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SDSS-III BOSS and SDSS-IV TDSS

SDSS-III Baryon Oscillation

spectra from.3600- 10000 A ,
e Spectroscopic Survey (BOSS)

reselu- jon ~ 2@@@

5-year program (2009-2014)
Covered 10,000 deg?

Ancillary BOSS project on BAL
variability

SDSS-IV Time-Domain
Spectroscopic Survey (TDSS)

6-year program (2014-2020)

.

: : Covering 7,500 deg?
Move from small-sample and single-object

studies of multi-year BAL variability Main Goal - Obtain spectra
to for classification of variables
statlst1ca11Y powerful, large.-sample About 10% of fibers allocated
constraints on quasar winds. for repeat obs. - e.g., BAL quasars




BAL Variability Project - Experimental Design

Luminosity vs. Redshift for Main Sample
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Some BAL Variability Samples

Sample-based Studies of BAL Quasar Variability

Reference No. of At Range  No. of Epochs
Quasars (yr)
Barlow (1993) 23 0.2-1.2 2-6
Lundgren et al. (2007) 29 0.05-0.3 2
Gibson et al. (2008) 13 3.0-6.1 2
Gibson et al. (2010) 14 0.04-6.8 2-4
Capellupo et al. (2011, 2012, 2013) 24 0.02-8.7 2-13
Vivek et al. (2012)? 5 0.01-5 4-14
Haggard et al. (2012) 17 0.001-0.9 6
Filiz Ak et al. (2012)° 19 1.1-3.9 24
Welling et al. (2013)° 46 0.2-16.4 2-6
This study 291 0.0006-3.7 2-12
Full BOSS Ancillary 2105 0.0006-6 2-12
Notes.

2 Fe low-ionization BAL quasars.
b Quasars with disappearing BAL troughs.
¢ Radio-loud BAL quasars.

Focus is on the C IV, Si IV, Mg II, and Al III transitions.

Main sample is 2005 representative BAL quasars from Gibson et al. (2009) catalog that are
bright (1 = 16.5-19.2) and have good BAL coverage - observed by SDSS-I/II from 2000-2008.

Additional samples - Exceptional BALs, LBQS/FBQS, 2-epoch regions. 3018 targets in total.

Sample is 100 times larger than other samples and will reach 15-20 observed-frame years.




Need for Multi-Year Timescales

C IV BAL EW Changes vs. Rest-Frame Timescale
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C IV BALs vary substantially more strongly on multi-year timescales.

Expected on physical grounds — crossing times and disk rotation.



TDSS Observations vs. MJD

< 1100 [ | | | | | | | | 1
O 1000 -~ Through Late-April 2017 1025 -
= - 0.99 BAL quasars per night incoming ]
£ 900 =
O .
2 g0 :
o» 800 ]
2 ook E
g 700¢ ]
o 600 =
E; = Spectra E
o 500 - obtained ]
@ C ]
<§ 400 - n
7 = Most main-sample targets ]
Eé 300 (and many others) will have  —
5 500 - three well-separated epochs: -
¥* - SDSS-I/11 + BOSS + TDSS .
£ 100 ]
- C ]
O 0c i | 1 1 1 | 1 L .

57000 57500 58000
MJD



Examples of Strong BAL Variability
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Main Science Papers to Date

Filiz Ak et al. (2012) — First BAL Disappearance Results

Filiz Ak et al. (2013) — Statistical Characterization of C IV and Si IV Variability

Filiz Ak et al. (2014) — Coordinated Ionization Levels, Kinematics, Column Densities
GCrier et al. (2015) — Rapid C IV BAL Variability (data from SDSS-RM)

Grier et al. (2016) — C IV BAL Acceleration Study

Rogerson et al. (2016) — Extremely High-Velocity Emergent Absorption

McGraw et al. (2017) — BAL Disappearance and Emergence with Multiple Epochs
Rogerson et al. (2017) — Large BAL Emergence Study

De Cicco et al. (2017) — Large BAL Disappearance Survey

Also several “spin off” papers — e.g., redshifted BALs



BAL Disappearance
and Emergence

Filiz Ak et al. (2012,2013)
Rogerson et al. (2016,2017)
McGraw et al. (2017)

De Cicco et al. (2017)



C IV BAL Disappearance Survey

Filiz Ak et al. (2012) and De Cicco et al. (2017)
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13 examples of BAL disappearance in
67 quasars — first C IV examples.

