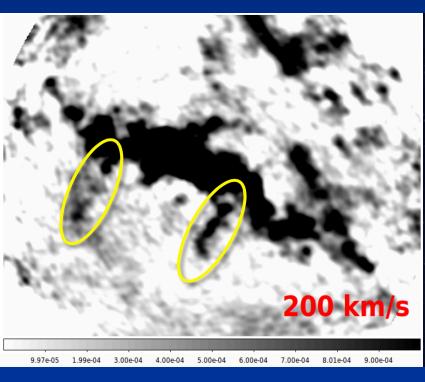
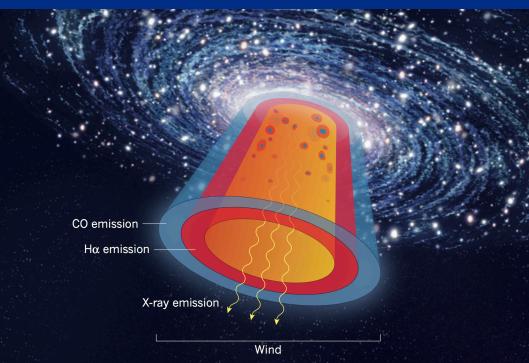
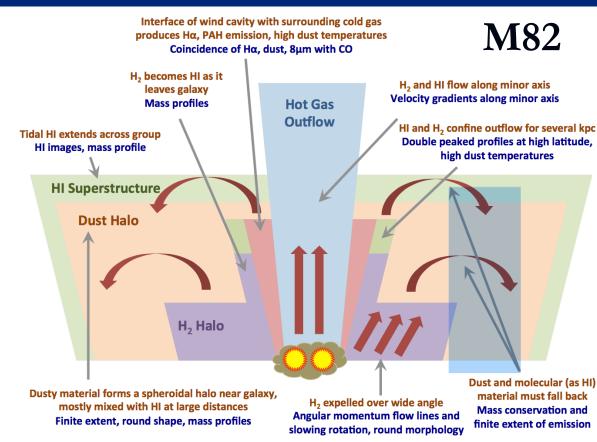
Radiation Hydrodynamics of Dust-Driven Winds in Starburst and Star-Forming Galaxies


Dong Zhang


The University of Virginia

Collaborators: Todd Thompson (OSU), Eliot Quataert (Berkeley), Norm Murray (CITA), Shane Davis (UVa), Yan-Fei Jiang (UCSB)

Multi-Phase Structure of Galactic Winds



NGC 253

Multi-Phase Structure of Galactic Winds

Hubble & WIYN

Leroy et al. 2015

On the Theory of Galactic Winds

Hot Winds Driven by Supernovae

- *CC85 model:* Chevalier & Clegg (1985)
- Constrain CC85 model parameters by observation (Strickland & Heckman 2009, Zhang+ 2015)
- Local and Global Simulations
 (Creasey+ 2013; Martizzi+ 2016; Fielding+ 2017; Zhang+ 2017 in preparation)
- Cloud Acceleration by Ram Pressure of Hot Winds
 (Scannapieco & Bruggen 2015; Bruggen & Scannapieco 2016; Schneider & Robertson 2017; Zhang et al. 2017)
- Cloud Formation in Hot Winds (Thompson+2016)

Radiation Pressure on Dust

- Analytic Models
 (Murray et al. 2005; Murry 2007; Thompson+ 2015)
- Observational Evidence
 (Martin 05; Andrews & Thompson 2011; Zhang & Thompson 2012)
- O Radiation Simulations on Momentum Coupling
 (Krumholz & Thompson 2012, 2013, Davis+ 2014; Zhang & Davis 2017)
- O Cloud Acceleration Simulations (Zhang+2017 in preparation)

Cosmic-Ray Driven

- Analytic Models
 (Ipavich 1975; Socrates+ 2008; Everett+ 2008)
- Numerical Simulations
 (Booth+ 2013; Wiener+ 2016; Ruszkowski+ 2016)

