

1

User guide to Spectroscopy reduction V.5

Contents

1. Initial CCD Image Processing
 1.2 Bias Images
 1.3 Dark Images
 1.4 Flat Images
 1.5 Sky Images

2. Background and extracting apertures
 2.2 running background
 2.3 running apsum

3. Identifying wavelength features
 3.2 running identify
 3.3 running reidentify

4. Cleaning up the spectra and creating sensitivity function
 4.2 creating sensitivity function
 4.3 running calibrate
 4.4 clean up

User guide to Spectroscopy reduction

1. Initial CCD Image Processing

 First step is to examine a flatfield using implot to determine the overscan and
trim sections of the chip. When using implot you can use the "e" key on the keyboard
to expand around sections of the plot to get a magnified view to better help determine
the trim and overscan. These sections will be entered in ccdproc under the biassec:
and trimsec: respectfully (if the trim section is already given then just put "image" in
ccdproc). When entering data use the format ex: {1:1024,1:1024}; meaning in this
example we want to keep all sections of the chip in the X and Y. Note: in Iraf the trim
section is the section of the chip that contains good data NOT the sections that you
want to get read of.
 At this point if you have not already sorted your files or if the camera didn't
already do this for you you should. Sorting the files by imagetyp is useful when running
task that you only want to run on certain images. You can do this by using a command
line called hedit.

Example: :hedit bias*.imh imagetyp zero add+

This will add the line imagetyp: zero in the image header of all files named biasxxx.imh.
To check and see if this has worked you can use imhead to look at the image header.
Using imhead bias*.imh l+ | page will list the long header of each biasxxx.imh image by
page. After doing this for your bias frames you can go ahead and do this for the flat,
dark,object and sky images now by replacing zero with flat, dark,object and sky
respectfully.
 Now that the image type has been added to all of your images you can create
directories for each type to keep the reduction process easier. You will want to create
the directories Bias, Flat, Dark and a subdirectory in Flat called Sky. To do this use the
command mkdir.

Example: :mkdir Bias

Note: For spectroscopy you want to set the dispaxis = 1 in all the image headers by
using hedit.

3

1.2 Bias Images

 Now that you have sorted your files you are ready to combine your flat, dark and
bias images. We will start with the bias frames using the task zerocombine. To check
the parameters of zerocombine type in epar zerocombine, this allows you to edit the
parameters. The figure 1 as a useful guide to the parameters of zerocombine. When
you are ready to return to Iraf type "Ctrl d" to save the parameters and get back to the
cl: prompt or you can type :go to run the task. Before we run the task first lets move all
the Bias frames into the Bias directory by typing imrename @bias Bias/. Now cd into
the Bias directory and create an input file by using the command line files as in the
example. This will create a input file that contains all the images in the folder.

Example: :files *.fits >> input

 Now that we have an input file we need to create an output file from this file with
the changes 20030311.15.01.fits to zero.01.fits. To do this emacs input and type Ctrl
Space to mark the upper left corner then goto the bottom right and type Ctrl x rt to
replace the box with zero. Now type Ctrl x Ctrl w to save as output. Now imstat *.fits >
value to create a value file with the image statistics. In this file you want to get red of
everything but the mean values. After changing type Ctrl x Ctrl s Ctrl x Ctrl c. After this
is done we are ready to use imarith to to divide all the bias images and create the
output images by the example.

Example: :imarith @input / @value @output

Now we can use the zerocombine task to create your superbias.fits image that will be
used to do the zero correction on the rest of the images. Use the figure below as a
guide for the parameters.