On 1-4 yr rest-frame timescales, 3.9%
of C IV troughs disappear and 5.1%
of BAL quasars show at least one
disappearing trough.

Suggests average C IV BAL lifetime
of about a century.

BAL disappearance occurs mainly for
weak or moderate-strength absorption
troughs, as well as for those at
relatively high outflow velocities.



BAL to Non-BAL Quasar Transformations

Many examples of BAL to non-BAL quasar transformations.
Somewhat challenges the definition of a BAL quasar.

To maintain population equilibrium, indicates that non-BAL quasars
must be turning into BAL quasars via BAL emergence:

RDisappear N, BAL — REmerge N, NonBAL
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A Somewhat Surprising Result

Observed Wavelength
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Coordinated Trough Variations

Coordinated Trough Variations

EW Variations of Lowest Velocity : .
across Wide Velocity Spans

Versus Higher Velocity C IV Troughs
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Variations of distinct troughs are clearly correlated, though with scatter in correlations.
Need some agent to enforce coordinated variability - ionization-driven variability.
Could be intrinsic changes of EUV continuum or changes in shielding gas.

Rogerson et al. (2017) find that degree of coordination drops off with velocity separation.



Three-Epoch Disappearance Follow-Up

Re-Emergence After Disappearance
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McGraw et al. (2017)

0

Focused on sample with
SDSS-I/II + BOSS + TDSS
coverage — 470 BAL quasars.

14 new pristine cases of
disappearing C IV and/or
S1 IV BALs.

Four mini-BALs re-emerge in the
third-epoch TDSS data — encore!

Re-emerge at roughly same
velocity and with notable
kinematic similarities.

Evidence for ionization changes
causing the variability.



BAL Emergence
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Emergent Absorption at 56,000 km s-!

Velocity (km s~ 1) . .
60000 50000 40000 30000 Highest velocity C IV trough to date.
Second emerging trough at 40,000 km s-!
SDSS
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unprecedented speeds—almost like a bat out of hell,” says William Nielsen
(Niel) Brandt, professor of astronomy and astrophysics and a professor of
physics at Penn State.

12|60 12|80 13|00 13|2() 13I40 13‘60 13l80 1400 “We're talking wind speeds of more than 200 million miles an hour, equivalent to
Rest-frame Wavelength (A) a category 77 hurricane,” says Jesse Rogerson, who led the research as part of

his efforts toward earning a PhD in the physics and astronomy department at

York University in Canada.

Rogerson et al. (2016)



BAIL Acceleration
and Deceleration

Grier et al. (2016)



Possible Causes

BALs could accelerate due to an actual increase in the
speed of material from an (intermittent) outflow.

Or directional shift in an outflow changing LOS velocity;
e.g., due to disk rotation.

Deceleration plausibly / T O ity
expected in galactic feedback erssriven o N\
models, when wind interacts |

et shocked shocked,
_.---""TFast wind adiabatically expanding admbmlc.all_\'
with ambient host material Ottt T B
(Ey = NLEqa/6) .
- 1 (E =nLggd/3)

wind shock
(energy conserved)

Zubovas & King (2012) /’

ed)



Systematic Search for BAL Acceleration
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Few measurements of BAL acceleration
in the literature.

Available sample-based constraints use
small samples with unclear methodology.

First systematic, large-scale search to
constrain this phenomenon.

Long timescales help since velocity shifts
from acceleration accumulate.

Cross-correlation search for acceleration,
looking for ~ monolithic velocity shifts of
C IV BALs (or parts). Sub-pixel sensitivity.

140 representative BAL quasars with
3-epoch data spanning 2.5-5.5 years.

151 distinct C IV BAL-trough complexes.



2-3 Acceleration / Deceleration Candidates

Normalized Flux
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Most BALs Remarkably Velocity Stable

Upper Limits on Acceleration and Deceleration
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Most of our sample has 3o upper limits of 0.5 cm s or better.

Most BALs are stable to within 3% of their outflow velocities over years.



Some Implications

For acceleration candidates, Murray et al. (1995) model
can plausibly match observed velocities and accelerations.
But “jerk” magnitudes are problematic.

