Ionized gas kinematics in local active galaxies: a comprehensive view of inflows and outflows.

Daniel Ruschel Dutra

Thaisa Storchi-Bergmann Allan Schnörr-Müller Roberto Cid Fernandes Guilherme Couto Rogemar Riffel Davide Lena Andrew Robinson

Bruno Dall'Agnol Daniel Grün Mônica Tergolina

Introduction

- Radial motions of the gas are fundamental to our understanding of the AGN phenomenon and for the proposed co-evolution of the SMBH and the bulge of the host galaxy.
- The most powerful outflows are simply too far away to be spatially resolved.
- In order to better constrain large scale outflows we are studying a sample of local AGN (Seyferts) with spatially resolved optical spectroscopy.

The sample

- AGNs (Seyferts) from the Swift/BAT 60 month catalogue limited to observability by GMOS.
- $z<0.06$
- $L_{2-10 \mathrm{keV}}<10^{44} \mathrm{erg} \mathrm{s}^{-1}$

Some of these galaxies have results individually published by the group: NGC 1365, NGC 1386, NGC 1667, NGC 2110, NGC 3081, NGC 7213 (Lena+2016, 2015; Schnörr-Müller+2017, 2014, 2016, 2014)

Observations

- Data acquired with Gemini's GMOS (N \& S)
- Optical IFU
- $R \sim 2000 \rightarrow 50 \mathrm{~km} / \mathrm{s}$
- Spectral coverage roughly $4800 \AA<\lambda<7200 \AA$
- Seeing limited resolution, with a $0.2^{\prime \prime}$ sampling.
- Data reduction was carried out by fully automated pipeline based on Gemini's IRAF routines.

FOV and spectra

Modeling emission lines

Gauss-Hermite polynomials

$$
\begin{aligned}
f(\lambda)=\frac{A}{\sigma \sqrt{2 \pi}} & \exp \left(-\frac{\left(\lambda-\lambda_{0}\right)^{2}}{2 \sigma^{2}}\right) \\
& \times\left\{\frac{h_{3}}{\sqrt{6 \pi}}\left[2 \sqrt{2}\left(\frac{\lambda-\lambda_{0}}{\sigma}\right)^{3}-3 \sqrt{2}\left(\frac{\lambda-\lambda_{0}}{\sigma}\right)\right]+\frac{h_{4}}{\sqrt{24}}\left[4\left(\frac{\lambda-\lambda_{0}}{\sigma}\right)^{4}-12\left(\frac{\lambda-\lambda_{0}}{\sigma}\right)^{2}+3\right]\right\}
\end{aligned}
$$

Modeling emission lines

- The broad component profile of Sy1's is fitted only once, and only the total flux is subject to fitting in each spaxel.
- IFS line fitting code available at https://bitbucket.org/danielrd6/ifscube. Contributions are welcome!
python

Modeling examples

Modeling examples

Model limitations

- Not all galaxies can be modeled with such a simple model.
- Spectroscopically resolved components have to be modeled separately.
- NGC 1068 and NGC 5728 temporarily left out.

Some examples...

NGC 2110

Units: velocities in km/s, fluxes in $10^{-15} \mathrm{erg} \mathrm{s}^{-1}$ and equivalent width in \AA

Some examples...

- The h_{3} coefficient reveals the presence of a component lagging behind the disk rotation. (8/19 galaxies)
- Positive values of h_{4} indicate two components of similar σ instead of one broad and one narrow component.

NGC 2110

- In 5/19 galaxies the assymetry in line profiles is not co-planar with the disk rotation.

- 4/19 galaxies display no clear pattern of h_{3} and h_{4} coefficients with respect to the general rotation.

NGC 3786

- Only 2 galaxies show wings in the same direction of the rotation.

NGC 6814

Assymetry and x-ray luminosity (PRELIMINARY!)

Median of the h_{3} coefficient.
Sizes are proportional to the projected scale of the galaxies.

Summary

- We have compiled a sample of IFS cubes for 23 local AGNs focusing on the inner few hundred parsecs.

Summary

- We have compiled a sample of IFS cubes for 23 local AGNs focusing on the inner few hundred parsecs.
- Radial motion (i.e. not rotation) is detected in $3 / 4$ of the galaxies in our sample.

Summary

- We have compiled a sample of IFS cubes for 23 local AGNs focusing on the inner few hundred parsecs.
- Radial motion (i.e. not rotation) is detected in $3 / 4$ of the galaxies in our sample.
- The majority of radial motion is contrary to the disk rotation

Summary

- We have compiled a sample of IFS cubes for 23 local AGNs focusing on the inner few hundred parsecs.
- Radial motion (i.e. not rotation) is detected in $3 / 4$ of the galaxies in our sample.
- The majority of radial motion is contrary to the disk rotation
- Assymetry in the line profiles of [O III] weakly correlated with the X-Ray luminosity

Future and ongoing work

- Quantify the inflow/outflow rates
- Fit disk rotation models.
- Compare the ionized gas kinematics to the stellar population history of the galaxies.