Figure 1:
PACKAGE = ccdred
 TASK = zerocombine

input = zero* List of zero level images to combine
(output = superbias.fits) Output zero level name
(combine= median) Type of combine operation
(reject = crreject) Type of rejection
(ccdtype=) CCD image type to combine
(process= no) Process images before combining?
(delete = no) Delete input images after combining?
(clobber= no) Clobber existing output image?
(scale = none) Image scaling
(statsec=) Image section for computing statistics
(nlow = 0) minmax: Number of low pixels to reject
(nhigh = 1) minmax: Number of high pixels to reject
(nkeep = 1) Minimum to keep (pos) or maximum to reject (neg)
(mclip = yes) Use median in sigma clipping algorithms?
(lsigma = 3.) Lower sigma clipping factor
(hsigma = 2.) Upper sigma clipping factor
(rdnoise= GTRON11) ccdclip: CCD readout noise (electrons)

(gain = GTGAIN11) ccdclip: CCD gain (electrons/DN)
(snoise = 0.) ccdclip: Sensitivity noise (fraction)
(pclip = -0.5) pclip: Percentile clipping parameter
(blank = 0.) Value if there are no pixels
(mode = ql)

This will create a combined bias named superbias.fits in your image directory. Now
imcopy the superbias.fits back to the main directory. First epar ccdproc to edit the
parameters. At this point we want to fix any bad pixels with a pix file. Create a file listing
all your bad pixels and call it something like badpix.dat.

Example of badpix.dat file: 149 149 1 800 (bad pix between column 149 and 149 and
line 1 to 800)

Now in the parameters of ccdproc you can specify to run bias (image superbias.fits), fill
in the trimsec and biassec and take out the bad pixels (file badpix.dat). We do not at
this time want to correct for flat fielding. Use figure 2 as a guide to the parameters of
ccdproc. Notice that the only things set to yes are the overscan, trim and zero! Then
run ccdproc in the main directory.

Figure 2:
PACKAGE = ccdred
 TASK = ccdproc

images = *.fits List of CCD images to correct
(output =) List of output CCD images
(ccdtype=) CCD image type to correct
(max_cac= 10) Maximum image caching memory (in Mbytes)
(noproc = no) List processing steps only?
(fixpix = no) Fix bad CCD lines and columns?
(oversca= yes) Apply overscan strip correction?
(trim = yes) Trim the image?
(zerocor= yes) Apply zero level correction?
(darkcor= no) Apply dark count correction?
(flatcor= no) Apply flat field correction?
(illumco= no) Apply illumination correction?
(fringec= no) Apply fringe correction?
(readcor= no) Convert zero level image to readout correction?
(scancor= no) Convert flat field image to scan correction?
(readaxi= line) Read out axis (column|line)
(fixfile=) File describing the bad lines and columns
(biassec= image) Overscan strip image section
(trimsec= image) Trim data section
(zero = superbias.fits) Zero level calibration image
(dark = superdark.fits) Dark count calibration image
(flat = superflat.fits) Flat field images
(illum = supersky.fits) Illumination correction images
(fringe =) Fringe correction images
(minrepl= 1.) Minimum flat field value
(scantyp= shortscan) Scan type (shortscan|longscan)
(nscan = 1) Number of short scan lines

5

(interac= yes) Fit overscan interactively?
(functio= legendre) Fitting function
(order = 1) Number of polynomial terms or spline pieces
(sample = *) Sample points to fit
(naverag= 1) Number of sample points to combine
(niterat= 0) Number of rejection iterations
(low_rej= 3.) Low sigma rejection factor
(high_re= 3.) High sigma rejection factor

1.3 Dark Images

1.4 Flat Images

 Now you are ready to normalize your flat field images. We start out by doing the
same thing as for the Bias images. Use imrename @flat Flat/ to move the flat images to
the flat directory. As before you want to create an input file and use it to create an
output file with the same changes as before except this time replace zero with flat. As
before make a value file keeping only the mean value column. Use imarith to divide the
images and flatcombine to normalize the flats. use figure 3 as a guide to the
parameters of flatcombine. After running flatcombine on the flat images run the task
response to create your superflat.fits file. use the figure 4 as a guide to the parameters
of this task. Imcopy the superflat.fits into the main directory adn now that this is done
you are ready to use ccdproc to process the images in your main directory. Be sure to
epar ccdproc and set flat to yes.