For acceleration upper limits, might explain if gas is in
“standing pattern” outflow.

But, are sampling a significant fraction of {_, .. at 17, .ps SO
need azimuthally symmetric outflow. Larger radii help.

For deceleration upper limits, need quantitative predictions
of deceleration from feedback models for comparison.




Rapid BAL
Variability

Grier et al. (2015)



Observed General BAL Variability

Mean and RMS Spectra from SDSS-RM Trough Light Curves
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Also signs of variable absorption in NV, AL III, Si IV.

Observed rest-frame UV continuum varies by only ~ 10%.



Fastest Observed Variability
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with 8-10 days
in Capellupo
et al. (2013).



Trough Profile Shape

Rest-frame Wavelength (A)
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Interpretation and Ongoing Work

Ionization changes appear the likely variability driver:
Global variations across entire trough (4340 km s-! wide)

Troughs A and B show coordinated variability

EUV continuum must be much more variable than rest-frame
UV continuum - intrinsic changes or shield changes.

Hemler et al. investigating rapid BAL variability in the
SDSS-RM field systematically.



Future
Prospects




Lots More Variability Work
to Do 1n the Short Term!

BAL vs. continuum, emission-line, and reddening variability.
Large-sample studies of low-ionization BAL variability.

Further constraints on BAL acceleration, and follow-up of
acceleration candidates.

Systematic survey of rapid BAL variability.

X-ray and multiwavelength follow-up of remarkable BAL
variability events — e.qg., disappearance and emergence.



After SDSS-IV — AS4

AS4' Executive Summary

Juna Kollmeier (AS4 Director) and the AS4 Science Management Team

AS4 is the first all-sky, time-domain spectroscopic survey, with observational capabilities
that will remain unmatched for the foreseeable future. This unique survey facility is poised to
transform broad areas of astrophysics, in particular: understanding the formation of our Milky
Way and other galaxies, along with the astrophysics of stars and of supermassive black
holes.

In one flagship program, AS4 will provide spectroscopic data for stars across the Milky Way.
This survey is unrivaled in its combination of sky coverage, time sampling, and systematic
target selection throughout our Galaxy, enabled by dual-hemisphere, wide-field infrared
spectroscopy. From this, we will:

e Understand the genesis of our Galaxy by acquiring

o a first global picture of Milky Way structure and dynamics, placing our Galaxy
precisely in the overall realm of galaxies,

o comprehensive constraints on the evolutionary processes that shaped our
Milky Way and other galaxies, and

o a map of when and where the broad range of chemical elements were
created in our Galaxy.

e Take the understanding of fundamental stellar physics, the pillar upon which much of
astrophysics rests, to a new level. In combination with the Gaia, Kepler and TESS
space missions, AS4 will transform our understanding of

o the origin of supernovae,

o the difference between planet-hosting and non-hosting stars,

o binary stars across the Hertzsprung-Russell diagram -- as witnesses to
star-formation physics, as drivers of stellar evolution and as laboratories to
test stellar evolution, and

o young, massive stars, through a vast sample of (near-IR) spectra.

At the same time, AS4 will open new frontiers in extragalactic astrophysics: it will enable us
to understand quasars as dynamical phenomena -- through both reverberation mapping and
direct black hole mass estimates from multi-epoch spectroscopy that samples time-scales
from days to more than a decade. In addition, AS4 will be the only dual-hemisphere
spectroscopic complement to the eROSITA mission, unveiling the nature of X-ray sources
that shine brightly across the sky.

All-sky, time-domain
spectroscopic survey
(about 2020-2025).

A key component is quasars
as dynamical phenomena:

Reverberation mapping

General multi-epoch
spectroscopy

Still opportunities to buy in
with bonus credit.
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Corresponding improvements in BAL variability simulations needed to
utilize the flood of new variability data most effectively.

Especially need simulations making observationally testable predictions.



Planned Postdoctoral Position

Penn State University — Department of Astronomy & Astrophysics

Large-scale SDSS spectroscopic investigations of multi-year quasar
wind variability.

Experience with AGN research, quasar winds, and/or SDSS would
be an advantage.

Starting date has some flexibility.

For more details see https://psu.jobs/job/72330, or we can chat.
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