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Abstract

The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high
interest since they host more short-period planets than any other type of main-sequence star and transiting planets
around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar
parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI
spectrograph on the European Southern Observatory’s New Technology Telescope, we obtained R≈1000J-, H-,
and K-band (0.95–2.52 μm) spectra of 34 late-type K2 planet and candidate planet host systems and 12 bright K4–
M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets,
we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration
relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses,
and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties
of 0.059 Re (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of
known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet’s radius and
equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary
parameters for planets and candidates orbiting late-type stars observed with K2. We find a median planet radius and
an equilibrium temperature of approximately 3R⊕ and 500 K, respectively, with several systems (K2-18b and
K2-72e) receiving near-Earth-like levels of incident irradiation.

Key words: methods: data analysis – planetary systems – stars: fundamental parameters – stars: late-type –

techniques: spectroscopic

1. Introduction

Small, low-luminosity M dwarfs are the most common type
of star in the Galaxy, but their properties are less well
understood than those of hotter solar-type stars. There are still
significant discrepancies between theoretical models and
observations of M dwarf spectra (e.g., Hoeijmakers
et al. 2015), and we are still uncertain as to why the occurrence
rate of small, short-period planets is higher for M dwarfs and
the occurrence rate of gas giants (on both close and wide orbits)
is lower for M dwarfs when compared to solar-like stars, as
shown in studies of the Kepler field (Dressing & Charbon-
neau 2013; Gaidos et al. 2014; Morton & Swift 2014; Dressing
& Charbonneau 2015; Muirhead et al. 2015) and other surveys
(Shields et al. 2016). There are a few exceptions to the low

occurrence rate of gas giants around M dwarfs; there has been
at least one confirmed gas giant orbiting an M dwarf (Johnson
et al. 2012).
Fortunately, the discovery of exoplanets around M dwarfs is

much easier when compared to finding exoplanets around Sun-
like stars. For example, while a transiting 2 R⊕ planet would
have a transit depth of 0.03% when orbiting the Sun, that same
planet would have a transit depth of 0.5% for an M5 dwarf.
Using planet candidates from the original Kepler mission,
Howard et al. (2012) and Mulders et al. (2015a, 2015b) showed
that the occurrence rates of small planets are higher for M
dwarfs than for any other type of main-sequence star. Other
surveys, such as MEarth (Charbonneau et al. 2009; Berta-
Thompson et al. 2015) and Transiting Planets and Planetesi-
mals Small Telescope, have also successfully identified
interesting new planets transiting M dwarfs (Gillon
et al. 2016). Additionally, M dwarfs provide our best chances
to identify nearby potentially habitable planets, since the
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habitable zone around M dwarfs, when compared to those
around other main-sequence stars, is closer to the M dwarf, due
to its lower luminosity. This is exemplified by the discovery of
Proxima Centauri b, a small, likely temperate planet orbiting
the closest star to the Sun (Anglada-Escudé et al. 2016;
Damasso & Del Sordo 2016).

Host star properties must be well understood in order to be
able to derive planet properties. Unfortunately, the stellar
properties of M dwarfs are challenging to predict from
photometry (due to M dwarfs being intrinsically faint and the
modeling uncertainties as described above and by Mann
et al. 2015). The most accurate parameters of M dwarfs are
derived from interferometric data (Boyajian et al. 2012b) or
photometric and spectroscopic observations of double-lined
eclipsing binaries (Torres et al. 2010).

For systems where such observations are not feasible, several
authors have developed a calibration method based on
medium-resolution, near-infrared spectra in order to infer the
stellar properties of these M dwarfs from empirical observa-
tions (Mann et al. 2015; Newton et al. 2015; Terrien
et al. 2015) and stellar models (Rojas-Ayala et al. 2012), while
others have applied similar empirical calibration techniques to
the optical part of the spectrum (Neves et al. 2014; Maldonado
et al. 2015). By measuring the equivalent widths (EWs), or the
strength of any given absorption feature, one can calculate
stellar parameters by calibrating from a reference sample with
previously measured parameters of interest. Since the EW of an
absorption feature varies with photospheric temperature and
surface gravity, this approach allows these parameters (and
related quantities, like stellar radius and mass) to be calculated.