Figure 3:
PACKAGE = ccdred
 TASK = flatcombine

input = flat.* List of flat field images to combine
(output = flat) Output flat field root name
(combine= median) Type of combine operation
(reject = crreject) Type of rejection
(ccdtype=) CCD image type to combine
(process= no) Process images before combining?
(subsets= yes) Combine images by subset parameter?
(delete = no) Delete input images after combining?
(clobber= no) Clobber existing output image?
(scale = mean) Image scaling
(statsec=) Image section for computing statistics
(nlow = 1) minmax: Number of low pixels to reject
(nhigh = 1) minmax: Number of high pixels to reject
(nkeep = 1) Minimum to keep (pos) or maximum to reject (neg)
(mclip = yes) Use median in sigma clipping algorithms?
(lsigma = 3.) Lower sigma clipping factor
(hsigma = 3.) Upper sigma clipping factor
(rdnoise= GTRON11) ccdclip: CCD readout noise (electrons)
(gain = GTGAIN11) ccdclip: CCD gain (electrons/DN)
(snoise = 0.) ccdclip: Sensitivity noise (fraction)
(pclip = -0.5) pclip: Percentile clipping parameter
(blank = 1.) Value if there are no pixels
(mode = ql)

Figure 4:
PACKAGE = longslit
 TASK = response

calibrat= flat Longslit calibration images
normaliz= flat Normalization spectrum images
response= superflat Response function images
(interac= yes) Fit normalization spectrum interactively?
(thresho= INDEF) Response threshold
(sample = *) Sample of points to use in fit
(naverag= 1) Number of points in sample averaging
(functio= spline1) Fitting function
(order = 50) Order of fitting function
(low_rej= 3.) Low rejection in sigma of fit
(high_re= 3.) High rejection in sigma of fit
(niterat= 0) Number of rejection iterations
(grow = 0.) Rejection growing radius
(graphic= stdgraph) Graphics output device
(cursor =) Graphics cursor input
(mode = ql)

1.5 Sky Images

 Sky flats are easier to reduce. First we need to imrename @sky to Flat/Sky/ and
cd into the directory. epar combine and use figure 5 as a guide then run the task. After
that epar illum and use figure 6 as a guide and run this. This will create your
supersky.fits that you can use in the main directory to process the rest of the images.
Be sure to set sky to yes in ccdproc.

Figure 5:
PACKAGE = ccdred
 TASK = combine

input = *.fits List of images to combine
output = sky List of output images
(plfile =) List of output pixel list files (optional)
(sigma =) List of sigma images (optional)
(ccdtype=) CCD image type to combine (optional)
(subsets= no) Combine images by subset parameter?
(delete = no) Delete input images after combining?
(clobber= no) Clobber existing output image?
(combine= average) Type of combine operation
(reject = crreject) Type of rejection
(project= no) Project highest dimension of input images?
(outtype= real) Output image pixel datatype
(offsets= none) Input image offsets
(masktyp= none) Mask type

7

(maskval= 0.) Mask value
(blank = 1.) Value if there are no pixels
(scale = mode) Image scaling
(zero = none) Image zero point offset
(weight = mode) Image weights
(statsec=) Image section for computing statistics
(lthresh= INDEF) Lower threshold
(hthresh= INDEF) Upper threshold
(nlow = 0) minmax: Number of low pixels to reject
(nhigh = 0) minmax: Number of high pixels to reject
(nkeep = 1) Minimum to keep (pos) or maximum to reject (neg)
(mclip = yes) Use median in sigma clipping algorithms?
(lsigma = 3.) Lower sigma clipping factor
(hsigma = 3.) Upper sigma clipping factor
(rdnoise= GTRON11) ccdclip: CCD readout noise (electrons)
(gain = GTGAIN11) ccdclip: CCD gain (electrons/DN)
(snoise = 0.) ccdclip: Sensitivity noise (fraction)
(sigscal= 0.1) Tolerance for sigma clipping scaling corrections
(pclip = -0.5) pclip: Percentile clipping parameter
(grow = 0) Radius (pixels) for 1D neighbor rejection
(mode = ql)

