

DDE Applications to Eclipsing Binary Stars in Clusters: A Case Study of DS Andromedae in NGC 752

Presented to a Splinter Meeting of Comms. 26 and 42 (\rightarrow C.G1) Honolulu, Hawaii, August 11, 2015

DDE Application to Eclipsing Binary Stars in Clusters: A Case Study of *DS Andromedae* in NGC 752

E. F. Milone & S. J. Schiller (University of Calgary),Th. Amby (Aarhus University)

Presented to IAU Comms. 26, 42, C.G1 Splinter Meeting, Aug 11, 2015

Program and Purpose

- WD 2013 version (Wilson 2008; Wilson & Van Hamme 2013), with the *Direct Distance Estimation* (*DDE*) procedure, wherein the
- Distance is determined as a system parameter, ---avoiding the assumption of stellar sphericity and yielding a mean standard error for distance.
- DDE permits calibration of distances of other objects in the clusters in which the analyzed eclipsing binaries are found, with the usually small uncertainty due to relative distances within the cluster.

Previous Direct Distance Estimation Work

- Wilson & Van Hamme (2009): RS Cha, WW Aur, R CMa, RZ Cnc, RZ Cas, AW Uma (but see Slavec Rucinski re concerns about models of this system);
- Wilson et al. (2010): TZ Men, V1130 Tau, TY Pyx, V505 Per, eps CrA, BG Ind, WW Aur;
- Wilson & Raichur (2012): reliability and robustness of DDE. Simultaneously analyze two-component RV curves and absolute physical flux curves for V1143 Cyg, eps CrA & ER Vul, with satisfactory distance checks against Hipparcos parallaxes.

Background to present work

- Systems studied are from our Binaries-in-Clusters program, and previously analyzed with earlier versions of the Wilson-Devinney (WD) light curve modeling program.
- Starting parameters those obtained in fully convergent solutions.
- Previous work: HD 27130 (aka V818 Tau and vB22) in the Hyades (Milone & Schiller 2012, 2014). Although successful the system parameters are uncertain due to only grazing eclipses and variable light curve perturbations from stellar activity. More work is in progress.

DS Andromedae = Heinemann 219 in NGC 752

- SB2 total eclipsing system
- Confirmed NGC 752 member
- Primary & secondary eclipses
- 4-passband *calibrated* photometry & DAO RV spectroscopy (Schiller & Milone 1988)
- New RV spectroscopy (Amby 2011)
- Range of A_V and [M/H] reported for NGC 752 (Anthony-Twarog & Twarog 2006 & refs therein)

Modeling on DS And Light & RV Curves

- Adjusting one temperature (T₁ fixed at 6795, 6775, or 6964 K)
- Adjusting two temperatures (T₁ starting at 6775 or 6795 K or higher)
- 2 or 3 Passbands + RVs (S&M 1988, Ambly 2011 or both sets) due to *T-log d* theorem restrictions
- Additional parameters solved simultaneously: a; V_{gamma}; i; T_{[1],2}; Omega_{1,2}; q; t₀; P, log d.
- A_v = 0.075, 0.100, or 0.125 magn fixed
- [M/H] = -0.1, 0 (solar), or +0.1 fixed
- Additional modeling to investigate 3rd light and light curve variability (continuing)

Differential light curves of DS Andromedae

Differential 4-color photo-electric light curves from the RAO obtained with the Rapid Alternate Detection System on the 0.4-m telescope. The data on the right (only the primary minimum is shown) were obtained from 24-in. telescopes of the McDonald and Table Mountain Observatories. The latter were standardized via observations of Landolt standards. The mse of a single RAO diff. datum was 0.015 magn, and that for the MO and TMO was 0.005 magn.. Only the latter data were analyzed in the present work.

DS Andromedae Radial Velocities

Th. Amby 2011 RVs from the Nordic Optical Tlescope (fitting from Model 23).

S&M 1988 RV from DAO ptg plates and reticon detector.

DS And -- Previous WD Analyses

Parameter\ref	S&M 1988	Amby 2011	Model 18 (present)
	(4-pb, S&M88 RVs)	(1-pb Amby RVs)	(3-PB= IcVB, S&M88 RVs)
a (R _{SUN})	5.77(14)	5.92(10)	5.60(16)
i (degs)	84.3(5)	89.72(2)	85.6(3)
V _{SYS} (km/s)	2.5(20)	8.44(60)	3.1(32)
$q = M_2/M_1$	0.593(13)	0.680(7)	0.511(20)
P (d)	1.0105187(2) 1.01051870*	1.010522(1)
Т ₁ (К)	6775[200]*	* 6775[100]**	7036(4)
Т ₂ (К)	5997(17)	6144(100)**	5937(17
Omega ₁	3.40(2)	3.518(3)	3.37(4)
Omega ₂	4.09(7)	4.652(5)	3.76(11)
Log d (pcs)	2.634(30)	2.665(14)	2.630(12)

* fixed. **T₁ fixed, with est. systematic errors. Other T errors internal

DS And -- Previous WD Analyses Absolute Parameters

	S&M88#	Ambly 2011#	Model 18#
Abs. Param/Suite	4-pb, S&M RVs	1-pb, Ambly RVs	3-pb=lcVB, S&M88 RVs
M ₁ (M _{SUN})	1.58(17)	1.63(2)	1.52[4]
M ₂ (M _{SUN})	0.94(10)	1.11(2)	0.78 [5]
R ₁ (R _{SUN})	2.10(8)	2.15(2)	2.01[2]
R ₂ (R _{SUN})	1.19(5)	1.16(1)	1.15[1]
Mbol ₁	2.34(15)	2.39 (7)	2.38[2]
Mbol ₂	4.15(19)	4.16(8)	4.33[1]
log g ₁	[4.21(4)]	3.99(03)	4.02
log g ₂	[4.24(4)]	4.35(1)	4.21
L ₁ (L _{SUN})	[8.7(12)]*	8.8(4)**	8.87**
L ₂ (L _{SUN})	1.6(3)*	1.7(1)**	1.47**
(m-M) ₀ (magn)	8.17(15)	8.30(13)	8.15(6)
Mbol _{sun} = 4.69; **	Mbol _{sun} = 4.75;	#[M/H] = 0	.00; A _V = 0.1

