

Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

Chris Culliton¹

Jane Charlton¹, Mike Eracleous¹, Rajib Ganguly², Toru Misawa³

¹Penn State University, ²University of Michigan-Flint, ³Shinshu University

Intrinsic NAL Ionization Continuum

Increasing Ionization Parameter

73 Quasar Sample from VLT/UVES Archive

- **Directly measured** quantities:

 - Absorption redshift z_{abs} Emission redshift z_{em}
 - Optical flux f_v (opt)
 - Radio flux f_y(5 GHz)
- More physically meaningful quantities
 - Velocity offset v_{shift}
 - Velocity offset

Optical Luminosity (4400 14 25 12 20 32 33 36 3 30 34 35 $\log[L_{\nu}/(\text{erg s}^{-1} \text{Hz}^{-1})]$ $\log R$ Number 30 20 Radio Luminosity (5 GHz 25 15 20 15 10 10 5 34 35 36 32 33 30 31 0

 $\log[L_{\nu}/(\text{erg s}^{-1} \text{Hz}^{-1})]$

Emission Redshift

- distribution of NAL systems, $dN/d\beta$ or dN/dz
- Optical luminosity L_v(opt)
- Radio luminosity L_v(radio)
- Radio loudness parameter, $R = f_{v}(5 \text{ GHz})/f_{v}(4400 \text{ Å})$

Absorption Lines

- BALs; widths > 2000 km/s
- NALs; widths < 500 km/s
- Mini-Bals;
 500 km/s < width
 < 2000 km/s

Coverage Fraction

Coverage Fraction

- Determine coverage fraction by:
 - Pixel-by-pixel basis
 - Per kinematic component
- Reliability Classes
 - Class A: Intrinsic
 - Class B: Potentially intrinsic
 - Class C: Intervening
- Figure courtesy of Misawa et al. (2007)

- Coverages fractions can't be determined independently of each other
- Can provide interesting constraints
- $C_f = (C_c + WC_{BELR}) / (1 + W)$
- W = $(F_{BELR} / F_{c}) 1$
- Ratio of the Flux Contributed by the BELR and the Continuum Sources

- Coverages fractions can't be determined independently of each other
- Can provide interesting constraints
- $C_f = (C_c + WC_{BELR}) / (1 + W)$
- W = $(F_{BELR} / F_{c}) 1$
- Ratio of the Flux Contributed by the BELR and the Continuum Sources

- Coverages fractions can't be determined independently of each other
- Can provide interesting constraints
- $C_f = (C_c + WC_{BELR}) / (1 + W)$
- W = $(F_{BELR} / F_c) 1$
- Ratio of the Flux Contributed by the BELR and the Continuum Sources

- Coverages fractions can't be determined independently of each other
- Can provide interesting constraints
- $C_f = (C_c + WC_{BELR}) / (1 + W)$
- W = $(F_{BELR} / F_c) 1$
- Ratio of the Flux Contributed by the BELR and the Continuum Sources

- Coverages fractions can't be determined independently of each other
- Can provide interesting constraints
- $C_f = (C_c + WC_{BELR}) / (1 + W)$
- W = (F_{BELR} / F_{c}) 1
- Ratio of the Flux Contributed by the BELR and the Continuum Sources

- Coverages fractions can't be determined independently of each other
- Can provide interesting constraints
- $C_f = (C_c + WC_{BELR}) / (1 + W)$
- W = $(F_{BELR} / F_c) 1$
- Ratio of the Flux Contributed by the BELR and the Continuum Sources

Intrinsic NAL Ionization Continuum

Increasing Ionization Parameter

NAL Absorber Model

Compositions of the Various Types of Systems

	Dense Core	Tenuous Atmosphere	
N V Dominant	C IV, N V, O VI, some Lyα	O VI and High Ionization Lines	∧ log U
C IV Dominant non-Black Lyα	Lyα, C IV, N V	O VI, High Ionization Lines, possibly N V	
C IV Dominant	Lyα, Si IV, possibly C IV	Lyα, possibly C IV and/or N V	
C IV Dominant w/ Low Ionization Lines	Lya, Low Ionization Lines	Lya, Si IV, C IV	

C IV Dominant with Non-Black Lyα Q0549–213 z_{abs}=2.2437

C IV Dominant with Low Ionization Lines

Schematic Model of the Quasar Host Galaxy

