Circumnuclear Gaseous Kinematics and Excitation of Four Local Radio Galaxies

Guilherme S. Couto

T. Storchi-Bergmann, A. Robinson, R.A. Riffel, P. Kharb D. Lena, A. Schnorr-Müller

UFSC, Florianópolis, Brazil

Jekyll Island, June 29, 2017

Guilherme S. Couto (UFSC)

Gas kinematics and excitation of low-z radio galaxies

4 D N 4 🗐 N 4 E

Radio galaxies

- Radio jets interact with gas, generating shock ionization and outflows.
- Energy injection into the ISM (Fabian 2012).
- AGN feedback may quench star formation if powerful enough $(\dot{E} > 5\% L_{\rm bol})$, Di Matteo et al. 2005)

GMOS-IFU data from Gemini Telescopes (3.5'' \times 5'' FoV, \sim 0.6'' spatial resolution, $R\sim$ 3600), in order to:

- Map circumnuclear gas kinematics and excitation.
- Study possible jet-gas interaction.
- Quantify feedback impact in the host galaxies.

Observed galaxies (z < 0.07): Arp 102B, Pictor A, 3C 33 e 4C +29.30

< ロト < 同ト < ヨト < ヨト

Arp 102B

- Elliptical galaxy (E0), $d = 104.9 \text{ Mpc} (z = 0.02, \approx 490 \text{ pc}/'')$.
- Interaction with Arp 102A.
- Fathi et al. 2011: nuclear spiral arms correlated with jet.

Arp 102A and Arp 102B pair (Rick Johnson).

Fathi et al. 2011

イロト 不得下 イヨト イヨト

Arp 102B - Channel maps

- Gas rotating disk.
- Radio jet along redshifted and blueshifted gas emission.
- Outflowing gas close to the plane of sky.

< 🗇 →

Arp 102B - Gas excitation

• Comparison with MAPPINGS III models (Groves et al. 2004, Allen et al. 2008): photoionization and shocks.

Guilherme S. Couto (UFSC)

Gas kinematics and excitation of low-z radio galaxies

< 4 ₽ > < 3

Pictor A

- d = 153 Mpc (z = 0.03, 690 pc/").
- Extended double-lobed jet (> 200 kpc).
- Tidal tail: $\sim 10^7\, \rm yrs$ interaction.

VLA contours and X-ray image (Wilson et al. 2001)

Pictor A - Flux distributions

- Non-resolved broad component ($\sigma > 300\,{\rm km\,s^{-1}}$).
- Narrow component emission extended along a bar-like structure.

• • • • •

Pictor A - Gas excitation

- $[O III]/H\beta$ from Fillipenko (1985, triangles) and Simkin et al. (1999, diamonds).
- Low $[N II]/H\alpha$.
- Low metallicities for AGN (12 + log(O/H) ~ 8.39): accretion of gas from interaction.

3C 33

- Seyfert 2, $d \approx 266 \text{ Mpc} (z = 0.06, 1.15 \text{ kpc}/")$.
- Extended emission in spiral arms ($\approx 4 \text{ kpc}$).
- Radio jet with extension of $\sim 120\,{\rm kpc.}$

VLA image (Leahy & Perley 1991) and ACS-HST image (Tremblay et al. 2009)

Guilherme S. Couto (UFSC)

Gas kinematics and excitation of low-z radio galaxies

3C 33 - F, v and σ distributions

- Rotation pattern with distortions in the nucleus.
- $\sigma \sim 170 \, {\rm km \, s^{-1}}$ almost perpendicular to the radio jet.

Couto et al. 2017

3C 33 - Outflowing gas

• Increase of [N II]/H α along residuals: laterally expanding gas.

Rotation model

 $[N II]/H\alpha$ channel maps

• • • • •

3C 33 - Outflowing gas

- High residuals, σ and temperature.
- Rotation and outflowing velocity regimes.

< A

4C + 29.30

- Elliptical galaxy, $d \approx 289 \text{ Mpc}$ (z = 0.06, 1.24 kpc/").
- Feedback and interaction signatures in X-rays (Siemiginowska et al. 2012).

4C+29.30 composite image: optical (green), radio (pink) and X-rays (blue, \approx 50'' \times 50'', Siemiginowska et al. 2012).

< < >> < </p>

4C +29.30 - F, v and σ distributions

- Extended emission \sim 6 kpc along spiral arms-like structure..
- "Southern knot": blueshifted region pprox 1'' from the nucleus, $\sigma \sim 250 \, {\rm km \, s^{-1}}$.