*

DS And via Binary Maker III

Model sets and Distance to DS And

Distance s	ans			h		
Model	log d	e (log d)	d	e_d	(m-M)o	e_(m-M)
1 (<1b,c,d>)2pb1T(6795)Av(.1)M(0)	2.602	0.001	400	1	8.008	0.003
2 (<2a,b,c>)2pb1T(6775)Av(.1)M(0)	2.595	0.005	393	4	7.973	0.024
3 (<3a,b,c>)2pb1T(6775)Av(.075)M(0)	2.598	0.004	396	4	7.989	0.021
4 (<4a,b,c>)2pb1T(6775)Av(.125)M(0)	2.587	0.006	387	5	7.937	0.028
5 (<5a,b,c>)2pb1T(6964)Av(.100)M(0)	2.626	0.006	422	5	8.129	0.028
6 (<6a,b,c>)2pb1T(6964)Av(.075)M(0)	2.631	0.001	428	1	8.156	0.005
7 (<7a,b,c>)2pb1T(6964)Av(.125)M(0)	2.625	0.004	422	4	8.126	0.020
8 (<8a,b,c>)2pb2T(s6775)Av(.100)M(0)	2.638	0.002	434	2	8.188	0.011
9(<9a,b,c>)2pb2T(s6964)Av(.100)M(0)	2.638	0.002	434	2	8.188	0.011
10(<10a,b,c>)2pb2T(s6964)Av(.075)M(0)	2.637	0.002	434	2	8.186	0.009
11<11a,b,c>)2pb2T(s6964)Av(.125)M(0)	2.638	0.002	435	2	8.190	0.008
12<12b,c,d,e>)3pb2TAv(adjusted)M(0)	2.640	0.005	436	5	8.198	0.024
13<13a,b,c,d>)3pb2TAv(.100)M(0)	2.642	0.001	439	2	8.210	0.007
14<14a,b,c,d>)3pb2TAv(.100)M(+.1)	2.645	0.002	441	2	8.224	0.010
15<15a,b,c,d>)3pb2TAv(.075)M(0)	2.644	0.003	440	3	8.219	0.014
16<16a,b,c,d>)3pb2TAv(.125)M(0)	2.645	0.003	442	3	8.225	0.014
17<17b,c,d>)3pb2TAv(.100)M(1)	2.639	0.002	435	2	8.195	0.009
18, 3pb2TAv(.100)M(0)S&MRV	2.630	0.013	427	13	8.151	0.064
19<19a,b,c,d>3pb2TAv(.100)M(0)ARV	2.636	0.004	433	4	8.182	0.019
20, 3pb2TAv(.100)M(1)S&MRV	2.627	0.013	423	12	8.133	0.064
21<21a,b,c>)3pb2TAv(.100)M(1)ARV	2.637	0.005	433	5	8.185	0.025
Weighted mean, models 8-21	2.640	0.001	436.4	0.8	8.199	0.004

Distance summary, we	ighted mea	ans (Amby F	RV mode	ls onl	y)	
Model	log d	e (log d)	d	e_d	(m-M)o	e_(m-M)
19<19a,b,c,d>3pb2TAv(.100)M(0)ARV	2.636	0.004	433	4	8.182	0.019
21<21a,b,c>)3pb2TAv(.100)M(1)ARV	2.637	0.005	433	5	8.185	0.025
22<22a,b,c,d>3pb2T(.075)M(0)ARV	2.638	0.004	435	4	8.191	0.021
23<23a,b,c,d>3pb2T(.075)M(1)ARV	2.635	0.005	432	5	8.176	0.026
24<24a,b,c,d>3pb2T(.075)M(+.1)ARV	2.644	0.003	440	3	8.219	0.016
25<25a,b,c,d>3pb2T(125)M(0)ARV	2.642	0.004	439	4	8.211	0.018
26<26a,b,c,d>3pb2T(125)M(1)ARV	2.638	0.005	434	5	8.188	0.027
27<27a,b,c,d>3pb2T(125)M(+.1)ARV	2.648	0.003	444	3	8.239	0.014
and a second						
Weighted mean, models 19,21-27	2.642	0.002	438.1	1.7	8.208	0.008
Distance summary, weighted	means (An	nby RV mod	lels, sola	ar com	ip., only)	
Model	log d	e (log d)	d	e_d	(m-M)o	e_(m-M)
19<19a,b,c,d>3pb2TAv(.100)M(0)ARV	2.636	0.004	433	4	8.182	0.019
22<22a,b,c,d>3pb2T(.075)M(0)ARV	2.638	0.004	435	4	8.191	0.021
25<25a,b,c,d>3pb2T(125)M(0)ARV	2.642	0.004	439	4	8.211	0.018
Weighted mean, models 19,22,25	2.639	0.002	435.7	2.1	8.196	0.010
Distance summary, weighted	means (Ai	mby RV mo	dels, [M/	H]= -0	.1, only)	
Model	log d	e (log d)	d	e_d	(m-M)o	e_(m-M)
21<21a,b,c>)3pb2TAv(.100)M(1)ARV	2.637	0.005	433	5	8.185	0.025
23<23a,b,c,d>3pb2T(.075)M(1)ARV	2.635	0.005	432	5	8.176	0.026
26<26a,b,c,d>3pb2T(125)M(1)ARV	2.638	0.005	434	5	8.188	0.027
Weighted mean, models 21,23,25	2.637	0.001	433.1	0.9	8.183	0.005
Distance summary, weighted	means (Ar	nby RV moo	dels, [M/	H]= +0	.1, only)	
Model	log d	e (log d)	G	e_d	(m-M)o	e_(m-M)
14<14a,b,c,d>)3pb2TAv(.100)M(+.1)	2.645	0.002	441	2	8.224	0.010
24<24a,b,c,d>3pb2T(.075)M(+.1)ARV	2.644	0.003	440	3	8.219	0.016
27<27a,b,c,d>3pb2T(125)M(+.1)ARV	2.648	0.003	444	3	8.239	0.014
Weighted mean, models 14., 24, 27	2.645	0.001	442.0	1.3	8.227	0.006