On the Theory of Galactic Winds

Hot Winds Driven by Supernovae

- *CC85 model:* Chevalier & Clegg (1985)
- Constrain CC85 model parameters by observation (Strickland & Heckman 2009, Zhang+ 2015)
- Local and Global Simulations
 (Creasey+ 2013; Martizzi+ 2016; Fielding+ 2017; Zhang+ 2017 in preparation)
- Cloud Acceleration by Ram Pressure of Hot Winds (Scannapieco & Bruggen 2015; Bruggen & Scannapieco 2016; Schneider & Robertson 2017; Zhang et al. 2017)
- Cloud Formation in Hot Winds (Thompson+2016)

Radiation Pressure on Dust

- Analytic Models
 (Murray et al. 2005; Murry 2007; Thompson+ 2015)
- Observational Evidence
 (Martin 05; Andrews & Thompson 2011; Zhang & Thompson 2012)
- Radiation Simulations on Momentum Coupling
 (Krumholz & Thompson 2012, 2013, Davis + 2014, Zhang & Davis 2017)
- O Cloud Acceleration Simulations (Zhang+2017 in preparation)

Cosmic-Ray Driven Winds

- Analytic Models
 (Ipavich 1975; Socrates+ 2008; Everett+ 2008)
- Numerical Simulations (Booth+ 2013; Wiener+ 2016; Ruszkowski+ 2016)

On the Theory of Galactic Winds

Hot Winds Driven by Supernovae

Radiation Pressure on Dust

Cosmic-Ray
Driven Winds

- *CC85 model:* Chevalier & Clegg (1985)
- Constrain CC85 model parameters by observation (Strickland & Heckman 2009, Zhang+ 2015)
- Local and Global Simulations
 (Creasey+ 2013; Martizzi+ 2016; Fielding+ 2017; Zhang+ 2017 in preparation)
- Cloud Acceleration by Ram Pressure of Hot Winds
 (Scannapieco & Bruggen 2015; Bruggen & Scannapieco 2016; Schneider & Robertson 2017; Zhang et al. 2017)
- Cloud Formation in Hot Winds (Thompson+2016)
- O Analytic Models
 (Murray et al. 2005; Murry 2007; Thompson+ 2015)
- o Observational Evidence
- (Martin 05: Andrews & Thompson 2011: Zhang & Thompson 2012)
- O Radiation Simulations on Momentum Coupling
 (Krumholz & Thompson 2012, 2013, Davis+ 2014, Zhang & Davis 2017)
- O Cloud Acceleration Simulations (Zhang+ 2017 in preparation)
- Analytic Models
 (Ipavich 1975; Socrates+ 2008; Everett+ 2008)
- Numerical Simulations
 (Booth+ 2013; Wiener+ 2016; Ruszkowski+ 2016)

Radiation Pressure Driven Wind in Starbursts and Star-Forming Galaxies

Is Radiation Pressure on Dust Strong enough to Drive a Galactic Wind?

$$\frac{dp_{\mathrm{wind}}}{dt} \simeq (1 + \eta \tau_{\mathrm{IR}}) \frac{L}{c}$$

Is Radiation Pressure on Dust Strong enough to Drive a Galactic Wind?

$$\frac{dp_{\rm wind}}{dt} \simeq (1 + \eta \tau_{\rm IR}) \frac{L}{c}$$

Is Radiation Pressure on Dust Strong enough to Drive a Galactic Wind?

