

How to Quench a Galaxy

The growing population of massive, quenched galaxies

What shuts off star formation in massive galaxies?

Is this transition (Blue -> Red) permanent?

Whitaker+ 2011

AGN Feedback and Quenching

Examining the interaction between AGN Feedback and Galaxy Merger History using **Genetic Modification** (Roth+ 2016)

A novel, well-constrained model for SMBH formation, accretion, and dynamics

https://arxiv.org/abs/1607.02151

The Romulus Cosmological Simulations: A Physical Approach to the Formation, Dynamics and Accretion Models of SMBHs

M. Tremmel^{1*}, M. Karcher², F. Governato¹, M. Volonteri³, T. R. Quinn¹, A. Pontzen⁴, L. Anderson¹, J. Bellovary⁵

- •SMBHs seeded at early times without a priori assumptions of halo occupation
- Realistically follow the dynamical evolution of SMBHs (Tremmel+ 2015)
- Accretion that accounts for angular momentum of gas

¹Astronomy Department, University of Washington, Box 351580, Seattle, WA, 98195-1580

²Statistics Department, University of Washington Seattle, WA, 98195-1580

³Sorbonne Universitès, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France

Department of Physics and Astronomy, University College London, 132 Hampstead Road, London, NW1 2PS, United Kingdom

⁵ Department of Physics, Queensborough Community College, 222-05, 56th Avenue, Bayside, NY 11364

A novel, well-constrained model for SMBH formation, accretion, and dynamics

https://arxiv.org/abs/1607.02151

The Romulus Cosmological Simulations: A Physical Approach to the Formation, Dynamics and Accretion Models of SMBHs

M. Tremmel^{1*}, M. Karcher², F. Governato¹, M. Volonteri³, T. R. Quinn¹, A. Pontzen⁴, L. Anderson¹, J. Bellovary⁵

- SMBHs seeded at early times without a priori assumptions of halo occupation
- Realistically follow the dynamical evolution of SMBHs (Tremmel+ 2015)
- Accretion that accounts for angular momentum of gas

¹Astronomy Department, University of Washington, Box 351580, Seattle, WA, 98195-1580

²Statistics Department, University of Washington Seattle, WA, 98195-1580

³Sorbonne Universitès, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France

Department of Physics and Astronomy, University College London, 132 Hampstead Road, London, NW1 2PS, United Kingdom

⁵ Department of Physics, Queensborough Community College, 222-05, 56th Avenue, Bayside, NY 11364

Accretion that Accounts for Angular Momentum

- Account for Angular
 Momentum Support Tremmel
 + 2017
 - Estimate the effective potential due to rotation at resolved scales
 - Modify the Bondi radius accordingly
- 10% Radiative eff.
- 2% (thermal) gas coupling eff.

AGN and Galaxy Mergers

Examining the interaction between AGN Feedback and Galaxy Merger History using **Genetic Modification** (Roth+ 2016)

- High resolution (250 pc, 3x10⁵ M_{sun})
- SMBH dynamics and accretion that respond to the kinematics of their host
- Synergy with the Romulus Simulations (Tremmel+ 2017)

To Quench or Not to Quench

Galaxy mergers have drastic consequences for star formation and morphology.... when coupled with AGN feedback

To Quench or Not to Quench

Galaxy mergers have drastic consequences for star formation and morphology.... when coupled with AGN feedback

Large-Scale Outflows

Energetic outflows prevent the reformation of a gaseous disk

Enhanced Merger simulation just after it becomes quenched

Inflowing gas fuels AGN activity, large-scale winds rather than form a new galactic disk

Large-Scale Outflows

Outflows need to reach larger scales to suppress inflating gas

AGN that fail to drive such winds will eventually fail to prevent rejuvenation

Large-Scale Outflows

Without AGN feedback, galaxy would quickly rejuvenate

A Merger-Driven Quenching Scenario

Major merger disrupts galactic disk with help of AGN feedback

Further inflows feed SMBH, drive powerful winds

Large -scale AGN winds suppress gas inflow, prevent rejuvenation

Quenching Galaxies "In the Wild"

A wider exploration using the Romulus Simulations

Quenching Galaxies "In the Wild"

The rise of the red sequence in Romulus

Tremmel+, in prep

Merger Triggered Quenching at All Redshifts

Mergers cause quenching of massive galaxies at z ~ 2

Merger Triggered Quenching at All Redshifts

Lower redshift mergers can also drive quenching

The Complicated History of Quenched Galaxies

Rejuvenation/quenching can happen multiple times

Large-Scale AGN-Driven Winds Prevent Disk Reformation

1000s km/s outflows at several to 10s kpc

Large-Scale AGN-Driven Winds Prevent Disk Reformation

1000s km/s outflows at several to 10s kpc

Quenched Galaxies Have High AGN Activity Relative to Star Formation

Compared to Main Sequence Galaxies

Tremmel+, in prep

Conclusions

Large-scale (10s kpc), powerful winds driven by AGN are required to prevent rejuvenation in quenched galaxies

- Major mergers (ratio>0.25) and AGN feedback disrupt disk, quench star formation
- Interaction with turbulent medium drives cooling gas onto SMBH
- AGN feedback removes gas, drives large-scale winds that prevent further inflow
- Mechanism robust at a variety of redshifts
- Repeated phases of powerful AGN feedback present in quenched galaxies

Looking Forward

Observational signatures of different phases of AGN feedback

- Effect of repeated outflows on CGM in massive galaxies
- Observational characteristics of outflows at different times
- Examine lower mass galaxies

Conclusions

Large-scale (10s kpc), powerful winds driven by AGN are required to prevent rejuvenation in quenched galaxies

- Major mergers (ratio>0.25) and AGN feedback disrupt disk, quench star formation
- Interaction with turbulent medium drives cooling gas onto SMBH
- AGN feedback removes gas, drives large-scale winds that prevent further inflow
- Mechanism robust at a variety of redshifts
- Repeated phases of powerful AGN feedback present in quenched galaxies

Extra Slides

Genetically Modified Galaxies

Controlled experiments on the dependence of galaxy properties on host halo assembly history Pontzen, Tremmel+ 2017

How to Quench a Galaxy

Feedback from Supernovae driven winds efficient only in low mass galaxies

Keller+ 2016

Realistic SMBH Dynamical Evolution

- Accurately follow the orbital evolution of SMBHs down to sub-kpc scales.
- Orbital evolution a prediction that naturally samples the underlying kinematics of host galaxy

Tremmel+ 2015 arxiv.org/abs/1501.07609

See also Hirschmann+ 2014

Accretion that Accounts for Angular Momentum

- Account for Angular Momentum Support Tremmel+ 2017
- Estimate the effective potential due to rotation at resolved scales
- Modify the Bondi radius accordingly

Pontzen, Tremmel+ 2017

How to Quench a Galaxy

AGN can drive powerful winds in massive galaxies

Rupke & Veilleux 2011

To Quench or Not to Quench

Its not how much energy you get, but how it is distributed

SN and AGN+SN simulations have similar **total** feedback energy output

Quenching requires the **focused feedback** imparted by AGN

Enhanced Suppressed

Genetically Modified Galaxies

Controlled experiments on the dependence of galaxy properties on host halo assembly history

1:10 at $z \sim 3$

1:5 at $z \sim 4$

2:3 at $z \sim 4.6$