Comparison of Adjusted Parameters

Parameter\ref Model 19 Amby 2011 <Models (9,13,19)>

	(solar comp,Av=0.1)	(1-pb Amby RVs)	(solar comp, Av=.1)
a (R _{SUN})	5.79(6)	5.92(10)	5.747(4)
i (degs)	84.03(34)	89.72(2)	85.67(8)
V _{sys} (km/s)	7.95(1)	8.44(60)	7.94(13)
$q = M_2/M_1$	0.617(17)	0.680(7)	0.551(10)
P (d)	1.01051878(2)	1.01051870*	1.01051878(3)
T ₁ (K)	7060(10)	6775[100]**	7047(6)
T ₂ (K)	5921(13)	6144(100)**	5928(7)
Omega ₁	3.54(3)	3.518(3)	3.43(2)
Omega ₂	4.34(10)	4.652(5)	3.97(5)
Log d (pc)	2.636(4)		2.640(2)

* fixed. **T₁ fixed, with est. systematic errors. Other T errors internal

Comparison of Absolute Parameters

	Model 19#	Ambly 2011#	<models (9,13,19)=""></models>
Abs. Param/Suite	(3-pb, Ambly RVs	1-pb, Ambly RVs	(Model 9&13:all RVs)
M ₁ (M _{SUN})	1.55(4)	1.63(2)	1.603(2)
M ₂ (M _{SUN})	0.94(5)	1.11(2)	0.887(7)
R ₁ (R _{SUN})	2.02(2)	2.15(2)	2.044(4)
R ₂ (R _{SUN})	1.14(1)	1.16(1)	1.160(6)
Mbol ₁	2.36(2)	2.39 (7)	2.331(7)
Mbol ₂	4.37(1)	4.16(8)	4.327(18)
log g ₁	4.02(4)	3.99(03)	4.022(1)
log g ₂	4.30(2)	4.35(1)	4.254(4)
L ₁ (L _{SUN})	9.06(11)*	8.8(4)*	9.28(10)*
L ₂ (L _{SUN})	1.43(2)*	1.7(1)*	1.48(3)*
(m-M) ₀ (magn)	8.17(15)	8.30(13)	8.20(1)

*Mbol_{SUN} = 4.75; #[M/H] = 0.00, A_V = 0.1

Parameter Weighted Means of all runs: a, V_{sys}, i

Model	Туре	<a>	e <a>	<vsys></vsys>	e <vsys></vsys>	<i></i>	e <i></i>
0, 2pb1T(6795)Av(.1)M(0)	1-T runs	5.442	0.262	-0.0215	0.0606	85.469	0.631
1 (<1b,c,d>)2pb1T(6795)Av(.1)M(0)		5.713	0.029	0.0532	0.0038	85.781	0.132
2 (<2a,b,c>)2pb1T(6775)Av(.1)M(0)		5.747	0.010	0.0600	0.0030	86.084	0.493
3 (<3a,b,c>)2pb1T(6775)Av(.075)M(0)		5.749	0.008	0.0640	0.0013	85.792	0.641
4 (<4a,b,c>)2pb1T(6775)Av(.125)M(0)		5.746	0.008	0.0615	0.0025	86.034	0.596
5 (<5a,b,c>)2pb1T(6964)Av(.100)M(0)		5.670	0.116	0.0502	0.0111	85.622	0.257
6 (<6a,b,c>)2pb1T(6964)Av(.075)M(0)		5.727	0.039	0.0563	0.0076	85.787	0.502
7 (<7a,b,c>)2pb1T(6964)Av(.125)M(0)		5.704	0.012	0.0551	0.0056	85.708	0.371
8 (<8a,b,c>)2pb2T(s6775)Av(.100)M(0)	2-T runs	5.752	0.009	0.0582	0.0038	85.899	0.259
9(<9a,b,c>)2pb2T(s6964)Av(.100)M(0)		5.749	0.011	0.0576	0.0041	85.657	0.230
10(<10a,b,c>)2pb2T(s6964)Av(.075)M(0)		5.754	0.010	0.0581	0.0040	85.669	0.176
11<11a,b,c>)2pb2T(s6964)Av(.125)M(0)		5.748	0.009	0.0569	0.0035	85.848	0.309
12<12b,c,d,e>)3pb2TAv(adjusted)M(0)	3-pb	5.748	0.004	0.0568	0.0039	85.635	0.083
13<13a,b,c,d>)3pb2TAv(.100)M(0)		5.745	0.010	0.0535	0.0021	85.628	0.113
14<14a,b,c,d>)3pb2TAv(.100)M(+.1)		5.748	0.004	0.0558	0.0016	85.635	0.083
15<15a,b,c,d>)3pb2TAv(.075)M(0)		5.748	0.007	0.0554	0.0016	85.654	0.088
16<16a,b,c,d>)3pb2TAv(.125)M(0)		5.749	0.004	0.0560	0.0011	85.652	0.088
17<17b,c,d>)3pb2TAv(.100)M(1)		5.739	0.010	0.0524	0.0029	85.707	0.116
18, 3pb2TAv(.100)M(0)S&MRV		5.652	0.073	0.0794	0.0060	85.716	0.340
19<19a,b,c,d>3pb2TAv(.100)M(0)ARV		5.791	0.060	0.0795	0.0001	86.029	0.345
20, 3pb2TAv(.100)M(1)S&MRV		5.588	0.158	0.0286	0.0325	85.613	0.315
21<21a,b,c>)3pb2TAv(.100)M(1)ARV		5.866	0.060	0.0800	0.0004	85.954	0.277
22<22a,b,c>)3pb2TAv(.075)M(0)ARV		5.849	0.066	0.0800	0.0004	86.008	0.388
23<23a,b,c>)3pb2TAv(.075)M(1)ARV		5.792	0.074	0.0800	0.0005	85.931	0.335
24<24a,b,c>)3pb2TAv(.075)M(+.1)ARV		5.887	0.043	0.0803	0.0004	85.864	0.006
25<25a,b,c>)3pb2TAv(.125)M(0)ARV		5.889	0.041	0.0805	0.0004	86.045	0.339
26<26a,b,c>)3pb2TAv(.125)M(1)ARV		5.882	0.069	0.0804	0.0006	85.908	0.373
27<27a,b,c>)3pb2TAv(.125)M(+.1)ARV		5.914	0.030	0.0808	0.0005	86.115	0.289
Means (all 2-T runs)		5.779	0.018	0.066	0.003	85.808	0.037

