Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

Chris Culliton

Jane Charlton, Mike Eracleous, Rajib Ganguly, Toru Misawa

1Penn State University, 2University of Michigan-Flint, 3Shinshu University
Intrinsic NAL Ionization Continuum

Increasing Ionization Parameter

- **N V Dominant**
 - Q1158–1843 $z_{\text{abs}}=2.4425$
 - Lyα
 - CIV1548
 - NV1239
 - OVI1032

- **C IV Dominant with non-black Lyα**
 - Q0549–213 $z_{\text{abs}}=2.2437$
 - Lyα
 - CIV1548
 - NV1239

- **C IV Dominant**
 - Q0055–269 $z_{\text{abs}}=3.0859$
 - Lyα
 - SilV1394
 - CIV1548

- **C IV Dominant with Low Ionization Lines**
 - Q0421–2624 $z_{\text{abs}}=2.1568$
 - Lyα
 - OI1302
 - SilV1394
 - CIV1548
73 Quasar Sample from VLT/UVES Archive

• Directly measured quantities:
 – Absorption redshift z_{abs}
 – Emission redshift z_{em}
 – Optical flux $f_{\nu}(\text{opt})$
 – Radio flux $f_{\nu}(5 \text{ GHz})$

• More physically meaningful quantities
 – Velocity offset v_{shift}
 – Velocity offset distribution of NAL systems, $dN/d\beta$ or dN/dz
 – Optical luminosity $L_{\nu}(\text{opt})$
 – Radio luminosity $L_{\nu}(\text{radio})$
 – Radio loudness parameter, $R = f_{\nu}(5 \text{ GHz})/f_{\nu}(4400 \text{ Å})$
Absorption Lines

- BALs; widths > 2000 km/s
- NALs; widths < 500 km/s
- Mini-Bals; 500 km/s $< \text{width} < 2000$ km/s
Coverage Fraction

\[R(\lambda) = C_f(\lambda)e^{-\tau(\lambda)} + [1 - C_f(\lambda)] \]

\[\tau \propto Nf\lambda = \begin{cases} N \times f_b \times \lambda_b \\ N \times f_r \times \lambda_r \end{cases} \]

\[\left(\frac{R_r - 1 + C_f}{C_f} \right)^{f_b\lambda_b / f_r\lambda_r} = \frac{R_b - 1 + C_f}{C_f} \]

In the case of resonance doublet lines such as C IV, N V, and Si IV, \(f_b / f_r = 2 \) and \(\lambda_b \sim \lambda_r \).

\[C_f = \frac{\left[R_r(\lambda) - 1\right]^2}{R_b(\lambda) - 2R_r(\lambda) + 1} \]
Coverage Fraction

- Determine coverage fraction by:
 - Pixel-by-pixel basis
 - Per kinematic component

- Reliability Classes
 - Class A: Intrinsic
 - Class B: Potentially intrinsic
 - Class C: Intervening

- Figure courtesy of Misawa et al. (2007)
Coverages fractions can’t be determined independently of each other
Can provide interesting constraints
\[C_f = \frac{C_c + WC_{\text{BELR}}}{1 + W} \]

\[W = \frac{F_{\text{BELR}}}{F_c} - 1 \]

Ratio of the Flux Contributed by the BELR and the Continuum Sources

\[F_{\text{BELR}} \sim 3F_c \]

\[W = 2 \]

Dall'Aglio et al. 2008
Ratio of the BELR to the Continuum Source Flux

- Coverages fractions can’t be determined independently of each other
- Can provide interesting constraints
- \[C_f = \frac{C_c + WC_{\text{BELR}}}{1 + W} \]
- \[W = \left(\frac{F_{\text{BELR}}}{F_c} \right) - 1 \]
- Ratio of the Flux Contributed by the BELR and the Continuum Sources
Ratio of the BELR to the Continuum Source Flux

- Coverages fractions can’t be determined independently of each other
- Can provide interesting constraints
- \[C_f = \frac{C_c + WC_{\text{BELR}}}{1 + W} \]
- \[W = \frac{F_{\text{BELR}}}{F_c} - 1 \]
- Ratio of the Flux Contributed by the BELR and the Continuum Sources
Ratio of the BELR to the Continuum Source Flux

• Coverages fractions can’t be determined independently of each other
• Can provide interesting constraints
• \(C_f = \frac{C_c + WC_{\text{BELR}}}{1 + W} \)
• \(W = \frac{F_{\text{BELR}}}{F_c} - 1 \)
• Ratio of the Flux Contributed by the BELR and the Continuum Sources
Ratio of the BELR to the Continuum Source Flux