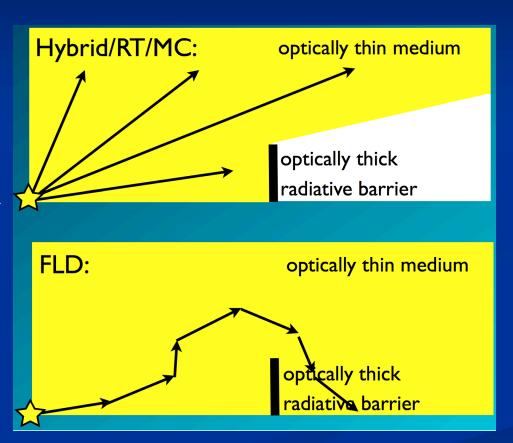
$$\frac{dp_{\mathrm{wind}}}{dt} \simeq (1 + \eta \tau_{\mathrm{IR}}) \frac{L}{c}$$

- η = 1, analytic model
 (Murray, Quataert & Thompson 2005; Thompson et al. 2015)
- \sim η << 1 (Krumholz & Thompson 2012, 2013)

Is Radiation Pressure on Dust Strong enough to Drive a Galactic Wind?

$$\frac{dp_{\rm wind}}{dt} \simeq (1 + \eta_{\rm TR}) \frac{L}{c}$$

We need a more sophisticated algorithm than previous numerical simulations.


Radiation-Pressure on Dusts: RHD Simulation

Ray Tracing

$$\mathbf{F}_{
u}(\mathbf{r}) = rac{1}{4\pi} \int_{m{\Omega}} I_{
u}(\mathbf{r},m{\Omega}) \, m{\Omega} \, dm{\Omega},$$