Figure 6:
PACKAGE = longslit
 TASK = illumination

images = sky Longslit calibration images
illumina= supersky Illumination function images
(interac= yes) Interactive illumination fitting?
(bins =) Dispersion bins
(nbins = 5) Number of dispersion bins when bins = ""
(sample = *) Sample of points to use in fit
(naverag= 1) Number of points in sample averaging
(functio= spline1) Fitting function
(order = 20) Order of fitting function
(low_rej= 3.) Low rejection in sigma of fit
(high_re= 3.) High rejection in sigma of fit
(niterat= 1) Number of rejection iterations
(grow = 0.) Rejection growing radius
(interpo= poly3) Interpolation type
(graphic= stdgraph) Graphics output device
(cursor =) Graphics cursor input
(mode = ql)

2. Background and extracting apertures

 For each line or column in the input images a function is fit to the columns or
lines specified by the sample parameter. This function is then subtracted from
the entire line or column to create an output line or column. This is our last step before
we begin to actually extract the spectra from the images and get actual spectra.

1.2 using Background

 To start cd into the main directory with all of your data. Emacs the object file and
add an "a" at the end of all the image names and save this file as output. When running
this task a separate window will appear showing your peak for your star. You want to
check three different columns to look for cosmic rays and other stars in your field. If the
fit is above the background of the spectra you can use the command :sample xxx:xxx,
xxx:xxx after which you will need to hit "f" for fit and "r" for redraw to reset the sample so
that nothing is in the range to bring up the fit. As you go through the images make a
mental note of multiple stars so that you can correctly identify your star in the extraction
task. Use figure 7 as a useful guide to the parameters for background.

Figure 7
PACKAGE = longslit
 TASK = background

input = @object Input images to be background subtracted
output = @output Output background subtracted images
(axis = 2) Axis along which background is fit and subtracte
(interac= yes) Set fitting parameters interactively?
(sample = 125:145,195:215) Sample of points to use in fit
(naverag= 1) Number of points in sample averaging
(functio= legendre) Fitting function
(order = 1) Order of fitting function
(low_rej= 0.) Low rejection in sigma of fit
(high_re= 0.) High rejection in sigma of fit
(niterat= 1) Number of rejection iterations
(grow = 0.) Rejection growing radius
(graphic= stdgraph) Graphics output device
(cursor =) Graphics cursor input
(mode = ql)

1.3 extracting apertures

 To start we will need to epar apsum. Will use this task to extract one
dimensional sums across our apertures. Use figure 8 as a useful guide to the
parameters of apsum. When running this task a separate window will appear with the
aperture and a box identifying the aperture. This should be done for you automatically,
but if it does not or if the wrong peak is being identified then you can use "d" to delete
and "m" to mark a new aperture. Another important command to remember is :low and
: upper, these commands can be used to change the lower and upper limits of the box.
After you are satisfied with this hit "q" and the fit will appear. Make sure that the fit is a
good fit along the line and delete points that are off the fit by hitting "d" to delete and "f"
to refit.

Figure 8
PACKAGE = apextract
 TASK = apsum

input = @output List of input images

9

(output =) List of output spectra
(apertur=) Apertures
(format = onedspec) Extracted spectra format
(referen=) List of aperture reference images
(profile=) List of aperture profile images

(interac= yes) Run task interactively?
(find = yes) Find apertures?
(recente= yes) Recenter apertures?
(resize = yes) Resize apertures?
(edit = yes) Edit apertures?
(trace = yes) Trace apertures?
(fittrac= yes) Fit the traced points interactively?
(extract= yes) Extract apertures?
(extras = no) Extract sky, sigma, etc.?
(review = yes) Review extractions?

