INTERNATIONAL ASTRONOMICAL UNION COMMISSION 26

(DOUBLE STARS)
INFORMATION CIRCULAR No. 147 (JUNE 2002)

NEW ORBITS							
$\begin{gathered} \text { ADS } \\ \alpha 2000 \delta \end{gathered}$	Name n	$\begin{gathered} \mathrm{P} \\ \mathrm{a} \end{gathered}$	$\begin{gathered} \mathbf{T} \\ \mathbf{i} \end{gathered}$	$\begin{aligned} & \text { e } \\ & \omega \end{aligned}$	$\Omega(2000)$ Last ob.	$\begin{aligned} & 2002 \\ & 2003 \end{aligned}$	Author(s)
197	A 1256 AB	$137^{y} 96$	1997.78	0.724	$68^{\circ} 4$	$254{ }^{\circ} 70^{\prime \prime} 060$	OLEVIC
$00153+4412$	$2^{\circ} 6095$	0"153	$62^{\circ} 9$	$118^{\circ} 1$	1991.9	259.60 .064	
440	GJ 22 AC	16.24	2000.39	0.178	179.0	330.20 .414	DOCOBO
$00321+6715$	22.1675	0.535	46.6	91.3	2001.841	350.90 .493	et al. (*)
	I 440	271.78	1948.45	0.645	63.8	272.30 .431	LING
00427-6537	1.3246	0.457	122.4	352.9	1991.73	271.80 .439	
650	HU 413	351.7	2074.21	0.424	44.9	304.70 .405	OLEVIC
$00470+2315$	1.0246	0.623	52.5	25.9	1994.9	306.00 .402	
705	A 924	165.70	1987.03	0.639	55.2	331.60 .183	OLEVIC
$00520+3154$	2.1727	0.274	153.9	335.0	1996.7	328.40 .190	
	MLR 87	56.93	2011.83	0.515	62.1	56.70 .239	OLEVIC
$01036+6341$	6.3241	0.237	131.4	130.5	1996.0	53.00 .223	
993	A 1260	125.38	2013.12	0.736	59.8	54.90 .227	OLEVIC
$01131+2942$	2.8714	0.357	82.9	88.5	1995.9	55.50 .222	
1016	A 2102	186.46	1934.61	0.398	147.8	138.40 .495	OLEVIC
$01158+0947$	1.9307	0.592	97.6	255.6	1994.97	138.00 .487	
1087	HJ 2036	1443.34	2674.91	0.092	124.8	341.12 .253	OLEVIC
01200-1549	0.2494	3.431	114.1	288.9	1999.8	340.82 .261	
2051	HU 539	205.14	2010.42	0.631	29.3	343.30 .094	OLEVIC
$02423+4925$	1.7549	0.238	134.4	124.8	1995.9	336.60 .096	
2177	A 2338	162.10	1975.49	0.610	127.0	338.40 .247	OLEVIC
$02512+0141$	2.2209	0.471	73.0	114.0	1996.0	340.30 .243	

