| Exoplanets | |-------------------| |-------------------| | Name: | | |
 | | |----------|--|--|------|--| | Section: | | | | | **Finding the Mass of an Exoplanet** | | Object Name | Spectral
Type | M ₊
(Solar
Masses) | V ∗
(m/s) | Period
(years) | Semi-
major axis
(AU) | M _P
(Solar Masses) | M _P
(Jupiter Masses) | M _P
(Earth Masses) | Object Type | |----|-------------|------------------|---------------------------------|---------------------|-------------------|-----------------------------|----------------------------------|---|---|-------------| | Ex | HD 27894 b | K2 | .74 | 57.5 | .0493 | .122 | 5.76x10 ⁻⁴ | .603 | 192 | Hot Jupiter | | 1 | GJ 581 e | M5 | | | | | | | | | | 2 | GS 2000+25 | К3 | | | | | | | | | | 3 | HD 209458 b | F8 | | | | | | | | | | 4 | HD 70642 b | G5 | | | | | | | | | ## Finding the radius of HD 209458 b | T ₁ = | (days) | T ₂ = | (0 | lays) | |------------------|--------|------------------|-----------|---------| | R _P = | (m) | | Density = | (kg/m³) | How does this compare to the density of water? Surface Gravity = $\underline{\hspace{1cm}}$ (m/s²) How does this compare to the surface gravity of the Earth? Could we comfortably stand on this planet? Why/why not? ## **The Drake Equation** | | Pessimistic values | Optimistic values | Your values | |----------------|--------------------|-------------------|-------------| | N* | | | | | T _g | | | | | f _p | | | | | n _e | | | | | f _i | | | | | f _i | | | | | f _c | | | | | L | | | | | N | | | | | d | | | | | In the galaxy? | | | |