Flux Limited Diffusion

$$\mathbf{F}_r = -\frac{c\lambda}{\sigma_F} \nabla E_r$$

Kuiper 2014

Radiation-Pressure on Dusts: RHD Simulation

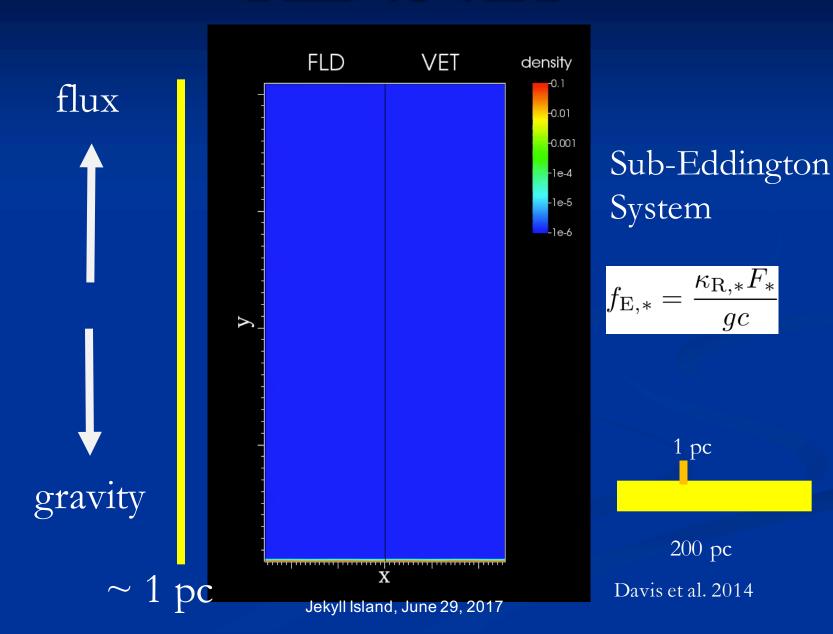
Ray Tracing

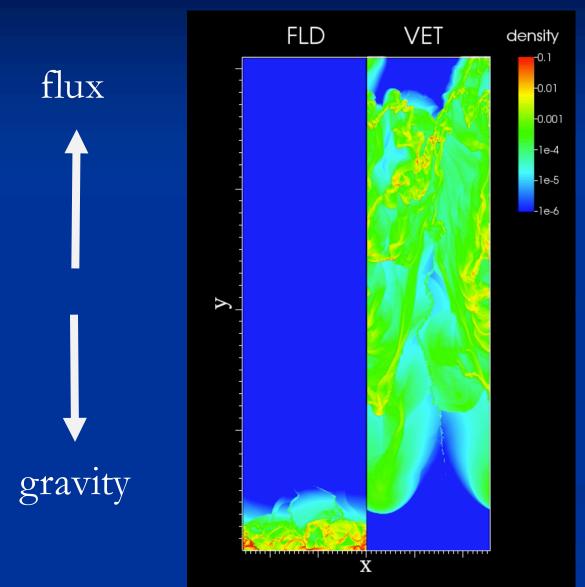
$$\mathbf{F}_{
u}(\mathbf{r}) = rac{1}{4\pi} \int_{m{\Omega}} I_{
u}(\mathbf{r}, m{\Omega}) \, m{\Omega} \, dm{\Omega},$$

Flux Limited Diffusion (FLD)

$$\mathbf{F}_r = -\frac{c\lambda}{\sigma_F} \nabla E_r$$

Variable Eddington Tensor (VET)

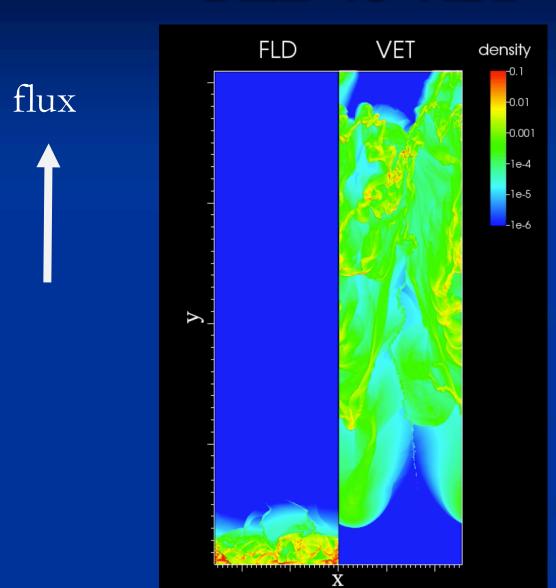

$$\hat{n} \cdot \nabla I = \sigma_F \left(\frac{a_r c}{4\pi} T^4 - I \right)$$

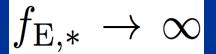

$$\mathsf{f} = \frac{\mathsf{P}_r}{E_r} = \frac{\int I(\hat{n}) \mu_i \mu_j d\Omega}{\int I(\hat{n}) d\Omega}$$

$$E_{\rm rad} = \frac{4\pi}{c} \int_0^\infty J_{\nu} d\nu,$$

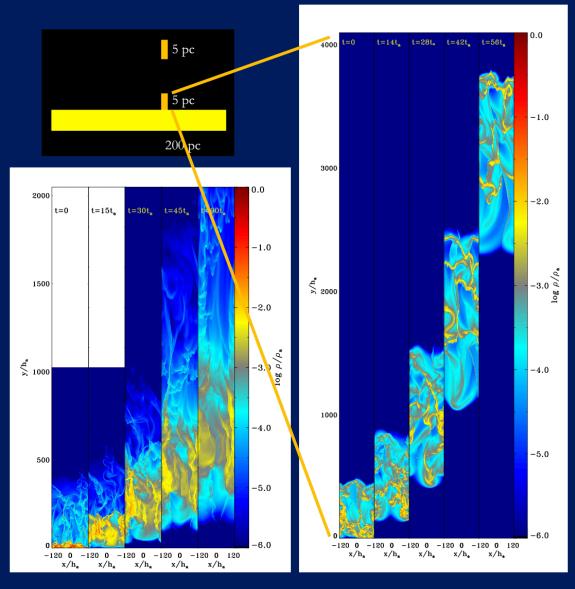
$$\mathbf{F}_{\mathrm{rad}} = 4\pi \int_{0}^{\infty} \mathbf{H}_{\nu} d\nu,$$

$$\mathsf{P}_{\mathrm{rad}} = \frac{4\pi}{c} \int_0^\infty \mathsf{K}_{\nu} d\nu.$$