$\begin{gathered} \text { ADS } \\ \alpha 2000 \delta \end{gathered}$	Name n	$\begin{gathered} \mathrm{P} \\ \mathrm{a} \end{gathered}$	$\begin{gathered} \mathbf{T} \\ \mathbf{i} \end{gathered}$	$\begin{aligned} & \mathbf{e} \\ & \omega \end{aligned}$	$\Omega(2000)$ Last ob.	$\begin{aligned} & 2002 \\ & 2003 \end{aligned}$	Author(s)
$03496+6318$	CAR 1	10.18	1998.10	0.441	10.4	91.70 .112	
	35.3634	0.102	37.9	281.7	2000.7676	111.50 .117	HORCH
$04271+2542$	DF Tau	92.80	1981.34	0.509	16.2	270.40 .114	
	3.8793	0.137	135.1	326.4	1998.775	267.20 .118	TAMAZIAN
$04325+1732$	GG TAU Aa	196.60	2060.00	0.317	96.2	347.40 .245	DOCOBO
	1.8311	0.258	142.9	241.4	2001.110	345.90 .244	et al. (**)
06253+0130	FIN 343	136.19	2001.03	0.069	177.8	326.70 .148	OLEVIC
	2.6434	0.187	129.5	220.6	1993.1	324.00 .144	
5687	FIN 334 Aa	213.27	1974.87	0.250	125.3	337.10 .094	MANTE
07003-2207	1.6880	0.153	118.0	56.0	1993.0897	335.10 .098	
6552	A 2050	114.84	1986.22	0.753	89.4	270.20 .157	ZIRM
$08047+4717$	3.1348	0.152	22.7	40.3	1996.8638	271.90 .163	
7307	STF 1338 AB	303.27	2023.25	0.254	137.3	290.41 .02	SCARDIA
$09210+3811$	1.1871	1.336	29.9	191.9	1999.99	292.11 .02	et al. (${ }^{* * * \text {) I }}$
7307$09210+3811$	STF 1338 AB	444.27	1983.69	0.247	177.4	289.41 .06	SCARDIA
	0.8103	1.624	33.4	83.6	1999.99	290.91 .07	et al. $\left({ }^{* * *}\right)$ II
11441-0448	RST 5524	54.50	1984.34	0.509	18.0	154.50 .159	ZIRM
	6.6055	0.146	48.3	330.5	1997.1317	157.60 .165	
$17075+3810$	COU 1291	51.03	2011.66	0.331	121.2	3297.70 .170	DOCOBO
	7.0547	0.174	62.6	278.9	1998.779	301.00 .164	\& LING
12961	A 1658	88.10	1991.60	0.087	51.5	133.40 .207	DOCOBO
19487+1504	4.0863	0.224	169.8	228.2	2000.5	128.70 .208	\& LING
13894	A 610	170.62	1984.25	0.232	72.0	57.30 .393	COSTADO
$20290+0710$	2.1100	0.472	30.3	285.2	2000.519	59.80 .398	
$20329+1142$	J 1	528.39	2396.22	0.745	38.8	53.42 .055	POPOVIC
	0.6813	1.545	58.5	228.4	1991.2	53.52 .059	\& OLEVIC
14749	MCA 67 Aa	81.30	2034.547	0.347	75.8	137.80 .040	MANTE
$21118+5959$	4.4280	0.071	112.7	82.7	1997.798	132.80 .041	

NEW ORBITS (continuation)

ADS	Name	\mathbf{P}	\mathbf{T}	\mathbf{e}	$\Omega(2000)$ Last ob.	$\mathbf{2 0 0 2}$	Author(s)
$\alpha \mathbf{2 0 0 0} \delta$	\mathbf{n}	\mathbf{a}	\mathbf{i}	ω			
17030	A 424	173.05	1934.26	0.489	59.3	144.00 .15	SCARDIA
$23498+2741$	2.0803	0.255	65.2	283.5	1998.663	146.00 .15	et al. $\left({ }^{* * *}\right)$

(*) DOCOBO, TAMAZIAN, WOITAS and LEINERT
$\left(^{* *}\right)$ DOCOBO, TAMAZIAN and WOITAS
${ }^{(* * *)}$ SCARDIA, PRIEUR, KOECHLIN and ARISTIDI

ANNOUNCEMENT

Changes to the WDS :

- The WDS currently consists of 585,254 mean positions of 98,084 systems.
- Duplicate Discovery Designations Removed:

One of the more difficult issues in dealing with the WDS as a database is the presence of duplicate discovery designations; that is, different systems assigned the same 3character and 4 -digit designation. These generally fall into one of two categories: systems given the same numbers but published in different lists, and those given some additional designation appended to the original one.
Examples of the first are the binaries first resolved by W. Herschel and both F.G.W. Struve and O. Struve. William Herschel published seven lists (I - VI, plus "new", or N), with stars of each list starting at number 1. In addition to their original discovery lists, each of the Struve's published an appendix, as well as a list of "rejected" doubles. These multiple lists were completely spelled out in the Aitken Double Star Catalogue (e.g., H IV 48), but when the Index (IDS) Catalogue was compiled at Lick all of these other designators were dropped for lack of space. To uniquely identify a system then required both the discovery designation and the position. As a result there are, for example, five components with the designation H 48! The source Herschel list was given in the notes file to the IDS. Appended and rejected stars from the lists of the Struve's were handled with an "a" or "r" towards the end of the WDS data line in most cases.