Using the repurposed Kepler spacecraft, the K2 mission is
continuing to observe many stars in the Galaxy in the search for
more exoplanets (Howell et al. 2014). However, K2 has some
limitations. With just two (out of four) operating reaction
wheels, the spacecraft can observe only along the ecliptic plane
with observation windows of 80 days per campaign. None-
theless, K2 has provided astronomers with powerful data
enabling a large number of candidate and confirmed exoplanets
(Vanderburg & Johnson 2014; Crossfield et al. 2015, 2016;
Foreman-Mackey et al. 2015; Huang et al. 2015; Montet
et al. 2015; Sanchis-Ojeda et al. 2015; Sinukoff et al. 2015).

In this paper we analyze medium-resolution, near-infrared
spectra of candidate planetary systems detected by K2 to
provide updated stellar and planetary parameters. We measure
EWs to infer stellar radii and effective temperatures, and
subsequently planetary radii and equilibrium temperatures. In
Section 2 we briefly explain our target selections and how we
compiled our planet candidate list. In Section 3 we describe our
observational techniques, data reduction, and various calibra-
tion samples. In Section 4 we explain the process by which we
obtain our stellar and planetary parameters and compare our
derived stellar parameters with those of previously spectro-
scopically and interferometrically measured stellar parameters.
In Section 5 we summarize our results and describe future work
relevant to this paper.

2. Target Selection and Planet Candidate Search

We initially selected our K2 M dwarf candidates from
Campaigns 1 through 5. Our team selected and proposed late-
type dwarf targets to the K2 mission as described by Crossfield
et al. (2016). In brief, we selected targets as being likely low-
mass dwarfs by a combined color and proper motion cut with

(V− J)>2.5, V+5 logμ+5<10, and (6V − 7J −
3)<5log μ (where μ is the proper motion; Crossfield et al.
2015). The combination of the color and proper motion cut
greatly reduces giants from our sample and further narrows
down the M dwarf candidate list. Finally, we imposed a
magnitude limit of Kp<16.5 mag (Crossfield et al. 2016).
We further identify likely low-mass planet-hosting dwarf

stars, as explained in Crossfield et al. (2016). In brief, we used
the TERRA algorithm (Petigura et al. 2013) to search for planet
transits that have a signal-to-noise ratio (S/N)>12, which are
called threshold-crossing events (TCEs). TCEs are required to
have orbital periods of P�1 day and to have at least three
transits. These restrictions, along with the diagnostic tests that
TERRA provides, show whether the object is a candidate
transiting planet, binary star system, another variable object, or
noise. If a planet candidate is found, TERRA is iteratively
repeated after removing the identified transit signals (described
by Sinukoff et al. 2016) to see whether there are any additional
planets in the system.

3. Observations

We acquired our infrared spectra at the 3.58 m European
Southern Observatory (ESO) New Technology Telescope
(NTT) using the SOFI spectrograph (Moorwood et al. 1998)
as part of program 194.C-0443 (PI: I. J. M. Crossfield). We
observed through 13 full or partial usable nights in 2015 and
2016. We used two grisms, red and blue, to produce a total
spectrum for each object spanning a continuous wavelength20

range from 0.95 to 2.52 μm at a resolution of R≈1000. Dome
flats and lamps were taken either at the start or at the end of
each observing night. Our observation sample comprises 34
stars observed by K2 in fields 1 through 5, along with 12 bright
K and M dwarfs with interferometrically measured stellar
parameters (refer to Table 1 for our calibration sample).
For all observations, we used an ABBA nodding pattern to

obtain the spectrum of the object, while removing the spectrum
of the background, including sky emission lines and dark
current. The exposure times for each frame range from the
minimum allowed exposure time (1.182 s) to 120 s. We
typically took at least six separate spectra (for each grism)
for all the targets. Either immediately before or after each M
dwarf candidate, we observed a nearby A0V star for telluric
corrections. If the observation for one grism took more than 10
minutes, its A0V calibrator would be taken before the start of
the first grism and then taken again after the second grism
exposure had finished, for their respective grisms. We
identified suitable A0V stars using the IRTF’s online tool.21

3.1. Data Reduction

The raw data taken at the NTT were reduced by using a
combination of Python, Image Reduction and Analysis Facility
(IRAF) software,22 and using various Interactive Data
Language (IDL) programs. We flat-fielded the raw spectra in
order to correct for any pixel-to-pixel variation. Wavelength
calibrations were done by taking Xe arc spectrum for both

