INTERNATIONAL ASTRONOMICAL UNION COMMISSION 26

(DOUBLE STARS)
INFORMATION CIRCULAR No. 162 (JUNE 2007)

NEW ORBITS							
$\begin{gathered} \text { ADS } \\ \alpha 2000 \delta \end{gathered}$	Name n	$\begin{aligned} & \mathrm{P} \\ & \mathrm{a} \end{aligned}$	$\begin{gathered} \mathrm{T} \\ \mathrm{i} \end{gathered}$	$\begin{aligned} & \mathrm{e} \\ & \omega \end{aligned}$	$\Omega(2000)$ Last ob.	$\begin{aligned} & 2007 \\ & 2008 \end{aligned}$	Author(s)
$\begin{gathered} 195 \\ 00152+2722 \end{gathered}$	$\begin{gathered} \text { J } 868 \\ 0.3305 \end{gathered}$	$\begin{gathered} 1089^{y} 17 \\ 8^{\prime \prime} 477 \end{gathered}$	$\begin{gathered} 1725.11 \\ 75^{\circ} 2 \end{gathered}$	$\begin{aligned} & 0.367 \\ & 352^{\circ} 8 \end{aligned}$	$\begin{gathered} 68^{\circ} 9 \\ 2006.9575 \end{gathered}$	$\begin{array}{r} 228^{\circ} 15^{\prime \prime} 780 \\ 228.35 .817 \end{array}$	NOVAKOVIC
$\begin{gathered} 287 \\ 00209+1059 \end{gathered}$	$\begin{gathered} \text { BU } 1093 \\ 0.7643 \end{gathered}$	$\begin{gathered} 471 . \\ 0.545 \end{gathered}$	$\begin{gathered} 1844.26 \\ 42.4 \end{gathered}$	$\begin{aligned} & 0.517 \\ & 181.6 \end{aligned}$	$\begin{gathered} 132.3 \\ 2005.029 \end{gathered}$	$\begin{array}{ll} 117.20 .747 \\ 117.4 & 0.750 \end{array}$	LING
$\begin{gathered} 822 \\ 00596-0111 \end{gathered}$	$\begin{gathered} \text { A } 1903 \\ 2.8031 \end{gathered}$	$\begin{gathered} 128.43 \\ 0.359 \end{gathered}$	$\begin{gathered} 1956.53 \\ 34.7 \end{gathered}$	$\begin{gathered} 0.154 \\ 90.1 \end{gathered}$	$\begin{gathered} 137.3 \\ 1999.8175 \end{gathered}$	$\begin{aligned} & 13.40 .351 \\ & 15.80 .350 \end{aligned}$	$\begin{gathered} \text { DOCOBO } \\ \& \text { LING } \end{gathered}$
01345+7804	$\begin{gathered} \text { HDS } 211 \\ 15.8311 \end{gathered}$	$\begin{aligned} & 22.74 \\ & 0.207 \end{aligned}$	1996.99 127.7	$\begin{gathered} 0.462 \\ 28.5 \end{gathered}$	$\begin{gathered} 68.8 \\ 2006.9412 \end{gathered}$	$\begin{array}{ll} 236.6 & 0.289 \\ 232.1 & 0.283 \end{array}$	$\begin{aligned} & \text { DOCOBO } \\ & \text { et al. }\left(^{*}\right) \end{aligned}$
$\begin{gathered} 1780 \\ 02202+2949 \end{gathered}$	$\begin{aligned} & \text { A } 961 \\ & 2.5159 \end{aligned}$	$\begin{gathered} 143.09 \\ 0.294 \end{gathered}$	$\begin{gathered} 2038.10 \\ 145.4 \end{gathered}$	$\begin{gathered} 0.571 \\ 15.6 \end{gathered}$	$\begin{gathered} 150.0 \\ 2003.9517 \end{gathered}$	$\begin{array}{ll} 279.0 & 0.308 \\ 277.4 & 0.301 \end{array}$	NOVAKOVIC
- - $04258+1800$	$\begin{gathered} \text { COU } 2682 \\ 9.8093 \end{gathered}$	$\begin{aligned} & 36.70 \\ & 0.270 \end{aligned}$	$\begin{gathered} 1995.20 \\ 60.1 \end{gathered}$	$\begin{gathered} 0.017 \\ 54.4 \end{gathered}$	$\begin{gathered} 159.1 \\ 2000.873 \end{gathered}$	$\begin{array}{r} 335.00 .270 \\ 339.90 .2732 \end{array}$	 TAMAZIAN
$\begin{gathered} 4376 \\ 05491+6248 \end{gathered}$	$\begin{gathered} \text { STF } 3115 \\ 0.2628 \end{gathered}$	$\begin{gathered} 1370.0 \\ 1.585 \end{gathered}$	$\begin{gathered} 2106.0 \\ 144.0 \end{gathered}$	$\begin{aligned} & 0.633 \\ & 201.6 \end{aligned}$	$\begin{gathered} 89.1 \\ 2007.195 \end{gathered}$	$\begin{array}{ll} 340.2 & 0.814 \\ 339.6 & 0.811 \end{array}$	SCARDIA et al. (**)
$\begin{gathered} 5212 \\ 06345-1114 \end{gathered}$	$\begin{gathered} \text { HO } 234 \\ 0.9424 \end{gathered}$	$\begin{gathered} 382.0 \\ 0.69 \end{gathered}$	$\begin{gathered} 1915.26 \\ 54.4 \end{gathered}$	$\begin{aligned} & 0.345 \\ & 183.2 \end{aligned}$	$\begin{gathered} 36.2 \\ 2003.9604 \end{gathered}$	$\begin{array}{ll} 358.7 & 0.575 \\ 359.5 & 0.581 \end{array}$	RICA
$\begin{gathered} 5841 \\ 07106+1543 \end{gathered}$	$\begin{gathered} \text { J } 703 \\ 0.2647 \end{gathered}$	$\begin{gathered} 1360.20 \\ 12.699 \end{gathered}$	$\begin{gathered} 3235.39 \\ 113.4 \end{gathered}$	0.850 177.1	$\begin{gathered} 96.2 \\ 2006.9583 \end{gathered}$	$\begin{aligned} & 113.79 .384 \\ & 113.69 .446 \end{aligned}$	CVETKOVIC
$\stackrel{-}{-}$	$\begin{gathered} \text { HDS } 1149 \\ 15.8451 \end{gathered}$	$\begin{aligned} & 22.72 \\ & 0.282 \end{aligned}$	2009.24 124.4	0.115 252.3	$\begin{gathered} 21.8 \\ 2006.9447 \end{gathered}$	$\begin{array}{ll} 185.0 & 0.237 \\ 170.1 & 0.200 \end{array}$	$\begin{aligned} & \text { DOCOBO } \\ & \text { et al. }(*) \end{aligned}$
$\begin{gathered} 10049 \\ 16256-2327 \end{gathered}$	$\begin{gathered} \text { H } 219 \text { AB } \\ 0.1502 \end{gathered}$	$\begin{gathered} 2397.54 \\ 4.250 \end{gathered}$	2326.84 135.3	0.675 226.1	$\begin{gathered} 77.5 \\ 2001.5260 \end{gathered}$	$\begin{array}{ll} 338.8 & 2.918 \\ 338.7 & 2.913 \end{array}$	NOVAKOVIC