Parameter Weighted Means of all runs: T_{[1],2}; Omega_{1,2}; q

Model	Туре	<t1></t1>	e <t1></t1>	<t2></t2>	e <t2></t2>	<omega1></omega1>	<omega1< th=""><th><omega2></omega2></th><th><omega2< th=""><th><q></q></th><th>e<q></q></th></omega2<></th></omega1<>	<omega2></omega2>	<omega2< th=""><th><q></q></th><th>e<q></q></th></omega2<>	<q></q>	e <q></q>
0, 2pb1T(6795)Av(.1)M(0)	1-T runs	6795		5745	40	3.158	0.059	3.191	0.178	0.398	0.038
1 (<1b,c,d>)2pb1T(6795)Av(.1)M(0)		6795		5764	34	3.456	0.008	4.023	0.028	0.557	0.006
2 (<2a,b,c>)2pb1T(6775)Av(.1)M(0)		6775		5763	14	3.484	0.017	4.094	0.049	0.567	0.011
3 (<3a,b,c>)2pb1T(6775)Av(.075)M(0)		6775		5731	8	3.497	0.012	4.133	0.034	0.575	0.008
4 (<4a,b,c>)2pb1T(6775)Av(.125)M(0)		6775		5761	17	3.498	0.012	4.133	0.039	0.573	0.009
5 (<5a,b,c>)2pb1T(6964)Av(.100)M(0)		6964		5913	27	3.385	0.057	3.809	0.180	0.522	0.034
6 (<6a,b,c>)2pb1T(6964)Av(.075)M(0)		6964		5874	11	3.434	0.041	3.975	0.131	0.553	0.026
7 (<7a,b,c>)2pb1T(6964)Av(.125)M(0)		6964		5903	16	3.431	0.039	3.966	0.095	0.551	0.016
8 (<8a,b,c>)2pb2T(s6775)Av(.100)M(0)	2-T runs	7041	5	5914	17	3.446	0.019	4.019	0.044	0.562	0.008
9(<9a,b,c>)2pb2T(s6964)Av(.100)M(0)		7041	5	5913	18	3.443	0.020	4.009	0.051	0.560	0.009
10(<10a,b,c>)2pb2T(s6964)Av(.075)M(0)		6998	4	5879	18	3.445	0.019	4.008	0.050	0.560	0.009
11<11a,b,c>)2pb2T(s6964)Av(.125)M(0)		7084	3	5937	14	3.441	0.016	3.999	0.046	0.563	0.009
12<12b,c,d,e>)3pb2TAv(adjusted)M(0)	3-pb	7691	133	6418	122	3.439	0.019	4.004	0.071	0.560	0.016
13<13a,b,c,d>)3pb2TAv(.100)M(0)		7058	9	5937	10	3.425	0.007	3.951	0.017	0.547	0.004
14<14a,b,c,d>)3pb2TAv(.100)M(+.1)		7056	13	5968	13	3.438	0.006	4.001	0.016	0.556	0.004
15<15a,b,c,d>)3pb2TAv(.075)M(0)		7012	12	5938	20	3.435	0.006	3.987	0.027	0.553	0.006
16<16a,b,c,d>)3pb2TAv(.125)M(0)		7099	11	6004	21	3.439	0.003	4.010	0.007	0.558	0.002
17<17b,c,d>)3pb2TAv(.100)M(1)		7047	10	5928	12	3.427	0.012	3.954	0.047	0.545	0.010
18, 3pb2TAv(.100)M(0)S&MRV		7039	4	5905	17	3.470	0.035	4.095	0.109	0.576	0.020
19<19a,b,c,d>3pb2TAv(.100)M(0)ARV		7060	10	5921	13	3.544	0.029	4.341	0.098	0.617	0.017
20, 3pb2TAv(.100)M(1)S&MRV		7019	4	5915	17	3.365	0.036	3.745	0.106	0.509	0.020
21<21a,b,c>)3pb2TAv(.100)M(1)ARV		7035	10	5888	9	3.572	0.028	4.456	0.097	0.638	0.016
22<22a,b,c>)3pb2TAv(.075)M(0)ARV		7018	10	5885	11	3.578	0.033	4.470	0.111	0.641	0.019
23<23a,b,c>)3pb2TAv(.075)M(1)ARV		6999	9	5866	12	3.580	0.030	4.475	0.111	0.642	0.019
24<24a,b,c>)3pb2TAv(.075)M(+.1)ARV		7008	14	5916	17	3.587	0.023	4.508	0.073	0.648	0.012
25<25a,b,c>)3pb2TAv(.125)M(0)ARV		7103	10	5944	7	3.569	0.027	4.447	0.076	0.639	0.012
26<26a,b,c>)3pb2TAv(.125)M(1)ARV		7081	11	5936	2	3.563	0.040	4.426	0.122	0.637	0.019
27<27a,b,c>)3pb2TAv(.125)M(+.1)ARV		7099	12	5991	12	3.583	0.019	4.507	0.055	0.650	0.008
Mean, all 2-T runs, excl. model 12 for T		7047	8	5926	8	3.490	0.016	4.171	0.054	0.588	0.010