- Coverages fractions can’t be determined independently of each other
- Can provide interesting constraints
- \[C_f = \left(C_c + W C_{\text{BELR}} \right) / \left(1 + W \right) \]
- \[W = \left(F_{\text{BELR}} / F_c \right) - 1 \]
- Ratio of the Flux Contributed by the BELR and the Continuum Sources

Absorber Transverse Size ~ continuum source size
~ \(5 \times 10^{-4} – 5 \times 10^{-3} \) pc
Ratio of the BELR to the Continuum Source Flux

- Coverages fractions can’t be determined independently of each other
- Can provide interesting constraints
- \(C_f = \frac{C_c + W C_{\text{BELR}}}{1 + W} \)
- \(W = \frac{F_{\text{BELR}}}{F_c} - 1 \)
- Ratio of the Flux Contributed by the BELR and the Continuum Sources

Absorber Transverse Size ~ continuum source size
\(~ 5 \times 10^{-4} – 5 \times 10^{-3} \text{ pc} \)

Absorber Transverse Size ~ size of BELR
\(~ 10^{-2} – 10^{-1} \text{ pc} \)
Intrinsic NAL Ionization Continuum

Increasing Ionization Parameter

N V Dominant
Q1158–1843 $z_{\text{abs}}=2.4425$

C IV Dominant
Q0549–213 $z_{\text{abs}}=2.2437$

C IV Dominant with non-black Lyα
Q0055–269 $z_{\text{abs}}=3.0859$

C IV Dominant with Low Ionization Lines
Q0421–2624 $z_{\text{abs}}=2.1568$
Compositions of the Various Types of Systems

<table>
<thead>
<tr>
<th></th>
<th>Dense Core</th>
<th>Tenuous Atmosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>N V Dominant</td>
<td>C IV, N V, O VI, some Lyα</td>
<td>O VI and High Ionization Lines</td>
</tr>
<tr>
<td>C IV Dominant non-Black</td>
<td>Lyα, C IV, N V</td>
<td>O VI, High Ionization Lines, possibly N V</td>
</tr>
<tr>
<td>Lyα</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C IV Dominant</td>
<td>Lyα, Si IV, possibly C IV</td>
<td>Lyα, possibly C IV and/or N V</td>
</tr>
<tr>
<td>C IV Dominant w/ Low</td>
<td>Lyα, Low Ionization Lines</td>
<td>Lyα, Si IV, C IV</td>
</tr>
<tr>
<td>Ionization Lines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
N V Dominant

Q1158–1843 $z_{\text{abs}} = 2.4425$

![Graph showing absorption line features with labels for Lyα, CIV1548, NV1239, and OVI1032. The x-axis represents velocity in km s$^{-1}$ with values ranging from -600 to 600.]
C IV Dominant with Non-Black Lyα

Q0549–213 $z_{\text{abs}}=2.2437$
C IV Dominant

Q0055–269 $z_{\text{abs}}=3.0859$

![Graph showing Lya, SiIV1394, and CIV1548 with velocity in km s$^{-1}$]
C IV Dominant with Low Ionization Lines

Q0421−2624 $z_{\text{abs}} = 2.1568$
Black and Non-Black Lyα

\[Q0011 + 0055 \quad z_{\text{abs}} = 2.2858 \]
Sizes of Absorbers

Using the Definitions of Flux: \[F = \frac{L}{4\pi r^2} \]

And Ionization Parameter: \[U = \frac{n_\gamma}{n_H} \]

Leads to:

\[
\left(\frac{n_H}{3 \times 10^{11} \text{ cm}^{-3}} \right) = \left(\frac{\nu L_\nu (2500 \text{ Å})}{4 \times 10^{46} \text{ ergs s}^{-1}} \right) \left(\frac{U}{10^{-1.9}} \right)^{-1} \left(\frac{r}{1 \text{ pc}} \right)^{-2}
\]

Thickness: \[
\left(\frac{\Delta r}{10^{10} \text{ cm}} \right) = \left(\frac{N_{\text{tot}}}{10^{18} \text{ cm}^{-2}} \right) \left(\frac{n_H}{10^8 \text{ cm}^{-3}} \right)^{-1}
\]

Mass: \[M = m_H N_{\text{tot}} R^2 \sim 10^{27} \text{ g} \left(\frac{R}{10^{16}} \right)^2 \left(\frac{N_{\text{tot}}}{10^{18} \text{ cm}^{-2}} \right) \]

Using these values, \[M \approx 10^{-6} \text{ M}_\odot \]
Schematic Model of the Quasar Host Galaxy

High Ionization Systems (Ne VIII, Na IX, Mg X)

N V Dominant Systems

O VI Dominant

C IV Dominant