Couto et al. (in prep)

Image: A match a ma

4C +29.30 - Channel maps

- Southern knot with $v > 600 \,\mathrm{km \, s^{-1}}$: signature of outflow.
- Extended emission may be related to the radio jet.

Couto et al. (in prep)

Guilherme S. Couto (UFSC)

Gas kinematics and excitation of low-z radio galaxies

< 🗇 🕨

Summary

- Higher [N II]/H α , [S II]/H α and [O I]/H α are usually observed in regions related to outflows, tracing shocks.
- $\sigma \ge 200 \, \rm km \, s^{-1}$ usually perpendicular to the radio jet axis, thus outflows seems to be in lateral expansions.
- Presence of feeding mechanisms such as spiral arms and bars.
- High ionized gas masses ($\sim 10^8 M_{\odot}$) indicate acretion of gas in this sample, which presents interaction with companions.
- Circumnuclear outflowing gas with low kinetic power ($\dot{E} \sim 0.05\% L_{bol}$), but may be enough to inhibit star formation ($\Sigma_{SFR} \sim 10^{-3} M_{\odot}$ ano⁻¹ kpc⁻² using Kennicutt 1998).
- Kinetic power may be up to two magnitudes higher when looking into molecular gas (eg. 3C 293, Mahony et al. 2016).

More info: Couto et al. 2013, 2016, 2017

< ロト < 同ト < ヨト < ヨト

Guilherme S. Couto (UFSC)

◆□> ◆圖> ◆臣> ◆臣> ○臣

Observations

- Integral Field Unit (IFU) of GMOS, telescope Gemini spectrograph.
- One-slit mode: $3.5'' \times 5''$.
- Higher spectral coverage (R ~ 3600).

(日) (同) (日) (日)

Galaxy	Program ID	$t_{exp}(s)$	Grating	$\Delta\lambda$ (Å)	Seeing (")
Arp 102B	GN-2007A-Q-57	6 imes 900	B600+_G5303	4400-7300	0.6″
Pictor A	GS-2004B-Q-25	9 imes 600	R400+_G5325	5600-9925	0.57'' imes 0.82'' (elíptico)
3C 33	GN-2010B-Q-66	8 imes 940	B600+_G5307	4400-7300	0.5″
4C +29.30	GN-2016A-Q-77	15 imes 1140	B600+_G5307	4400-7300	0.7″

Emission line measurements

- Fitting of Gaussians or Gauss-Hermite polynomials.
- Integrated flux, centroid velocity and velocity dispersions (h3 and h4 moments for GH).
- Noise uncertainties: 100 fittings in each pixel, adding random noise.

< 6 b

Channel maps

- Spectral bands extracted along the emission line profile.
- Allows the investigation of the emitting gas in different velocity bins.

< 🗇 🕨

Gas excitation mechanisms

- MAPPINGS III models (Allen+ 08, Groves+ 04a,b)
- Photoionization: ionizing continuum in the central source with $F_{\nu} \propto \nu^{\alpha}$.
- Shocks: gas ionization with shock velocities of $100 < v_s < 1100 \, {\rm km \, s^{-1}}$.

Diagnostic diagrams (Kewley+ 06).

Image: A math a math

Physical features of the gas

• Reddening assuming recombination case B (Osterbrock & Ferland 06) and Cardelli et al. 1989 law:

$$E(B-V) = 2.22 \log \frac{F(H\alpha)/F(H\beta)}{3.1}$$
(1)

- Eletron density: [S II]λ6716/6731 using TEMDEN (De Robertis et al. 1987).
- Emitting gas mass:

$$M \approx 7 \times 10^5 \frac{L_{41}(H\beta)}{n_3^2} M_{\odot}$$
⁽²⁾

Outflow mass rate:

$$M_{out} = m_p \, n_e \, v_{out} \, A \, f \tag{3}$$

Accretion mass rate:

$$\dot{m} = \frac{L_{bol}}{c^2 \eta} \approx 1.8 \times 10^{-3} \left(\frac{L_{44}}{\eta}\right) \,\mathrm{M_{\odot} \, yr^{-1}} \tag{4}$$

Guilherme S. Couto (UFSC)

