June 26-29, 2017 AGN winds on the Georgia Coast

X-ray short time lags in the Fe-K band produced by disk winds in AGN

Misaki Mizumoto (JAXA/ISAS)

Collaborators: Chris Done¹, Kouichi Hagino², Ken Ebisawa³, Masahiro Tsujimoto³ 1: Univ. of Durham, 2: Tokyo Univ. of Sci., 3: JAXA/ISAS

Contents

- 1. Introduction
 - Reverberation
 - Observed X-ray lags in AGNs
- 2. Monte-Carlo simulation
 - Static clouds
 - Outflowing clouds
- 3. Discussion
 - Can a disk wind explain observed X-ray lags?
- 4. Conclusion

1. Introduction

(Optical) reverberation mapping

1. Introduction

1. Introduction

Motivation

- We focus on Cloud reflection.
- Disk winds can make X-ray reverberation lags.
- Explain the observed X-ray lags with disk winds
 - 1. Lag amplitude:
 - 2. Frequency:

3. Fe-K lag profile:

several R_g several × 10⁻⁴ Hz (@M_{BH}=10⁷M_{solar})

broad feature (5-7 keV)

Method

- Monte-Carlo simulations (using MONACO; Odaka+11)
- As a first step, a part of a spherical shell is assumed.

Setting (static)

- Input spectra: power-law with $\Gamma = 1.6$
- Inclination: 7/15 < cosi < 8/15

- A static, smooth, and neutral shell
- Shell thickness (ΔR) = R/10
- $R=100R_g (M_{BH}=10^7 M_{solar})$ =5000 light-sec
- $N_{\rm H} = 2 \times 10^{23} \, {\rm cm}^{-2}$

Each photon has information on

- 1. coordinate and time at the last time when it interacts with the cloud
- 2. velocity vector with which it moves toward the observer

Lag calculation

- 1. Compute model light curves assuming intrinsic X-ray flux variations of the central corona
 - PSD without any typical frequency
- 2. Definition: Phase difference of two light curves
 - Light curves in the soft/hard band: s(t)/h(t)
 - Fourier transformation of $s(t)/h(t) \rightarrow S(f)/H(f)$
 - \cap C(f)=<S*(f)H(f)>
 - Lag amplitude: τ (f)=arg[C(f)]/2 π f

Setting (outflowing)

- Input spectra: power-law with $\Gamma = 1.6$
- Inclination: 7/15 < cosi < 8/15

- An outflowing, smooth, and neutral shell
- Shell thickness (ΔR) = R/10
- $R=100R_g (M_{BH}=10^7 M_{solar})$ =5000 light-sec
- $N_{\rm H} = 2 \times 10^{23} \, {\rm cm}^{-2}$
- Velocity=0.14c

Doppler broadening

4. Conclusion

Conclusion

- Outflowing clouds can produce X-ray reverberation lags.
 - 1. Lag amplitude:
- several Rg

- 2. Frequency:
- 3. Fe-K lag profile:

several x 10⁻⁴ Hz (M_{BH}=10⁷M_{solar}) broad feature (5-7 keV)

- A disk wind is the plausible mechanism to produce X-ray reverberation lags.
- Future work
 - 1. Simulation based on realistic disk-wind geometry
 - 2. Physical picture to explain other observational features
 - e.g., energy spectra, root-mean-square spectra
 - 3. X-ray reverberation mapping of disk winds
 - Constrain location of disk winds