Georgia Winds June 2017

TESTING QUASAR UNIFICATION WITH RADIATIVE TRANSFER AND OBSERVATIONAL DATA

JAMES MATTHEWS

CHRISTIAN KNIGGE, NICK HIGGINBOTTOM, SAM MANGHAM (Southampton) KNOX LONG (STScI, Eureka Scientific) STUART SIM (Queen's Belfast)

OCCAM'S QUASAR

- Before we invoke clouds/additional components...
 - What's there already? Winds!

Emmering et al. 1992, Murray et al. 1995, de Kool & Begelman 1995, Elvis 2000.

TESTING THE PARADIGM

"Quantitative Hammer"

OCCAM'S QUASAR; THE PRINCIPLE THAT IN EXPLAINING A QUASAR NO MORE ASSUMPTIONS SHOULD BE MADE THAN ARE NECESSARY.	
CENTRAL SOURCE	

Tool: Monte Carlo Radiative Transfer (MCRT) with global ionization balance Code: Python (named c. 1995)

Long & Knigge 2002 Higginbottom et al. 2013, 2014 Matthews et al. 2015, 2016, in prep Mangham et al., submitted

Radiative, Thermal and Ionization Equilibrium

TESTING THE PARADIGM

OCCAM'S QUASAR: THE PRINCIPLE THAT IN EXPLAINING A QUASAR NO MORE ASSUMPTIONS SHOULD BE MADE THAN ARE NECESSARY.

Tool: Monte Carlo Radiative Transfer (MCRT) with global ionization balance Code: Python (named c. 1995)

Long & Knigge 2002 Higginbottom et al. 2013, 2014 Matthews et al. 2015, 2016, in prep Mangham et al., submitted

Radiative, Thermal and Ionization Equilibrium

Cylindrical Grid (x, z, θ) Track Photons

Photon Sources Biconical Wind

BALQSO SPECTRA

(Higginbottom+ 2013)

Mass loss rate = accretion rate 10° BH mass

Two main issues:

- No emission lines at low inclinations
- Overly weak X-rays to prevent over-ionization

MICROCLUMPING

- Borrow a stellar winds technique: Microclumping
- Optically thin clumps i.e.

$R_{clump} < 1/(\sigma n)$

 Introduce a fill factor f, which produces a density enhancement D

D=1/f

 Opacities and emissivities use enhanced density but reduced by f (volume/filling effect)

OPTICALLY THIN CLUMPS?

Is this at all justified?

- Some limits / literature:
 - ~10¹⁴ cm w/ Thomson & $n_e = 10^{10}$
 - 10¹¹ cm de Kool & Begelman (1995)
 - $N_{H} \sim 10^{17} McCourt et al. (2016)$
 - 'Quasar Rain' Martin Elvis
- Line Deshadowing Instability
 - Owocki, Lucy, Solomon, Feldmeier, Rybicki, Macgregor, O star community

Velocity perturbation causes increase in flux, increases line force -> instability.

X-RAY PROPERTIES: CLUMPY MODEL

Isotropic X-ray source

Data: Saez+ 2012, Steffen+ 2006

PRODUCING BALS

(Matthews+ 2016)

PRODUCING BALS

(Matthews+ 2016)

PRODUCING BALs (Matthews+ 2016)

EQUIVALENT WIDTH DISTRIBUTIONS IN SDSS

- The emission line EW distributions in BAL and non-BAL quasars are remarkably similar
- Inconsistent with equatorial wind + foreshortened disk
- Cannot be easily explained by:
 - GR effects
 - Line anisotropy
 - Obscuration

EQUIVALENT WIDTH DISTRIBUTIONS IN SDSS

EQUIVALENT WIDTH DISTRIBUTIONS IN SDSS Clues from elsewhere?

Eigenvector I

Polarisation

EQUIVALENT WIDTH DISTRIBUTIONS IN SDSS

• SOLUTIONS:

- A: Discs are roughly isotropic
 - Plenty of problems with disc models, e.g. the "disc-size problem"
- B: BALQ outflows aren't equatorial
 - Many models so far predict or use equatorial geometries
 - Polarisation? Systematic differences in BALs. Modelling needed.
- C: Geometric unification doesn't work

IONIZATION STRUCTURE

- Illuminating a BALQ outflow with a Shakura-Sunyaev disk naturally produces a BLR spectrum!
 - All you have to do is get the right balance between emergent continuum and BLR contribution
 - Geometry is CRUCIAL

IONIZATION STRUCTURE

- Illuminating a BALQ outflow with a Shakura-Sunyaev disk naturally produces a BLR spectrum!
 - All you have to do is get the right balance between emergent continuum and BLR contribution
 - Geometry is CRUCIAL

WINDS AS BLRS?

Winds natural possess many of the benefits of LOC models.

...with one key advantage:

Winds definitely exist.

WINDS AS BLRS?

Winds natural possess many of the benefits of LOC models.

...with one key advantage:

Winds definitely exist.

Equation to solve:

$$EW(\theta) \approx \eta \frac{L_C}{L_{C,0}\epsilon(\theta)} \frac{1}{4\pi} \int d\phi \int \epsilon(\theta) d\theta$$

WINDS AS BLRS?

Winds natural possess many of the benefits of LOC models.

...with one key advantage:

Winds definitely exist.

Reprocessing efficiency + observed continuum + intercepted flux Atomic physics + disc physics + disc physics & wind geometry

SUMMARY

- Clumpy [line-driven?] disc winds...
 - ...naturally produce BALs, BELs and the range of observed ionization states
 - ...are fundamentally different to LOC and optically thick cloud models
 - ...explain observed X-ray weakness in BALQs
- Quasar emission line EW distributions are inconsistent with an equatorial BAL outflow rising from an optically thick accretion disc
 - Something's gotta give.
- Disc winds *can* successfully unify quasars.
 - But that doesn't mean they *do*.
- References:
 - Matthews et al. 2016, MNRAS, 458, 293, Matthews et al. 2017, MNRAS, 467, 2571
 - Sam Mangham's talk, Mangham et al. (submitted)
 - BLR + unification -> Matthews et al. (in prep.)

ADDITIONAL SLIDES

- Open questions [discussion: Matthews+ 2017]:
 - Explaining polarisation and radio properties
 - Reconciling with hydro outflow models
 - Comparing to reverberation results for the BLR
 - Understanding the disc continuum

See e.g. talk by Martin Elvis

OVERIONIZATION PROBLEM

- Photoionization models tend to find over-ionization is a big issue
 - Prevents line formation
 - Prevents line-driving
- Proposed solutions
 - Shielding
 - Clumping
 - Radius
- See e.g. Murray+ 1995, Proga+ 1998, Higginbottom+ 2013, 2014, Hamann 2013

Increasing X-rays, decreasing Balnicity

Quasars and BALQSOs have remarkably similar emission line properties (Weymann et al. 1991, Reichard et al. 2003).

Our models don't.

LENGTH SCALES

BALQSOs

- ~20% of the QSO population (Knigge+ 2008, Allen+2011)
 - (depending on selection effects we'll come back to this!)
- Blue-shifted Broad Absorption Line QSOs
- Smoking gun for outflowing material -> disc winds
- Potentially 'line-driven'

