Determining the Narrow Line Region Geometry of Mrk 3 with Gemini/NIFS

Crystal L Gnilka

AGN Winds on the Georgia Coast Jekyll Island – June 28th, 2017

Mrk 3 (Seyfert 2)

S0 galaxy
z = 0.013509
D = 57.2 Mpc
d ~ 30 kpc
Scale = 277.3 pc/"

(Crenshaw+ 2010)

Mrk 3 (Seyfert 2)

(Crenshaw+ 2010)

June 28th, 2017

Georgia<u>State</u>University.

Mrk 3 (Seyfert 2)

(Crenshaw+ 2010)

June 28th, 2017

Georgia<u>State</u>University.

Mrk 3 with HST/STIS

Mrk 3 with HST/STIS

Data Treatment Procedure

 $Menezes \ 2014 \rightarrow \\ A \ treatment \ procedure \ for \ Gemini \ North/NIFS \ data \\ cubes: \ application \ to \ NGC \ 4151 \\ \end{cases}$

R. B. Menezes, ^{1*} J. E. Steiner¹ and T. V. Ricci¹ ¹Instituto de Astronomia Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, SP CEP 05508-090, Brazil

- Multistep data treatment aims to reduce noise and help distinguish structures in gas. Designed for NIFS datacubes.
- CR Correction of the Differential Atmospheric Refraction Effect
- Resampling
- R Butterworth Spatial Filtering
- Richardson-Lucy Deconvolution
- Removal Principal Component Analysis Tomography Fingerprint Removal

Georgia<u>State</u>University.

Data Treatment Procedure

June 28th, 2017

Data Treatment Procedure

June 28th, 2017

(Fischer+ 2017)

GeorgiaStateUniversity.

Georgia<u>State</u>University.

June 28th, 2017

NLR Gas Kinematics

Stellar Kinematics - pPXF - DiskFIT

pPXF: (Cappellari & Emsellem 2004) DiskFIT: (Sellwood & Spekkens 2015, Reese+ 2007)

Stellar Kinematics - pPXF - DiskFIT

June 28th, 2017

Stellar Kinematics - pPXF - DiskFIT

June 28th, 2017

Georgia<u>State</u>University.

18

What about on the large scale?

What about on the large scale?

[O III] Rotational Kinematics

10

Offset: arcseconds

-5

-10

-10

10

Offset: arcseconds

-10

-10

-5

Offset: arcseconds

-5

0

Offset: arcseconds

5

 $H\alpha$ Rotational Kinematics

200

150 100

50

-50

-100 -150

-200

200

150 100

50

-100 -150

-200

10

Velocity: km/s

10

Velocity: km/s

Machuca → Poster #18

GeorgiaStateUniversity.

June 28th, 2017

Tidal Interactions with Companion

Tidal Interactions with Companion

Tidal Interactions with Companion

24

Conclusions

- Multi-Component fitting allows for the mapping of individual structures within NLR
- Small-scale: Disagreement between gas and stellar kinematics
- CR Large-scale: Gas kinematics are misaligned ~90° from the measured stellar kinematics & isophotal parameters
- Red to account for tidal interactions with companion
- Arc of molecular emission in the NW possibly aligned with inflows from the tidal interactions

