

Caroline A. Roberts¹, Misty C. Bentz¹, Monica Valluri², Christopher A. Onken³, and Merida Batiste¹ ¹Georgia State University, Atlanta, GA ²University of Michigan, Ann Arbor, MI ³Australian National University, Canberra, ACT, Australia

INTRODUCTION The well-studied galaxy and AGN scaling relationships, which AGN winds may play a role in shaping, critically depend on our confidence of supermassive black hole masses (M_{SMBH}). Obtaining the same resultant mass through multiple methods for a single galaxy can enhance confidence in inherent assumptions made for each method. However, there exist only a few galaxies to which we can apply these cross-checks. Comparison of reverberation mapping (RM) and stellar dynamical (SD) modeling for AGN is one such test, and has been examined for NGC 4151 [1]; [13], [14]; (see Figure 1) and NGC 3227 [11], [10]. However, the stellar dynamical modeling code used for these objects only accounted for axisymmetric orbits, and both AGN host galaxies are weakly barred. Omitting this consideration can lead to overestimates of M_{SMBH} [7]; the stellar dynamics must be re-examined with non-axisymmetric bar optimized modeling capability (Valluri+'s 2017 adaptation of [16]). We present our reanalysis of NGC 4151 and discuss future comparison of SD modeling and RM for AGN.

Weakly Figure 1. barred AGN NGC 4151, one target for stellar dynamical modeling with bar optimized code [2], (Harris V-band, 5' x 5', north up, east left).

DATA We examine NGC 4151, observed on the Gemini NIFS IFU in February of 2008 in the H-band with the ALTAIR adaptive optics system [13], [14]. The spatial resolution capability is 0".05, the field of view of the detector is 3" x 3", and $R \sim 5000$. The IFU spectroscopy was flat-fielded, wavelengthcalibrated, spatially rectified, telluric-corrected, and combined into a final data cube.

Our treatment of the data differs from that of Onken et al. 2014 in two ways: i. the past treatment of binning is re-examined; we need only bin 0".05 x 0".05 rather than the previous 0".2 x 0".2, and ii. the data will be modeled with a bar optimized code as described here.

Stellar spectral templates must then be convolved to fit the stellar absorption lines in the galaxy using the penalized pixel fitting method pPXF [9]. Multi-band imaging constrains the stellar M/L ratio and surface brightness profiles [12], [8], [17]. Our timeline for project completion is seen in **Table 1**.

TABLE 1 – TIMELINE				
STEP	STATUS/COMPLETION DAT			
Re-reduction of the data cubes	Completed			
pPXF analysis	In progress			
Beginning the modeling	September 2017			
Analysis completion, writing	December 2017			

STELLAR DYNAMICAL MODELING OF AGN FOR **COMPARISON WITH REVERBERATION MAPPING**

MODELING Brown et al. 2013 show how axisymmetric stellar dynamical modeling codes used for M_{SMBH} determinations can result in overestimates of the mass of a central SMBH when applied to barred systems (see Figure 2). They demonstrate two details: first, the projection of the bar orbits results in apparently larger velocity dispersions (σ). Second, in barred systems the σ values within the SMBH sphere of influence are actually inflated by the growth of the SMBH. Axisymmetric modeling codes will require larger enclosed masses to fit these large σ measurements, overestimating M_{SMBH}. As such, it is imperative that these systems be treated with code representing the dynamics of barred galaxies. We (Valluri et al.) are developing the first ever bar optimized Schwarzschild modeling code and we will re-examine the stellar dynamics of barred galaxies with black hole mass determinations.

Figure 3. Differences between measured V_{los} , σ , and surface mass density as determined from galaxy models with and without a bar [7]. The top row shows the differences between a barred disk galaxy and a disk galaxy, and the bottom row shows the differences between a barred disk+bulge galaxy and disk+bulge galaxy. The presence of a bar inflates both the measured central σ and surface mass density (shown by red and yellow residuals in these central regions).

FU	TURE WORK	In	addition to re
NGC 4151	with the bar optimiz	ed code,	we will also r
NGC 3227	[10]. Our group is	actively	working to in
comparison	sample of M _{SMBH}	from RM	I and SD (see
Figure 3).			
Manual Inc.			COMPLET
TABLE 2	— М _{ѕмвн} Сомі	PARISC	O IN PROGR O IN PREP O NOT NEC POSSIBL
TABLE 2 AGN	— М _{SMBH} СОМІ Morphology	PARISC	NS © IN PROGR O IN PREP © NOT NEC POSSIBL SD
TABLE 2 AGN NGC 4151	— M _{SMBH} COMI MORPHOLOGY Weakly barred	PARISC RM • [1]	NS © IN PROGR O IN PREP © NOT NEC POSSIBL SD [13], [14] ©
TABLE 2 AGN NGC 4151 NGC 3227	— M _{SMBH} COMI <u>Мокрногоду</u> Weakly barred Weakly barred	PARISC RM • [1] • [11]	ONS © IN PROGR O IN PREP © NOT NEC POSSIBL SD • [13], [14] © • [10]
TABLE 2 AGN NGC 4151 NGC 3227 NGC 6814	- M _{SMBH} COMI MORPHOLOGY Weakly barred Weakly barred Weakly barred	PARISC RM • [1] • [11] • [3]	 NS IN PROGE IN PREP NOT NEC POSSIBL SD [13], [14] [10] (Batiste)

10 ⁸	ar		Fig i n d	gure 3. Cu comp ynam
NGC 3783	Strongly barred	0	(Bentz	;)
UGC06728	Bar unknown, late type	•	[6]	
MCG-06-30-15	Unbarred late type	•	[5]	O (Bentz)
NGC 4395	Unbarred late type	•	[15]	0
1100 0210	chound carry type	•	1.17	C (Dution

NGC 3783

 10^{8}

- NGC 6814

NGC 5273

reverberation black hole masses (Bentz).

ACKNOWLEDGEMENTS AND REFERENCES

reverberation M_{BH} (M_{\odot})

NGC 3227

IGC 06728

NGC 4393

This project is supported by NSF CAREER grant AST-1253702.

[1] Bentz+ 06, ApJ, 651, 775
[2] Bentz+ 09, ApJ, 697, 160
[3] Bentz+ 09, ApJ, 705, 199
[4] Bentz+ 14, ApJ, 796, 8
[5] Bentz+ 16, ApJ, 830, 136

⊙ ⊠

₩107

 $\sum_{D}^{L} 10^{6}$

1 \circle 5

 10^{5}

[6] Bentz+ 16, ApJ, 831, 2
[7] Brown+ 13, ApJ, 778, 151
[8] Cappellari 02, MNRAS, 333, 400
[9] Cappellari & Emsellem 04, PASE
[10] Davies+ 06, ApJ, 646, 754
[11] Denney+ 10, ApJ, 721, 715
[12] Emsellem+ 94, A&A, 285, 723
[13] Onken+ 07, ApJ, 670, 105
[14] Onken+ 14, ApJ, 791, 37
[15] Peterson+ 05, ApJ, 632, 799
[16] Valluri+ 04, ApJ, 602, 66
[17] Zibetti+ 09, MNRAS, 400, 1181