DS And: on NGC 752's Color-Magnitude Diagram

The CMD of NGC 752 showing the system (cyan cross) and components (blue diamond and green triangle for stars 1 and 2, resp.), of DS Andromedae.

The Zero-age Main Sequence, isochrones of 1.3, 1.5 and 1.6 Gy (in red), and the 1.4 Gy isochrone (dashed black) are shown also. From Amby (2011).

Means of Absolute Parameters: M, R

Model / Absolute Parameter	M1	e(M1)	M2	e(M2)	R1	e(R1)	R2	e(R2)
	Msun	Msun	Msun	Msun	Rsun	Rsun	Rsun	Rsun
1 (<1b,c,d>)2pb1T(6795)Av(.1)M(0)	1.595	0.026	0.886	0.012	2.026	0.010	1.150	0.006
2 (<2a,b,c>)2pb1T(6775)Av(.1)M(0)	1.581	0.009	0.910	0.017	2.015	0.005	1.139	0.005
3 (<3a,b,c>)2pb1T(6775)Av(.075)M(0)	1.593	0.008	0.911	0.009	2.020	0.008	1.143	0.005
4 (<4a,b,c>)2pb1T(6775)Av(.125)M(0)	1.586	0.010	0.911	0.011	2.013	0.009	1.137	0.007
5 (<5a,b,c>)2pb1T(6964)Av(.100)M(0)	1.573	0.061	0.813	0.088	2.028	0.026	1.157	0.012
6 (<6a,b,c>)2pb1T(6964)Av(.075)M(0)	1.591	0.010	0.879	0.045	2.035	0.005	1.156	0.002
7 (<7a,b,c>)2pb1T(6964)Av(.125)M(0)	1.608	0.005	0.881	0.027	2.049	0.011	1.163	0.006
8 (<8a,b,c>)2pb2T(s6775)Av(.100)M(0)	1.604	0.001	0.902	0.013	2.043	0.007	1.162	0.004
9(<9a,b,c>)2pb2T(s6964)Av(.100)M(0)	1.603	0.001	0.899	0.014	2.043	0.008	1.163	0.005
10(<10a,b,c>)2pb2T(s6964)Av(.075)M(0)	1.607	0.001	0.901	0.014	2.044	0.007	1.164	0.004
11<11a,b,c>)2pb2T(s6964)Av(.125)M(0)	1.602	0.004	0.906	0.015	2.044	0.007	1.164	0.004
12<12b,c,d,e>)3pb2TAv(adjusted)M(0)	1.615	0.004	0.870	0.011	2.042	0.002	1.158	0.001
13<13a,b,c,d>)3pb2TAv(.100)M(0)	1.613	0.005	0.882	0.008	2.046	0.004	1.163	0.005
14<14a,b,c,d>)3pb2TAv(.100)M(+.1)	1.603	0.002	0.896	0.005	2.044	0.002	1.158	0.002
15<15a,b,c,d>)3pb2TAv(.075)M(0)	1.609	0.008	0.890	0.007	2.044	0.003	1.159	0.003
16<16a,b,c,d>)3pb2TAv(.125)M(0)	1.605	0.004	0.896	0.003	2.046	0.001	1.160	0.002
17<17b,c,d>)3pb2TAv(.100)M(1)	1.609	0.010	0.878	0.014	2.041	0.002	1.157	0.001
18, 3pb2TAv(.100)M(0)S&MRV	1.524	0.036	0.780	0.051	2.006	0.018	1.148	0.008
19<19a,b,c,d>3pb2TAv(.100)M(0)ARV	1.555	0.036	0.939	0.051	2.015	0.018	1.137	0.008
20, 3pb2TAv(.100)M(1)S&MRV	1.521	0.044	0.774	0.063	2.005	0.019	1.147	0.006
21<21a,b,c>)3pb2TAv(.100)M(1)ARV	1.594	0.044	0.994	0.063	2.036	0.019	1.146	0.006
22<22a,b,c>)3pb2TAv(.075)M(0)ARV	1.570	0.044	0.961	0.062	2.022	0.020	1.140	0.008
23<23a,b,c>)3pb2TAv(.075)M(1)ARV	1.568	0.046	0.959	0.065	2.021	0.022	1.140	0.009
24<24a,b,c>)3pb2TAv(.075)M(+.1)ARV	1.607	0.034	1.016	0.049	2.040	0.015	1.149	0.005
25<25a,b,c>)3pb2TAv(.125)M(0)ARV	1.611	0.033	1.019	0.048	2.040	0.014	1.149	0.005
26<26a,b,c>)3pb2TAv(.125)M(1)ARV	1.578	0.063	0.977	0.088	2.025	0.026	1.142	0.010
27<27a,b,c>)3pb2TAv(.125)M(+.1)ARV	1.633	0.023	1.053	0.034	2.054	0.010	1.156	0.003
Means, all 2-T solutions	1.591	0.007	0.920	0.016	2.035	0.003	1.153	0.002