Sub-Eddington System


$$f_{\mathrm{E},*} = \frac{\kappa_{\mathrm{R},*} F_*}{gc}$$

Davis et al. 2014


Jekyll Island, June 29, 2017

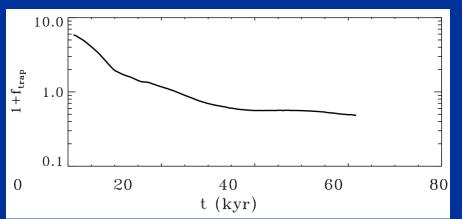
Jekyll Island, June 29, 2017

Zhang & Davis 2017

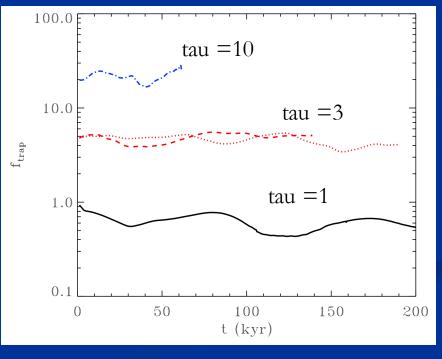
4000 t=0 t=17t t=34t, t=51t, t=67t, -1.03000 -2.0-3.0 gol -4.01000 -120 0 -120 0 -120 0 -120 0 -120 0 120 x/h

 τ_{IR} =3, gravity free, FLD method

 τ_{IR} =3, gravity free, VET method


 τ_{IR} =1, gravity free, VET method

Trapping Factor


(Measure the Momentum Coupling)

$$\frac{dp_{\rm wind}}{dt} \simeq (1 + f_{\rm trap}) \frac{L}{c}$$

FLD

VET

Brief Summary

Is Radiation Pressure on Dust Strong enough to Drive a Galactic Wind?

$$\frac{dp_{\mathrm{wind}}}{dt} \simeq (1 + \eta \tau_{\mathrm{IR}}) \frac{L}{c}$$

$$\tau_* = 1, 3, 10$$
 $\tau_{IR} = 1.8, 7.9, 48.5$
 $\eta = 0.90, 0.69, 0.47$

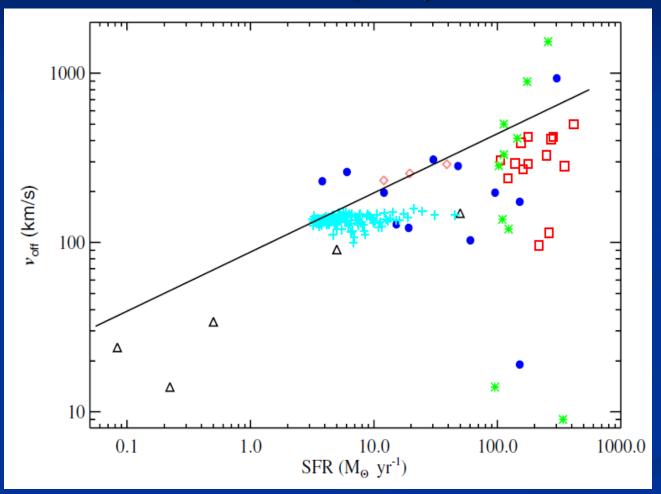
Brief Summary

Is Radiation Pressure on Dust Strong enough to Drive a Galactic Wind?

$$\frac{dp_{\mathrm{wind}}}{dt} \simeq (1 + \eta \tau_{\mathrm{IR}}) \frac{L}{c}$$