(line = INDEF) Dispersion line
(nsum = 10) Number of dispersion lines to sum or median

(backgro= none) Background to subtract (none|average|fit)
(mode = ql)

 After apsum is run on the data images we need to run apsum again on the
comparison lamps. To do this we need to first begin by typing emacs other input. This
will bring up an emacs window with other on top and input on the bottom. What we
want to do is make an He lamp image for every data image. If this is done correctly
then at the end we will have just as many lines in the other file as in the input file. Now
use figure 9 as a guide to the parameters of apsum for the Comp Lamps.

Figure 9
PACKAGE = apextract
 TASK = apsum

input = @other List of input images
(output = comp_//@input) List of output spectra
(apertur=) Apertures
(format = onedspec) Extracted spectra format
(referen= @input) List of aperture reference images
(profile=) List of aperture profile images

(interac= no) Run task interactively?
(find = no) Find apertures?

(recente= no) Recenter apertures?
(resize = no) Resize apertures?
(edit = no) Edit apertures?
(trace = no) Trace apertures?
(fittrac= no) Fit the traced points interactively?
(extract= yes) Extract apertures?
(extras = no) Extract sky, sigma, etc.?
(review = no) Review extractions?

(line = INDEF) Dispersion line
(nsum = 10) Number of dispersion lines to sum or median

(backgro= none) Background to subtract (none|average|fit)
(mode = ql)

3. Identifying wavelength features

 Now we can start to identify wavelength features within our spectra and use this
to identify other features using the identify and reidentify task.

3.2 running identify

 Start by typing epar identify and using figure 10 as a useful guide to the
parameters. The first thing you want to do after running the task is to identify known
features in the spectrum. To do this use the "m" key to mark a peak and then type in
the known wavelength. Do this for about four different peaks and then hit the "l" key to
identify others using the database. Now hit the "f" key to fit this. You will notice that the
fit has a distinct shape to it and that there will be outlaying points on this fit for which you
can delete by hitting the "d" key and the "f" to refit. after this is done hit "q" to go back to
the spectrum and hit "l" to search the database again. Keep doing this till you have
about 25 or so peaks identified and a good fit.

Figure 10
PACKAGE = longslit
 TASK = identify

images = comp_20050131.15.052a.0001.fits Images containing features to be iden(section=
middle line) Section to apply to two dimensional images
(databas= database) Database in which to record feature data
(coordli= linelists$idhenear.dat) User coordinate list
(units =) Coordinate units

11

(nsum = 20) Number of lines/columns/bands to sum in 2D image(match = -3.)
Coordinate list matching limit
(maxfeat= 50) Maximum number of features for automatic identif(zwidth = 100.)
Zoom graph width in user units
(ftype = emission) Feature type
(fwidth = 4.) Feature width in pixels
(cradius= 5.) Centering radius in pixels
(thresho= 5000.) Feature threshold for centering
(minsep = 2.) Minimum pixel separation
(functio= spline3) Coordinate function
(order = 3) Order of coordinate function
(sample = *) Coordinate sample regions
(niterat= 0) Rejection iterations
(low_rej= 3.) Lower rejection sigma
(high_re= 3.) Upper rejection sigma
(grow = 0.) Rejection growing radius
(autowri= no) Automatically write to database
(graphic= stdgraph) Graphics output device
(cursor =) Graphics cursor input
crval = 9122 Approximate coordinate (at reference pixel)
cdelt = 1 Approximate dispersion
(aidpars=) Automatic identification algorithm parameters
(mode = ql)

After this task is ran you can run reidentify to do the rest of the images. Figure 11
shows the parameters of reidentify.

Figure 11
PACKAGE = longslit
 TASK = reidentify

referenc= comp_20050131.15.052a.0001.fits Reference image
images = comp_* Images to be reidentified
(interac= no) Interactive fitting?
(section= middle line) Section to apply to two dimensional images
(newaps = yes) Reidentify apertures in images not in reference?(overrid= no)
Override previous solutions?
(refit = yes) Refit coordinate function?

