## A Spatially Resolved Mass Outflow Rate for Markarian 573



Physics & Astronomy

Mitchell Revalski AGN Winds June 28<sup>th</sup>, 2017



NSF GRFP 1550139

## Narrow Line Region Outflows

- Do NLR mass outflows:
- Provide significant bulge feedback?
- Scale with host AGN properties?
- Need *spatially-resolved* outflow rates (Crenshaw+ 2015)
- Quantify NLR mass outflow rates



Modified from Smith et al. 2008, A&A, 490, 103

# Active Galaxy Markarian 573





## **Overview of Methodology**

- Determine  $\dot{M}$  and  $L_{KE}$  at each position
- Velocity → Doppler motions corrected for orientation effects
- Mass → model spectra and derive conversion factor from luminosity and density to mass
- M → account for total NLR mass with [O III] imaging and conversion factor





HST STIS
APO DIS
Gemini NIFS

#### Extract Spectra at each Spatial Location













#### **Diagnostics:** Ionization



Baldwin+ 1981, Veilleux+ 1987, Kewley+ 2001;2006, Kauffmann+ 2003, Stasińska+ 2006, Meléndez+ 2014

#### Oxygen Abundances



Storchi-Bergmann+ 1998, Asplund+ 2009, Dors+ 2015, Castro+ 2017



0.04



Osterbrock+ 2006, Draine 2011

#### **Density Sensitive Ratios**



Osterbrock+ 2006, Draine 2011, Ferland+ 2013



## Photoionization Modeling

Inputs → luminosity, spectral energy distribution, abundances, dust, distance, density...



- Outputs  $\rightarrow$  emission line fluxes and ratios, column densities
- Create multicomponent models and select best fit

Osterbrock+ 2006, Collins+ 2009, Kraemer+ 2009

## Determining the NLR Mass

• M = N<sub>H</sub>µm<sub>p</sub> 
$$\left(\frac{L(H\beta)}{F(H\beta)_{mod}}\right) \rightarrow slit$$

- $M \rightarrow \text{ionized gas mass}$
- $N_H \rightarrow$  column density (cm<sup>-2</sup>)
- $\mu \rightarrow$  mean mass per particle (1.36)
- $m_p \rightarrow proton mass$
- $L(H\beta) \rightarrow observed H\beta$  luminosity
- $F(H\beta)_{mod} \rightarrow model H\beta flux$

• M 
$$\propto \left(\frac{L(H\beta)}{n_e}\right) = s\left(\frac{F_{[OIII]}}{n_H}\right) \rightarrow \text{image}$$

#### HST [O III] Image





#### Mass Outflow Profiles



#### Mass Outflow Profiles



#### Kinetic Luminosity Profiles



### Discussion

- Similar outflow rates, Mrk 573 ~ 5-10x more energetic than NGC 4151.
- Comparison with global outflow estimates:
- Sum of spatially resolved curve  $\sim 20~M_{\odot}/yr$
- $\dot{M} \propto n_e v_{out} A f$ : ~ 30 (6 600)  $M_{\odot}/yr$ . (e.g. Muller-Sanchez+ 2011)
- $\dot{M} \propto L_{H\alpha} n_e^{-1} \bar{v}_{out} \sim 5 (2 30) M_{\odot} / yr$ . (e.g. Bae+ 2017)
- Take away: estimate densities from emission lines when possible. Employ a mean or weighted mean velocity for "global" outflow rates.

## Conclusions

- Different spatial extents, similar peak outflow rates
- Outflow rates comparable to global estimates

(e.g. Barbosa+ 2009, Storchi-Bergmann+ 2010, Müller-Sánchez+ 2011, Riffel+ 2013, Schnorr-Müller+2014, Bae+ 2017, Schönell+ 2017)

- Profile indicates in-situ acceleration not nuclear outflow
- Kinetic luminosities  $\sim$  0.2-0.8% of bolometric
- Likely missing X-ray and molecular components
- Need more targets to search for correlations