 $\eta \sim 0.5$ -0.9

LIRGs and ULIRGs



$$f_{E,*} \sim 0.3$$

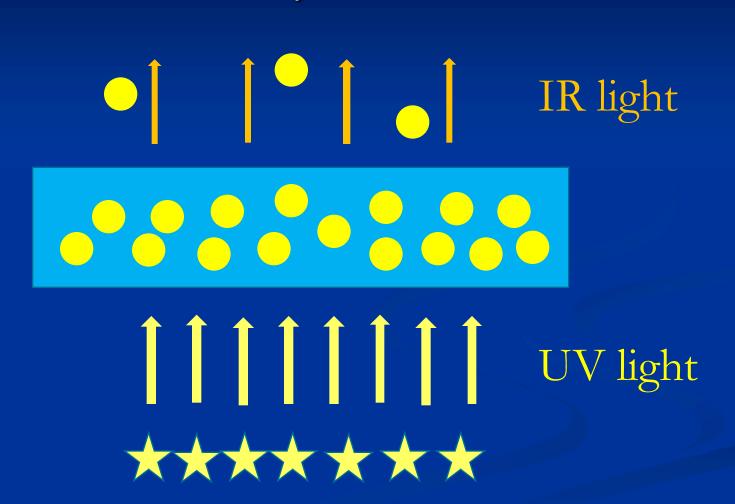
 $\tau_* \sim 30$

$$f_{E,*} \sim 0.8$$

 $\tau_* \sim 230$

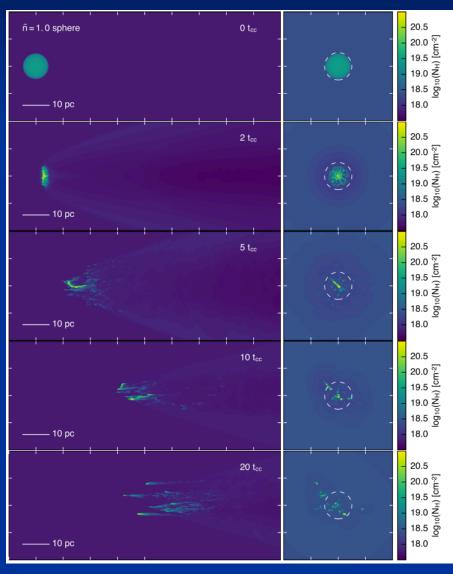
Cloud Acceleration in Radiation Field

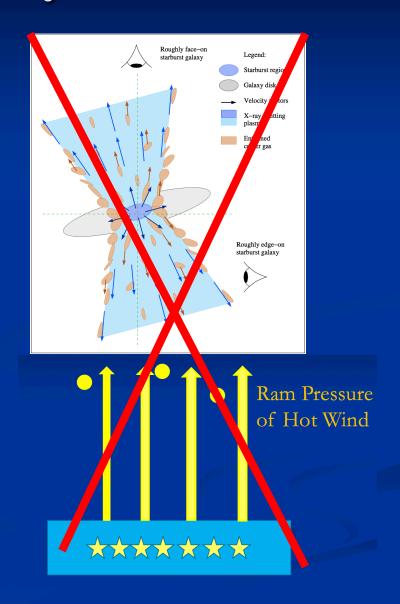
Observation: Cloud Outflows in Star-Forming Galaxies (z<1)