20 The blue grism spans the wavelength range from 0.95 to 1.64 μm, while the
red grism spans the wavelength range from 1.53 to 2.52 μm. Note that there is a
small overlap from both grisms in the H band, thus allowing the fully reduced
spectra of all of our stars to be continuous.
21 http://irtfweb.ifa.hawaii.edu/cgi-bin/spex/find_a0v.cgi
22 Developed at the National Optical Astronomy Observatory.
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grisms either at the beginning or at the end of the night. Using
IRAF, emission lines from the taken Xe arc frames were
manually selected by comparing them to the SOFI manual.23

One-dimensional spectra were then extracted for identifying the
star’s spectrum. IRAF had difficulty tracing the 2D spectra of
our fainter targets, so for these stars we used brighter stars
during that night to define a static extraction aperture.

We subsequently used the IDL routines of Vacca et al.
(2003) to process our spectra. First, with xcombspec (from
the SpeXtool software package by Cushing et al. 2004), we
combined multiple exposures for a given grism of an object
into one spectrum. Any spectra that are not shown to have
similar spectral features with the other exposures for that star
and grism were excluded.

We corrected for telluric absorption by using our A0V
spectra with the xtellcor_general routine. Spectra of
A0V stars were used since these stars are mostly composed of
featureless spectra, with the exception of hydrogen absorption.
Differences between the hydrogen lines in the A0V and a
model Vega spectrum were corrected for, and then the object’s
spectrum was divided by the resulting telluric spectrum of the
A0V; the observations for the telluric calibrator were usually
taken within a short time (approximately 15 minutes) and have
a similar airmass (within 0.3 airmass) to the object (Rojas-
Ayala et al. 2012). We note that for some of the observations,
the telluric calibrator’s spectrum was sufficiently different from
that of Vega that some residual H lines remain in the M dwarf
candidateʼs spectrum. Additionally, the large differences in
airmass left residual telluric features in some of the spectra, and
any spectra that were contaminated were removed from our
analysis.

The last step for the reduction process was to combine the
two different grisms using xmergexd. We then used several
strong absorption features in each spectrum to correct for radial
velocity (RV) shifts and/or offsets in our wavelength
calibration. Finally, we interpolated all spectra to put them on
the same wavelength scale. All of the objects in our sample
have a S/N that ranged from 20 (for the faint K2 targets)24 to

over 200 (for the brighter, interferometric calibration targets).
We show a representative reduced spectrum in Figure 1.

3.2. Calibration Sample

We applied the relations from a variety of works, such as
Neves et al. (2014) and Maldonado et al. (2015), which fit
various functions for a variety of EW ratios, and Terrien et al.
(2015), which measured H-band atomic features, to stars with
previously measured radii and/or effective temperatures.
However, stars that are interferometrically measured are
preferred to these samples since measurements from inter-
ferometry are more accurate and precise when compared to
spectroscopic, EW-based methods. Although most interfero-
metrically measured stars lie too far north to be observed with
SOFI, we managed to obtain spectra of 12 stars with previously
interferometrically determined stellar radii and effective
temperatures. These stars form our calibration sample, and
their properties are summarized in Table 1.

4. Spectral Analysis

Mould (1976) was the first to use infrared absorption line
strengths to estimate the radii and effective temperatures of
low-mass dwarfs. The strengths of absorption features
corresponding to a given element or molecule depend on
the effective temperatures of the star. Changing the temper-
ature of the star then changes the electronic (or vibrational)
population levels of the element (or molecule) in the M dwarf
atmosphere. M dwarf radii are related to their effective
temperatures so that they roughly follow a linear relation
from 4700 K and 0.7 Re down to at least 3300 K and 0.3 Re.
Some of the absorption features in the spectrum can also
present information about the stellar surface gravity. The
lines of alkali elements, for example, are affected by surface
gravity and can then be used to distinguish old dwarf stars,
young dwarf stars, and giants with similar temperatures
(Spinrad 1962; Steele & Jameson 1995; Lyo et al. 2004;
Schlieder et al. 2012).
The EW is defined by the following equation:

( )
( )

( )ò
l
l

l= -l
l

l ⎡
⎣⎢

⎤
⎦⎥

F

F
dEW 1 , 1

c1

2

Table 1
Stellar Calibration Sample

Star SpTa R* Teff L* Reference Notes
(Re) (K) (Le)