(trace = yes) Trace reference image?
(step = 10) Step in lines/columns/bands for tracing an image(nsum = 10)
Number of lines/columns/bands to sum
(shift = 0.) Shift to add to reference features (INDEF to sea(search = 0.) Search
radius
(nlost = 0) Maximum number of features which may be lost

(cradius= 5.) Centering radius
(thresho= 2000.) Feature threshold for centering
(addfeat= no) Add features from a line list?
(coordli= linelists$idhenear.dat) User coordinate list
(match = -3.) Coordinate list matching limit
(maxfeat= 50) Maximum number of features for automatic identif(minsep = 2.)
Minimum pixel separation

(databas= database) Database

(logfile= logfile) List of log files
(plotfil=) Plot file for residuals
(verbose= no) Verbose output?
(mode = ql)

After this is complete we can now save our extracted files to an extracted folder. To do
this follow these steps. Make a list file by typing files 2003*.0001.fits >> list this will
create a file called list with all the image names in it. Now we need to add a REFSPEC
to the header by typing hedit @list REFSPEC1 '("comp_" // $I)' add+ update+ ver-.
Once this is complete run the task dispcor on the list images and then type imrename
*.o.fits Extracted/. Use figure 12 as a guide for the parameters of dispcor.

Figure 12
PACKAGE = onedspec
 TASK = dispcor

input = @list List of input spectra
output = @list // .o List of output spectra
(lineari= yes) Linearize (interpolate) spectra?
(databas= database) Dispersion solution database
(table =) Wavelength table for apertures
(w1 = INDEF) Starting wavelength
(w2 = INDEF) Ending wavelength
(dw = INDEF) Wavelength interval per pixel
(nw = INDEF) Number of output pixels
(log = no) Logarithmic wavelength scale?
(flux = yes) Conserve flux?
(blank = 0.) Output value of points not in input
(samedis= no) Same dispersion in all apertures?
(global = no) Apply global defaults?
(ignorea= no) Ignore apertures?
(confirm= no) Confirm dispersion coordinates?
(listonl= no) List the dispersion coordinates only?
(verbose= yes) Print linear dispersion assignments?
(logfile=) Log file
(mode = ql)

4. Cleaning up the spectra

 In this section we will discuss the cleanup and final steps of the reduction.

4.2 creating sensitivity functions

 In the Extracted folder do a ccdlist *.o.fits to determine what flux standards you
have from that night. NOTE: also check the log if there is no obvious standard. We
want to use the task standard to create a std file with sensitivity measurements in it to
be used with sensfunc. Epar standard and use figure 13 below as a guide to the
parameters. Be sure to change the output from std1 to std2 for each different standard

13

used.

Figure 13
PACKAGE = longslit
 TASK = standard

input = star.fits Input image file root name
output = std Output flux file (used by SENSFUNC)
(samesta= yes) Same star in all apertures?
(beam_sw= no) Beam switch spectra?
(apertur=) Aperture selection list
(bandwid= INDEF) Bandpass widths
(bandsep= INDEF) Bandpass separation
(fnuzero= 3.6800000000000E-20) Absolute flux zero point
(extinct= onedstds$ctioextinct.dat) Extinction file
(caldir = /usr/local/iraf/iraf/noao/lib/onedstds/spec16cal/) Directory containin
(observa= ctio) Observatory for data
(interac= yes) Graphic interaction to define new bandpasses
(graphic= stdgraph) Graphics output device
(cursor =) Graphics cursor input
star_nam= hr9087 Star name in calibration list
answer = yes (no|yes|NO|YES|NO!|YES!)
(mode = ql)