In the second (and fortunately rare) case, systems found quite near to known ones were given the same designation plus trailing character(s) (e.g., ES 1293a or BU $8851 / 2$). Sometimes both components were assigned these additional characters,
sometimes only one; occasionally two pairs in an entirely different section of the sky were given the same designation by the author (probably by mistake).

Each of these cases is being handled in a different manner. For the William Herschel discoveries, a list identifier is added to column three of each designation. For example:

H 19 (at 16 hours) was originally H II 19 and is now known as H 2 19, H 7 (at 18 hours) was originally H V 7 and is now known as H 57 , and H 111 (at 06 hours) was originally H N 111 and is now known as H N 111.

In the case of the O. Struve appendix an A is added following STT in the name. For F. Struve, he provided two appendices. Those from the shorter list (Appendix II) are designated STFB. For example:

STF 11 (appendix I) is now STFA 11.
STF 11 (appendix II) is now STFB 11.
STT 252 (appendix) is now STTA252.
Stars of the second type are given the same 3-letter discovery designation but a new number, starting with 9001, to indicate that they originally had a different designation. For example:

BAL2356b is now BAL9001.
BU 885 1/2 is now BU 9001.
A complete list of stars of the second type is provided in the error correction file. All changes in designation are described in the notes file. In addition to these, designations for 271 W. Herschel (H), 110 F. Struve (STF) and 227 O. Struve (STT) systems have been changed. Note that for some of these systems, the former three character, four digit reference (a3i4) has been replaced by a four character, three digit reference (a4i3). Although, for all USNO applications (e.g., data or observing list request) an a7 read will see no difference.

- Arcsecond Precise Coordinates:

Coordinates which are sixty times more precise than the WDS identifier are now provided for the majority of WDS systems (i.e., tenths of a second of time and seconds of arc). Coordinates are obtained from Hipparcos, Tycho-2, the Tycho Double Star Catalogue, or through manual inspection. It is expected that the next significant improvement in this area will be when either the 2MASS or UCAC data are cross-referenced with the WDS. Incremental changes will continue to be made as well. The ten-digit WDS identifier is retained and will continue to be the same for all components in hierarchical systems. However, the precise coordinate will be for the primary of the subsystem. For example, in the case of a system made up of A-BC and BC pairs, they will both have the same ten-digit WDS identifier, however, the fourteen digit precise coordinate would be of the A and B component, respectively.
So far this matching has been made for 80% of the WDS (i.e., 78,655 systems). These coordinates are found close to the end of the WDS summary line.

- Secondary Proper Motions added:

The most common note $(\mathrm{N}=1421)$ in the WDS notes file was the proper motion of the secondary, when known. The above matching with Tycho-2 has allowed the determination of secondary proper motion for 37% of the WDS (i.e., 36,042 systems). The secondary proper motion is found following the precise position. This is expected to grow considerably when the UCAC is complete.

Brian D. Mason \& William I. Hartkopf
U.S. Naval Observatory

The deadline for contributions to Information Circular No. 148 is:
October 15th 2002
J. A. Docobo (oadoco@usc.es)
J. F. Ling (oafana@usc.es)

Tel. +34981592747
Fax: +34 981597054
Observatorio Astronómico R. M. Aller
P. O. Box 197
http://www.usc.es/astro
Universidade de Santiago de Compostela
SPAIN

ISSN: 1024-7769