GJ 176 M2.5V 0.453(22) 3679(77) 0.0337(43) von Braun et al. (2014) L
GJ 205 M1.5V 0.5735(44) 3801(9) 0.0616(11) Boyajian et al. (2012b) L
GJ 436 M3V 0.455(18) 3416(53) 0.0253(25) von Braun et al. (2012) 1
GJ 526 M1.5V 0.4840(84) 3618(31) 0.0360(18) Boyajian et al. (2012b) L
GJ 551 M5.5V 0.1410(70) 3054(79) 0.00155(22) Boyajian et al. (2012b) L
GJ 570A K4V 0.739(19) 4507(58) 0.202(15) Demory et al. (2009) L
GJ 581 M2.5V 0.299(10) 3442(54) 0.0113(10) von Braun et al. (2011) 2
GJ 699 M4.0V 0.1869(12) 3222(10) 0.003380(60) Boyajian et al. (2012b) L
GJ 702B K5Ve 0.6697(89) 4400(150) 0.150(46) Boyajian et al. (2012b) L
GJ 845 K5V 0.7320(60) 4555(24) 0.207(34) Demory et al. (2009) L
GJ 876 M3.5V 0.3761(59) 3129(19) 0.0122(39) von Braun et al. (2014) 3
GJ 880 M1.5V 0.5477(48) 3713(11) 0.0512(90) Boyajian et al. (2012b)

Note.
a Spectral types were adopted from the interferometric works, with the following exceptions: (1) Kirkpatrick et al. (1991); Hawley et al. (1996); (2) Henry et al.
(1994); and (3) were linearly interpolated from Pickles (1998).

23 Provided by ESO.
24 K2 targets that had a S/N of 20 were removed from the likely low-mass
dwarf list, thus making our final 34-star sample.
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where F (λ) is the flux of the absorption feature between λ1 and
λ2, and Fc(λ) is the continuum flux. We investigate the features
used by Cushing et al. (2005), Rojas-Ayala et al. (2012),
Newton et al. (2014), and Newton et al. (2015) for our work.
The features, shown in Table 2, are slightly adjusted owing to
differences in resolution of the spectrographs—typically our
integration ranges are slightly wider than those previously
presented. Additionally, any spectral line doublets and
molecular bands used in our empirical indices are treated as
single features in the EW calculations. The blue continuum and
red continuum of each feature are also adjusted such that they
would not overlap with any nearby feature windows. In the
following sections, we describe the steps that are taken to infer
the stellar and planetary parameters using these EW measure-
ments of our K2 and calibration samples.

4.1. Spectral Classification

We visually estimated the spectral types (SpT) of each of our
stars by comparing our SOFI spectra to spectra of standard stars
in the IRTF Spectral Library (Cushing et al. 2005; Rayner
et al. 2009). Then, we convolved the library spectra from G8V
to M7V down to the resolution of SOFI and plotted these
against each of our SOFI spectra. We estimated each SpT and a
corresponding uncertainty three times by independently
comparing spectra in the J-, H-, and K- bandpasses. The final
uncertainty on each SpT corresponds to the uncertainty on the
weighted mean and thus represents our best estimate of the
error on this quantity. We then compute a single SpT for each
star using a weighted mean. The SpT and uncertainty are
rounded to the nearest 1/10 of a type. Out of the 34 stars in our
K2 sample, we identify 27 as M dwarfs.

During our visual spectral inspection, we compared our
spectra to the library spectra of giant stars in order to remove
giants as early as possible in our analysis process. We identified
only one star as a likely giant: EPIC 202710713, which Huber

et al. (2016) and Dressing et al. (2017) also classified as an
evolved star.

4.2. Stellar Parameters

For each absorption feature and stellar parameter (radius and
effective temperature), we use least-squares fitting to determine
the dependence of those parameters on the EWs calculated
from the spectra. Various functional forms of EWs are used to
fit the calibration sample’s parameters. They include all
combinations of linear, quadratic, and a ratio of EWs of two
different absorption features. For example, in the simplest
linear case, one lets the EW for the chosen absorption feature
be the independent variable, while stellar radius or effective
temperature is the dependent variable. After calculating the
linear term and the offset, one then uses all the EWs to
calculate the stellar radius for all the stars in our sample. This
process is then repeated for all the absorption features in the
spectra, all the stellar parameters, each calibration sample, and
each functional combination of EWs. To account for intrinsic
scatter in stellar properties, we include an additional noise term,
tuned to give χ2

