIPLINARY EXPLORATION

*Units: M_{sol} (K km s⁻¹ pc²)⁻¹

> Observations typically assume: $\alpha_{CO(1-0)} = 0.8 M_{sol} (K \text{ km s}^{-1} \text{ pc}^2)^{-1}.$

Summary

- Molecular outflow rates up to 140 M_{sol} yr⁻¹ formed within the AGN wind after 1 Myr.
- > Molecule formation sensitive to $n_{\rm H}$, $L_{\rm AGN}$ and Z.
- > CO to H₂ conversion factor at solar metallicity: $\alpha_{CO (1-0)} = 0.15 M_{sol} (K \text{ km s}^{-1} \text{ pc}^2)^{-1}.$
- > arXiv:1706.03784

Extra Slides

Simulation Results

Comparison with CO-based observations

Observations: Wiklind et al. (1995) Maiolino et al. (1997) Cicone et al. (2012, 2014) Feruglio et al. (2013a, b)

Simulation Results Warm H₂ Emission

- >> H₂ infrared lines from warm (100s − 1000s K) molecular gas.
- > Traces ~70% of the total H_2 mass in our simulations.

$$> T_{exc} \sim 575 - 721 \text{ K}.$$

Richings & Faucher-Giguère (2017)

Temperature-Density Plots

Richings & Faucher-Giguère (2017)

Temperature-Density Plots

Richings & Faucher-Giguère (2017)

Temperature-Density Plots

Richings & Faucher-Giguère (2017)