 Now we will use sensfunc to create a sensitivity file for each standard frame.
Epar sensfunc and use figure 14 below as a guide to the parameters. Make sure that
you do this for each std file and make the changes sens1 to sens2 accordingly. This
will create a sens.0001.fits file for each std file containing sensitivity information. after
this is complete we need to implot each sens.0001.fits file and find the value at pixel
600 of the image. To do this implot sens.0001.fits and press the space bar at the x
value of 600. This will output at the bottom of the image the value at that point. Write
this down cause we will use this next to divide the original image by this value to
normalize each image. Now that we have this value we can use imarith to divide the
image. To do this type imarith sens.0001.fits / #value sens.0001.fits this will divide the
image by the value and output to the same file. After this is done to all the images we
can now implot all the sensitivity functions and overplot to get them in the same window
to decide which ones to keep. To overplot in implot just type "o" then ":i filename" and
last enter and "l" to overplot. Once you have determined the good images use the
corresponding std files to create one good std file with all the information in it from the
other files. Then run sensfunc again, but this time the input is std (the compiled file) and
the output is sens. this will create a sensitivity function called sens.0001.fits that we will
use to calibrate the rest of the images.

Figure 14
PACKAGE = longslit
 TASK = sensfunc

standard= std Input standard star data file (from STANDARD)
sensitiv= sens Output root sensitivity function imagename
(apertur=) Aperture selection list

(ignorea= no) Ignore apertures and make one sensitivity functi
(logfile= logfile) Output log for statistics information
(extinct= onedstds$ctioextinct.dat) Extinction file
(newexti= extinct.dat) Output revised extinction file
(observa= ctio) Observatory of data
(functio= spline3) Fitting function
(order = 6) Order of fit
(interac= yes) Determine sensitivity function interactively?
(graphs = sr) Graphs per frame
(marks = plus cross box) Data mark types (marks deleted added)
(colors = 2 1 3 4) Colors (lines marks deleted added)
(cursor =) Graphics cursor input
(device = stdgraph) Graphics output device
answer = yes (no|yes|NO|YES)
(mode = al)

4.3 running calibrate

 we will use calibrate to apply extinction and flux calibrations to all the images.
First we need to files *.o.fits > input to create an input file. Next ccdlist *.o.fits > output
to create an output file that we will edit next. to begin emacs output so that we can
create an output file that will be used in calibrate. In this file we want to create a list of
files that look like the example below.

Example: Processed/gj001.1.fits
 Processed/gj001.2.fits

Keep this format up till you have done this for every star in the file and then ctrl x ctrl s
ctrl x ctrl c to save and exit. Make sure that you have created a Processed folder in the
Extracted directory for these files to be created. Once all this is complete you can run
calibrate on the images. use figure 15 below as a guide to the parameters for this task.
Run calibrate in each Extracted folder for each night to create processed images for all
nights.

Figure 15
PACKAGE = longslit
 TASK = calibrate

input = @input Input spectra to calibrate
output = @output Output calibrated spectra
(extinct= yes) Apply extinction correction?
(flux = yes) Apply flux calibration?
(extinct= onedstds$ctioextinct.dat) Extinction file
(observa= ctio) Observatory of observation
(ignorea= no) Ignore aperture numbers in flux calibration?
(sensiti= sens) Image root name for sensitivity spectra
(fnu = no) Create spectra having units of FNU?
(mode = al)

4.3 clean up

15

 Now we are prepared to clean up the final spectra. ccd to the Processed folder
to begin this process. implot each star to find differences in the spectra. Look for
spikes (cosmic rays) or any other differences that need to be clipped out. once you
have done this use splot to clip out the bad columns/cosmic rays. Once in the splot
window we can use "we" and "e" to window around a feature. To clip this feature out
use "x" at one end and "x" again at the other to draw a line clipping out the bad feature.
Once this is done hit "r" to redraw and "i" to save. You can save to the same file and
overwrite at this point. After this is done use sarith to add the resulting images together.
If there is more than two images then you can create a TEMP image that will be used to
add to the third or fourth image.

Example: sarith gj001.1.fits + gj001.2.fits gj001

If there is three or more files then change the gj001 output to TEMP and use TEMP to
add to the third image creating a gj001 output file. This will create a gj001.001.fits file
that will be used to create a statistics file. Once this is done type listpix gj001.001.fits >
2003105.15.gj001
This will create a 20031005.15.gj001 file that contains all the pixel values for that image.
use the format yeardate.telescopesize.star as the output.