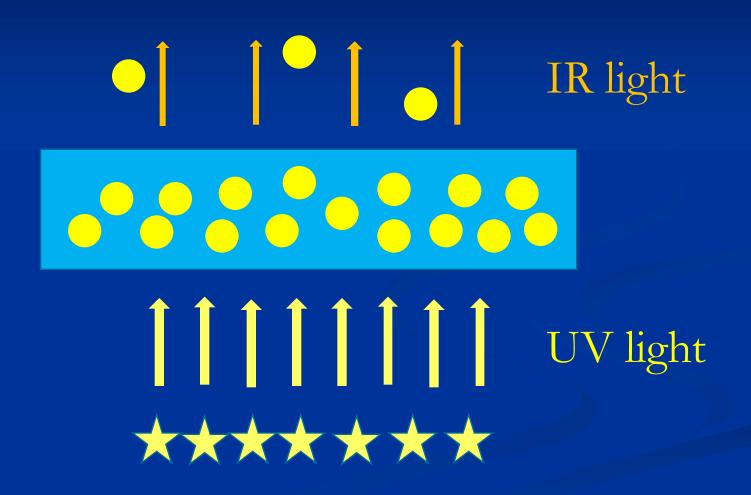
Chen et al. 2010

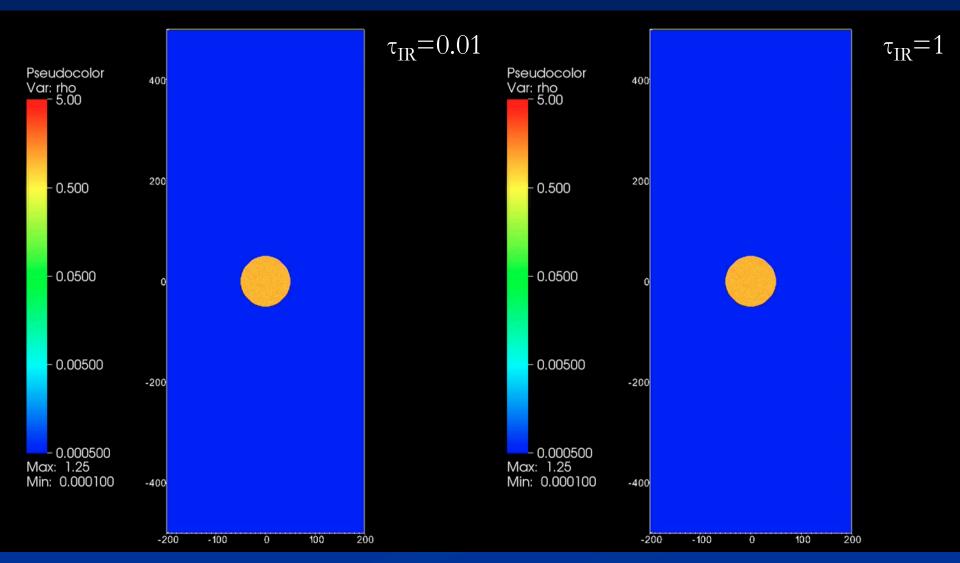
Radiation Pressure Driven Wind in Starbursts and Star-Forming Galaxies


Radiation Pressure Driven Clouds



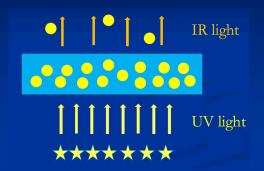
Ram Pressure Driven Clouds in Starbursts and Star-Forming Galaxies

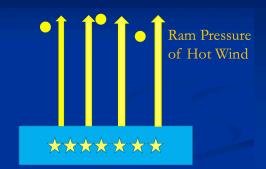

Cloud Acceleration by Hot Wind

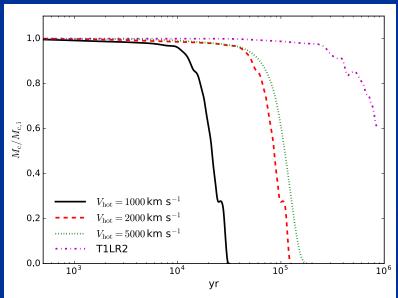


Schneider & Robertson (2017)

Cloud Acceleration by Radiation




Cloud Acceleration by Radiation


Zhang et al. 2017b, in preparation

Cloud Lifetime

Zhang et al. 2017b, in preparation

Summary

- Disks radiating at or even somewhat below the Eddington limit are unstable to driving large-scale winds by radiation pressure.
- Momentum Coupling between gas and radiation is more efficient using the VET method for simulations.
- We find a moderate amplification factor η, which measures the momentum couple between radiation and dusty gas.
- Clouds accelerated by radiation has longer lifetime than hot-windpushed clouds.