NEW ORBITS (continuation)							
$\begin{gathered} \text { ADS } \\ \alpha 2000 \delta \end{gathered}$	Name n	P	$\begin{aligned} & \mathrm{T} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \text { e } \\ & \omega \end{aligned}$	$\Omega(2000)$ Last ob.	$\begin{aligned} & 2007 \\ & 2008 \end{aligned}$	Author(s)
$\begin{gathered} 12540 \\ 19307+2758 \end{gathered}$	$\begin{gathered} \text { MCA } 55 \mathrm{Aac} \\ 1.6834 \end{gathered}$	213.86 0.536	$\begin{gathered} 1998.00 \\ 154.9 \end{gathered}$	$\begin{gathered} 0.256 \\ 39.4 \end{gathered}$	$\begin{gathered} 170.4 \\ 2005.820 \end{gathered}$	$\begin{array}{ll} 107.1 & 0.376 \\ 104.1 & 0.376 \end{array}$	SCARDIA et al. (**)
-	DJU 4	615.26	2027.82	0.079	68.1	246.31 .307	CVETKOVIC
$19535+2405$	0.5851	1.555	85.9	169.7	2003.000	246.31 .314	
-	COU 2416	52.26	1995.83	0.432	89.4	106.50 .223	DOCOBO
$20151+3742$	6.8886	0.211	36.9	255.7	2005.5183	110.80 .230	\& LING
14783	H 148	81.71	2003.54	0.805	62.0	239.20 .313	SCARDIA
$21137+6424$	4.4060	0.690	83.7	45.2	2005.886	240.30 .393	et al. (**)
-	HDS 3145	10.81	1997.67	0.488	71.2	229.20 .081	DOCOBO
$22083+2409$	33.3056	0.094	151.8	311.3	2006.6897	169.90 .048	et al. (*)
-	HDS 3356	19.14	2005.49	0.587	144.0	322.30 .172	DOCOBO
$23334+4251$	18.8088	0.256	75.5	80.3	2006.9464	328.70 .220	et al. (*)
-	SLR 14	118.9	1977.61	0.275	45.1	80.80 .842	DOCOBO
23506-5142	3.0273	0.814	156.2	202.6	2001.8701	78.40 .855	\& LING

(*) DOCOBO, BALEGA \& TAMAZIAN
(**) SCARDIA, PRIEUR, PANSECCHI \& ARGYLE

NOTES

- OTHER PAPERS PUBLISHED IN 2006

- DOMMANGET, J.: La Détermination du Pole d'une Orbite d'Etoile Double Visuelle. Obervations et Travaux, 62, 5, 2006.
- DOMMANGET, J. \& NYS, O.: Erreurs relevées dans le Catalogue INDEX 1961,0 (Seconde série). Obervations et Travaux, 64, 21, 2006.
- ON THE POSSIBLE EXISTENCE OF A VERY LOW-MASS OBJECT IN THE TRIPLE STELLAR SYSTEM GLIESE 22 (HIP 2552).