Means of Absolute Parameters: M_{bol}, log g

<u> Model / Absolute Parameter</u>	Mbol1	e(Mbol1)	Mbol2	e(Mbol2	log g1	e(log g1	log g2	e(log g2
	magn.	magn.	magn.	magn.	cgs	cgs	cgs	cgs
1 (<1b,c,d>)2pb1T(6795)Av(.1)M(0)	2.510	0.010	4.370	0.056	4.027	0.003	4.263	0.003
2 (<2a,b,c>)2pb1T(6775)Av(.1)M(0)	2.537	0.003	4.483	0.009	4.027	0.003	4.283	0.007
3 (<3a,b,c>)2pb1T(6775)Av(.075)M(0)	2.530	0.010	4.497	0.013	4.030	0.001	4.283	0.003
4 (<4a,b,c>)2pb1T(6775)Av(.125)M(0)	2.540	0.010	4.487	0.012	4.033	0.003	4.287	0.007
5 (<5a,b,c>)2pb1T(6964)Av(.100)M(0)	2.403	0.028	4.327	0.009	4.020	0.006	4.217	0.043
6 (<6a,b,c>)2pb1T(6964)Av(.075)M(0)	2.397	0.003	4.360	0.006	4.023	0.003	4.303	0.028
7 (<7a,b,c>)2pb1T(6964)Av(.125)M(0)	2.380	0.012	4.320	0.015	4.020	0.006	4.250	0.015
8 (<8a,b,c>)2pb2T(s6775)Av(.100)M(0)	2.340	0.012	4.330	0.017	4.023	0.003	4.263	0.009
9(<9a,b,c>)2pb2T(s6964)Av(.100)M(0)	2.340	0.012	4.323	0.018	4.023	0.003	4.263	0.009
10(<10a,b,c>)2pb2T(s6964)Av(.075)M(0)	2.367	0.012	4.347	0.015	4.023	0.003	4.257	0.009
11<11a,b,c>)2pb2T(s6964)Av(.125)M(0)	2.317	0.012	4.277	0.015	4.020	0.006	4.263	0.007
12<12b,c,d,e>)3pb2TAv(adjusted)M(0)	1.917	0.015	3.943	0.023	4.023	0.002	4.255	0.010
13<13a,b,c,d>)3pb2TAv(.100)M(0)	2.325	0.006	4.308	0.009	4.023	0.002	4.253	0.002
14<14a,b,c,d>)3pb2TAv(.100)M(+.1)	2.333	0.009	4.285	0.006	4.020	0.001	4.263	0.003
15<15a,b,c,d>)3pb2TAv(.075)M(0)	2.355	0.009	4.310	0.011	4.023	0.002	4.258	0.005
16<16a,b,c,d>)3pb2TAv(.125)M(0)	2.300	0.007	4.263	0.011	4.020	0.001	4.260	0.000
17<17b,c,d>)3pb2TAv(.100)M(1)	2.337	0.007	4.327	0.012	4.023	0.003	4.253	0.009
18, 3pb2TAv(.100)M(0)S&MRV	2.380	0.020	4.330	0.012	4.020	0.004	4.210	0.021
19<19a,b,c,d>3pb2TAv(.100)M(0)ARV	2.358	0.020	4.365	0.012	4.020	0.004	4.295	0.021
20, 3pb2TAv(.100)M(1)S&MRV	2.390	0.029	4.350	0.020	4.020	0.007	4.210	0.023
21<21a,b,c>)3pb2TAv(.100)M(1)ARV	2.350	0.029	4.370	0.020	4.023	0.007	4.317	0.023
22<22a,b,c>)3pb2TAv(.075)M(0)ARV	2.373	0.023	4.388	0.013	4.020	0.004	4.318	0.031
23<23a,b,c>)3pb2TAv(.075)M(1)ARV	2.388	0.027	4.400	0.017	4.023	0.005	4.300	0.023
24<24a,b,c>)3pb2TAv(.075)M(+.1)ARV	2.363	0.019	4.350	0.012	4.023	0.005	4.323	0.018
25<25a,b,c>)3pb2TAv(.125)M(0)ARV	2.303	0.021	4.328	0.011	4.025	0.006	4.323	0.018
26<26a,b,c>)3pb2TAv(.125)M(1)ARV	2.330	0.036	4.348	0.019	4.025	0.009	4.310	0.037
27<27a,b,c>)3pb2TAv(.125)M(+.1)ARV	2.293	0.013	4.283	0.007	4.025	0.003	4.333	0.014
Means, all 2-T solutions	2.323	0.022	4.311	0.021	4.022	0.000	4.276	0.008

The R-T plot showing approximate locations of stars 1 and 2 superposed on evolutionary tracks (Y2 in black; BaSTI) in red solid curves) and isochrones (dashed curves) corresponding to ages of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 Gy. The Y2 models include overshoot. From Amby (2011). Ref to BaSTI: Cassisi et al. (2006);Y2: Spada et al.(2013).

DS And: Radius-Temperature Plot

Luminosity vs. Mass Plot

Luminosity vs. Mass **Plot showing Stars 1** and 2 superposed on BASTI (red) and Y2 isochrones (black). The solid red and dashed black curves are 1.5 Gy isochrones; the dashed red curve marks a 4.0 Gy isochrone. From Amby (2011), Fig. 6.23

Comments on the DS Andromedae Results

- Effect of different A_V on the parameters is minimal.
- The 2-T solutions tend to have higher Ts than expected from the Flower tables of stellar Ts, colors;
- The 3-pb solutions tend to yield smaller parameter errors than the 2-pb solutions.
- The distance is robust across a range of models.
- Weak dependence of d on [M/H].
- Work continues on the DS And system to explore 3rd light & LC variations, and also on V818 Tau, and on QX And (also in NGC 752).