A (10) < A (10) </p>

Rotating model

• Assuming the gas is rotating in a disk with keplerian movement, the observed radial velocity is given by (Bertola+ 91):

$$u(R,\Psi) = v_{sys} + rac{AR\cos(\Psi - \Psi_0)\sin\theta\cos^p\theta}{\{R^2[\sin^2(\Psi - \Psi_0) + \cos^2\theta\cos^2(\Psi - \Psi_0)] + c_0^2\cos^2\theta\}^{p/2}}$$

- *R* e Ψ: coordinates in the plane of the sky.
- Ψ_0 : angle of the line of the nodes.
- θ: disk inclination with the plane of the sky.
- v_{sys}: systemic velocity.
- A: rotation amplitude.
- c₀ e p: concentration parameter and curve steepness
- Residuals between the observation and model: non-rotating components.

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Arp 102B

3

イロト イヨト イヨト イヨト

Arp 102B - Flux distribution

イロト イヨト イヨト イヨト

Arp 102B - Centroid velocity and σ

Guilherme S. Couto (UFSC)

Gas kinematics and excitation of low-z radio galaxies

Jekyll Island, June 29, 2017 17 / 17

Arp 102B - Gas excitation

- BPT diagram: values between Seyfert and LINER.
- Comparison with MAPPINGS III models (Groves et al. 2004, Allen et al. 2008): photoionization and shocks.

< 🗇 🕨

Arp 102B - Gas excitation

- Shocks: $400 < v_{shock} < 500 \, {\rm km \, s^{-1}}$ and $10^{-4} < B < 2.0 \, \mu {\rm G}$.
- Photoionization with $n_H = 1000 \text{ cm}^{-3}$: $-1.7 < \alpha < -1.4$ and $-3.0 < \log U < -2.5$.

Guilherme S. Couto (UFSC)

Gas kinematics and excitation of low-z radio galaxies

< 🗇 🕨

Arp 102B - Rotation model

・ロト ・回ト ・ヨト

Pictor A

Guilherme S. Couto (UFSC)

Gas kinematics and excitation of low-z radio galaxies

Jekyll Island, June 29, 2017 17 / 17

Pictor A - Line fitting

• 2 components: narrow ($< 300 \, \mathrm{km \, s^{-1}}$) and broad ($> 300 \, \mathrm{km \, s^{-1}}$).

Guilherme S. Couto (UFSC)

Gas kinematics and excitation of low-z radio galaxies

Jekyll Island, June 29, 2017 17 / 17

Pictor A - Centroid velocity and velocity dispersion

- Disturbed kinematics dominated by non-rotating components.
- Low σ along bar-like structure ($\sim 50 \, {\rm km \, s^{-1}}$).

< 🗇 🕨

- PC4: blueshifts along the far side of the jet.
- Possible bipolar outflow in lateral expansions (cannot rule out rotation).

3C 33 - Line fitting

- Initially fitted Gauss-Hermite.
- |h3| or |h4| > 0.03: two Gaussians.
- |h3| or |h4| < 0.03: one Gaussian.

3C 33 - 2-Gaussians F, v e σ distribution

- Broad component ($\sigma > 130 \,\mathrm{km \, s^{-1}}$): "nuclear strip".
- Narrow component ($\sigma < 130 \, {\rm km \, s^{-1}}$): traces rotation and spiral arms.

A (1) > 4

3C 33 - Line ratios

- $[N II]/H\alpha$, $[S II]/H\alpha$ e $[O I]/H\alpha$: shocks in the nuclear strip.
- $[O I]/H\alpha$: shocks along the spiral arms.

Image: A mathematical and A mathematica A mathematical and A mathem

3C 33 - Line ratios

- $[O III]/H\beta$: ionization along the radio jet.
- [S II]6717/31: $\mathit{n_e}\sim300\,\mathrm{cm}^{-3}$ in the nuclear strip.
- H α /H β : dust lanes ($A_{\nu} \sim 1.5 \text{ mag}$).

(日) (同) (日) (日)

4C +29.30

Guilherme S. Couto (UFSC)

Gas kinematics and excitation of low-z radio galaxies

Jekyll Island, June 29, 2017 17 / 17

4C +29.30 - Line ratios

- [N II]/H α and [S II]/H α : high and low values in redshifts and blueshifts, respectivelly.
- $[O III]/H\beta$: values decrease with the distance to the nucleus.

4C + 29.30 - Electron density

- $n_e > 300 \, {\rm cm}^{-3}$ between the nucleus and southern knot.
- Apparent correlation with the radio jet.

< 6 b