Hierarchical triple system Gl 22 consists of three red dwarfs Aa, Ab and B. The orbital period of the inner orbit (pair Aa-Ab) is 15.64 yr , whereas that of the outer one (B relative to the mass center of $\mathrm{Aa}-\mathrm{Ab}$) is 223.4 yr. Both orbits are coplanar.
When determining the outer orbit, a weak sinusoidal pattern in the apparent motion of the component B has been noticed. It can be attributed to either a very unusual distribution of observational residuals or an unseen fourth body in the system. In the latter case, the star B would consist of the components Ba and Bb .

Under assumption of Bb to be a very low-mass object of $0.015 M_{\odot}\left(16 M_{J}\right)$ on a circular orbit around Ba with a period of $\sim 15 y \mathrm{y}$, semimajor axis $0^{\prime \prime} 35$ and coplanar with other two orbits, the observational residuals of the outer orbit are improved. In such case, the component Ba would be moving relative to the mass center of the virtual pair $\mathrm{Ba}-\mathrm{Bb}$ on an orbit with a semimajor axis of $0^{\prime \prime} 03$.

These motions are illustrated in the attached Fig. 1 on which blue line corresponds to the orbit of the $\mathrm{Ba}-\mathrm{Bb}$ mass center relative to that of $\mathrm{Aa}-\mathrm{Ab}$ and the red one shows the motion of the component Ba affected by the virtual component Bb . Similar to all visual, photographic and CCD observations, a single speckle measurement marked as "speckle (LC)" had initially been showing the position of B relative to the light center of Aa-Ab. For the orbits calculation, all such measurements have been reduced to the mass center of $\mathrm{Aa}-\mathrm{Ab}$.
J. A. Docobo, V. S. Tamazian, Y. Y. Balega, M. Andrade, D. Schertl, G. Weigelt and P. Campo

OMER NYS (1931-2007)

Born on 1 September 1931 at Tamise (Belgium), Omer NYS suddenly died at home in UCCLE (Brussels) on 20 January 2007, leaving behind him a lot of regrets and sadness.

He became a member of the Royal Observatory of Belgium on 1 April 1952 in the "assistant category" to the Scientific Staff and was directed to the Equatorial's Department under the leadership of Dr Sylvain AREND. He brightly passed the foreseen examinations to "climb" its successive degrees.

His excellent basic formation permits to initiate him very early with the various computation methods in astrometry, particularly in visual double star astronomy. Omer was thus logically conducted to acquire good knowledge in celestial mechanics and to participate in orbit computations. He also was involved in various shared domains as the computation of stellar masses and dynamical parallaxes as well as of the relative radial velocities of the components of a binary. He actively contributed in our researches leading to the discovery of a particular spatial organization of the visual double stars orbital planes (J. Dommanget, 2005).

His carrier has been exemplary as well by his desire to acquire some new competencies than by his steadiness in work. Having not been aware of such qualities of our collaborator, we would not have accepted the invitation made at a meeting at the Institut d'Astrophysique of Paris on april 15 1980, to collaborate in recording the available astrometric, photometric and spectroscopic data about the visual double stars needed to assure their correct observation by the HIPPARCOS satellite of the European Space Agency (ESA). This was a challenge, but it was with enthusiasm that we created the Catalogue of the components of Double and Multiple stars - CCDM (J. DOMMANGET \& O. NYS, 1994), a more adapted version to the need of the mission, than the Index Catalogue of H. M. JEFFERS \& W. H. van den BOS, managed at the time by our USNO colleague C. E. WORLEY (\dagger).

This has probably been our most extended collaboration on a common subject. Seeing that the satellite had completed his mission and the results being published (ESA, 1997), Omer Nys finally - almost alone - pursued the completion of the CCDM beyond his retirement and to this sorrowed day of January 20, 2007.

Many other important activities should be mentioned, as for instance his important collaboration in the development by S. AREND of his own researches on the Orthogonal Polynomia.

Omer was an upright, guarded and pleasant colleague.
All our sympathy goes to his wife and his family.
J. Dommanget

The deadline for contributions to Information Circular No. 163 is:
October 15th 2007
J. A. Docobo (oadoco@usc.es)
J. F. Ling (oafana@usc.es)

Tel. +34981592747
Fax: +34 981597054
Observatorio Astronómico R. M. Aller
P. O. Box 197
http://www.usc.es/astro
Universidade de Santiago de Compostela SPAIN

ISSN: 1024-7769