References

- Anthony-Twarog, B.J, Twarog, B.A. 2006, PASP, 118
- Cassis, S., et al. 2006, Mem. Soc. Ast. It, 77, 71.
- Flower, P.J. 1996, ApJ, 469, 355
- Milone, E.F., et al., 1995, AJ, **109**, 359
- Milone, E.F., Schiller, S.J. 2012, S289 Procs. of the IAU, 8, eds. R. de Grijs & G. Bono, pp 227-230.
- Popper, D. M. 1980, ARAA, **18**, 115
- Schiller, S.J., Milone, E.F. 1987, AJ, 93, 1471
- Schiller, S.J., Milone, E.F. 1988, AJ, 95, 1466
- Spada, F. et al., 2013, ApJ, **776**, 87
- Wilson, R.E. 2008, *ApJ*, **672**, 575
- Wilson, R.E., Van Hamme, W., 2009, ApJ, 699, 118
 - _____ 2013, Computing Binary Star Observables.
- Wilson, R.E., et al. 2010, ApJ, 723, 1469
- Wilson, R.E., and Raichur, H. 2012, MNRAS, 415, 596

Acknowledgements

- The authors thank Robert E. Wilson for unstinting help with the setup and running of the WD 2010 and 2013 programs and operation of the DDE procedure.
- Support for the original work on the Binaries in Clusters program was provided by NSERC of Canada and Department of Physics [& Astronomy] of the University of Calgary.

Mahalo nui loa

Spare slides if enough time/questions

Amby (2011) V Keele Light Curve

From Fig. 6.17 of Amby (2011): A smoothed differential V light curve; original data from Keele University. These data were not used in the current analysis.

Comparative RV & LC Adjusted Parameters Detached, A_v = 0.1, [M/H]= 0 2-pb, 1-T models

P	arameter	S&M 1988	Model 2	Model 5
		(4-pb, S&M RVs)	<2-PB, all RVs)>	<2pb, all RVs>
•	a (R _{SUN})	5.77(14)	5.75(1)	5.67(12)
•	i (degs)	84.3(5)	86.1(5)	85.6(3)
•	V _{sys} (km/s)	2.5(20)	6.0(3)	5.0(11)
•	$q = M_2/M_1$	0.593(13)	0.567(11)	0.522(34)
•	t ₀ :2436142+	.405(2)	.385(4)	.385(57)
•	P (d)	1.0105187(2)	1.0105208(4)	1.0105207(8)
•	Т ₁ (К)	[6775](200)*	[6775](200:)*	[6965](100:)*
•	Т ₂ (К)	5997(17)*	5763(14)*	5913(27)*
•	Omega ₁	3.40(2)	3.48(2)	3.38(6)
•	Omega ₂	4.09(7)	4.09(5)	3.81(18)

*T₁ fixed, with est. syst. error; T₂ error internal

Comparative RV & LC Adjusted Parameters

Detached, $A_v = 0.1$, [M/H] = 0, 3 = pb Model

	Parameter	S&M 1988	<model 13:="" 3-pb,="" all="" rvs)=""></model>
•	a (R _{SUN})	5.77(14)	5.74(1)
•	i (degs)	84.3(5)	85.6(1)
•	V _{SYS} (km/s)	2.5(20)	5.4(2)
•	$q = M_2/M_1$	0.593(13)	0.547(4)
•	to :2436142+	0.405(2)	0.396(5)
•	P (d)	1.0105187(2)	1.0105198(5)
•	Т ₁ (К)	6775[200]*	7058(9)
•	T ₂ (K)	5997(17)*	5937(10)
•	Omega ₁	3.40(2)	3.43(1)
•	Omega ₂	4.09(7)	3.95(2)

*T₁ fixed, with est. syst. error; T₂ error internal

Comparative RV & Light Curve Adjusted Parameters

Parameter	S&M 1987	Model 19	
		<3-PB, Ambly RVs>	
a (Rsun)	5.77(14)	5.79(5)	
i (degs)	84.3(5)	86.0(3)	
V _{svs} (km/s)	2.5(20)	7.95(1)	
$q = M_2/M_1$	0.593(13)	0.617(17)	
t ₀ :2436142+	0.405(2)	0.4037(3)	
P (d)	1.0105187(2)	1.01051878(2)	
T ₁ (K)	6775[200]*	7060(10)	
T ₂ (K)	5997(17)*	5921(13)	
Omega ₁	3.40(2)	3.54(3)	
Omega ₂	4.09(7)	4.34(10)	

 T_1 fixed, with est. syst. error; T_2 error internal

Comparative Adjusted Parameters

Parameter	S&M 1987	Model 19
		<3-PB, Ambly RV)>
L1/(L1+L2) {Ic}	0.823(3)	0.843(2)
" {Rc}	0.833(4)	0.858(2)
" {V}	0.846(4)	0.871(1)
" {B}	0.863(5)	0.898(2)
Log d (pcs)	2.634(30)	2.636(3)
[d, pcs)]	431(30)	432.9(29)
(m-M)	8.17(12)	8.182(15)

Comparative Parameters for 1-T 2-PB, $A_v = 0.1$, [M/H] = 0				
Models				
Par./Suite	<model 5=""></model>	<model 1=""></model>	<model 2=""></model>	
a (R _{SUN})	5.67(12)	5.71(3)	5.75(1)	
i (degs)	85.6(3)	85.8(1)	86.1(5)	
V _{Sys} (km/s)	+5.0(11)	+5.3(4)	+6.0(3)	
$q = M_2/M_1$	0.522(34)	0.557(6)	0.567(11)	
T ₁ (K)	<u>6964</u> *	<u>6795</u> *	<u>6775</u> *	
T ₂ (K)	5913(27)	5764(34)	5763(14)	
Omega ₁	3.38(6)	3.46(1)	3.48(2)	
Omega ₂	3.81(18)	4.02(3)	4.10(5)	
d (pcs)	422(4)	400(1)	393(4)	
log d (pcs)	2.63(1)	2.60(01)	2.60(1)	

* Fixed

A_V affect on mean DS And Parameters All RVs, 2-pb, T₁=6775, A_V-range Models

Par./Suite	Model 3	Model 2	Model 4
	< A _v = 0.075>	<a<sub>v= 0.100></a<sub>	<a<sub>v = 0.125></a<sub>
a (R _{SUN})	5.749(8)	5.477(10)	5.746(8)
i (degs)	85.8(6)	86.0(5)	86.0(6)
V _{sys} (km/s)	+6.4(1)	+6.0(3)	+6.2(3)
$q = M_2/M_1$	0.575(8)	0.567(11)	0.573(9)
t _o : 2436142+	.387(2)	.385(4)	.384(4)
P(d) :1.0105	206(2)	208(4)	208(4)
T ₁ (K)	<u>6775</u> *	<u>6775</u> *	<u>6775</u> *
T ₂ (K)	5731(8)	5763(14)	5761(17)
Omega ₁	3.50(1)	3.48(2)	3.50(1)
Omega ₂	4.13(3)	4.10(4)	4.13(4)
log d (pcs)	2.598(4)	2.595(4)	2.587(6)

* Fixed

Av affect on mean DS And Parameters 2-PB, 1-T (T1= 6964K), all-RVs runs

Par./Suite	6 <0.075>	1 <av= 0.100=""></av=>	7 <.125>
a (R _{SUN})	5.72(3)	5.67(9)	5.70(1)
i (degs)	85.8(6)	85.6(2)	85.7(3)
V _{Sys} (km/s)	+5.6(6)	+5.0(8)	+5.5(4)
$q = M_2/M_1$	0.553(21)	0.522(26)	0.551(13)
t ₀ : 2436142+	.3889(57)	.3861(61)	.3897(59)
P(d) :1.0105	2036(61)	2067(64)	2025(64)
T ₁ (K)	<u>6964</u> *	<u>6964</u> *	<u>6964</u> *
T ₂ (K)	5874(9)	5913(20)	5903(14)
Omega ₁	3.434(34)	3.385(44)	3.431(30)
Omega ₂	3.975(107)	3.809(141)	3.966(76)
d (pcs)	427.7(7)	422.4(44)	394.2(32)
log d (pcs)	2.631(1)	2.626(5)	2.625(3)

A_V affect on mean DS And Parameters 2-PB, 2-T, all-RVs Models

Par./Suite	4 <0.075>	1 <av= 0.100=""></av=>	5 <.125>
a (Rsun)	5.754(9)	5.750(9)	5.754(8)
i (degs)	85.67(14)	85.66(15)	85.73(29)
Vs (km/s)	+5.8(3)	+5.8(3)	+5.9(3)
$q = M_2/M_1$	0.560(8)	0.560(8)	0.568(6)
To: 2436142+	.3896(68)	.3899(67)	.3897(65)
P(d) :1.0105	2030(71)	2067(64)	2027(69)
T ₁ (K)	6998(2)	7041(3)	7083(3)
T ₂ (K)	5879(13)	5913(20)	5943(12)
Omega ₁	3.445(15)	3.443(16)	3.450(15)
Omega ₂	4.008(42)	4.009(42)	4.029(43)
d (pcs)	433.6(14)	434.1(18)	434.7(16)
log d (pcs)	2.6371(14)	2.6376(18)	2.6382(16)

Av affect on mean DS And Parameters 3-PB, 2-T, all-RVs Modeling

Par./Suite	8 <0.075>	9 <av= 0.100=""></av=>	10 <.125>
a (Rsun)	5.748(6)	5.750(5)	5.749(4)
i (degs)	85.65(6)	85.64(5)	85.65(6)
V _{sys} (km/s)	+5.5(1)	+5.6(1)	+5.6(1)
$q = M_2/M_1$	0.553(5)	0.556(2)	0.558(2)
To: 2436142+	.3935(33)	.3941(33)	.3946(32)
P(d) :1.0105	1972(44)	1981(35)	1984(44)
T ₁ (K)	7012(10)	7056(9)	7099(9)
T ₂ (K)	5938(18)	5968(18)	6004(19)
Omega ₁	3.436(6)	3.438(4)	3.439(3)
Omega ₂	3.987(23)	4.001(13)	4.010(7)
d (pcs)	440(2)	441(2)	442(2)
log d (pcs)	2.643(2)	2.645(2)	2.645(2)

DS And Absolute Parameters Av = 0.100 assumed

Param/Suite	S&M88	Model 9#	<3-pb Ambly RV>‡
		3-pb, 2-T	
M1 (Msun)	1.58(17)	1.613(5)	1.555(36)
M2 (Msun)	0.94(10)	0.882(8)	0.939(51)
R1 (Rsun)	2.10(8)	2.046(4)	2.015(18)
R2 (Rsun)	1.19(5)	1.163(5)	1.137(8)
Mbol1	2.34(15)	2.325(7)	2.358(20)
Mbol2	4.15(19)	4.308(9)	4.365(12)
log g 1	[4.21(4)]	4.023(3)	4.020(4)
log g 2	[4.24(4)]	4.253(3)	4.295(21)
L1 (Lsun)	[8.7(12)]*	9.55(6)**	9.05(17)**
L2 (Lsun)	1.6(3)*	1.57(2)**	1.43(2)**
(m-M)o	8.17(15)	8.211(6)	8.182(15)
*Mbol sun = 4.69 ·	**Mbol $sun = 4$	$75 \cdot \#[M/H] = 0$)00 assumed