red≈1 in the best cases. We find that scatter
terms of 100 K and 0.05 Re fulfill this criterion.
In order to find the optimal fit for each calibration sample,

we then select the model giving the lowest Bayesian
information criterion (BIC) value and the lowest scatter in
the fit residuals. We use a Monte Carlo approach to estimate the
uncertainties on the fit coefficients and inferred stellar
parameters. Random Gaussian distributions are then used to
generate synthetic data sets of EWs, stellar radii, and effective
temperatures. A total of 1000 trials are used for calculating the
uncertainties for each parameter.

4.3. Calibration Relations and Literature Comparison

Because some of our spectra contain residual systematics
near prominent H lines, we find only poor fits using EWs
located near these lines (Brackett 11-21). Viewing all possible
combinations of the remaining EWs, we determine that the
optimal fits for calculating our parameters are determined by
having a low BIC value for the fit and comparing it to the
median uncertainty of all the uncertainties in a given
combination of EWs. We present the following equations for
calculating stellar radius and effective temperature:

( )= + +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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T

K
a b c

Mg

Al

Al

Ca
, 2

I

eff 1.57

1.31

1.67

1.03

( ) ( )

* = + +

⎛
⎝⎜

⎞
⎠⎟

R

R
a b cMg

CO

Na
. 3

I
1.57

2.29

1.14

Table 3 lists the best-fitting coefficients and the covariance
matrix for each fit. Note that some coefficients exhibit
significant correlations, suggesting that uncertainties would
be underestimated if these correlations were neglected.
Based on the range of our calibration sample, we restrict

ourselves to stars in the range 3000 K<Teff<4500 K and
0.2<R*/Re<0.7. There is overall excellent agreement
between our derived values for radius and effective temper-
ature, while four stars (GJ 551, GJ 699, GJ 526, GJ 876) have
somewhat larger deviations in stellar radius and/or effective
temperature. Figures 2 and 3 compare the inferred and literature
values for our calibrated sample. The middle and bottom panels
of these two figures show that the dispersions of the residuals

Figure 1. Sample spectrum of one of our K2 targets (EPIC 201367065 or K2-
3) that covers a continuous wavelength from 0.95 to 2.52 μm and is normalized
to the median flux value. Note that we ignore regions heavily contaminated by
telluric features (e.g., wavelength ranges that are within 1.35–1.45 μm and
1.80–1.95 μm). After data reduction is complete, we trim an approximate
0.01–0.02 μm off the edges of the wavelength ranges. Spectra of all our stars
are available as electronic supplements to this paper.
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are 0.059 Re (16.09%) and 160 K (4.33%) for stellar radius and
effective temperature, respectively. All of the stars in our
calibration sample, with the exception of GJ 526, have
published luminosities (calculated using the Stefan–Boltzmann
law) within 1σ of our inferred values. Finally, we estimate each
star’s mass by inverting the mass–radius relationship of
Maldonado et al. (2015). The full set of stellar values is listed
in Table 4, and the K2 stellar parameters are plotted in Figure 4.

We also independently compare our stellar parameters to
those of Dressing et al. (2017). Out of our 34-star K2 sample
(as referenced in Table 4), we share 21 stars in common with
their sample. While this work calculates stellar parameters
using the spectra acquired with NTT/SOFI, Dressing et al.
(2017) use two different instruments in their work. The SpeX
instrument, on the NASA Infrared Telescope Facility, provides
wavelength coverage from 0.7 to 2.55 μm at a resolution of
R≈2000 (Rayner et al. 2003). The other instrument used was
TripleSpec on the Palomar 200″, providing wavelength cover-
age from 1.0 to 2.4 μm at a resolution of R≈2500–2700
(Herter et al. 2008). Dressing et al. (2017) derive and compare
stellar parameters using EW-based relations developed by
Newton et al. (2015) and index-based relations from Mann
et al. (2013). Both sets of relations were calibrated using a set
of stars with interferometrically determined parameters from
Boyajian et al. (2012b). Ultimately, effective temperatures,
stellar radii, and luminosities were derived using the Newton
et al. (2015) relations, stellar masses25 and metallicity were
calculated using the Mann et al. (2013) relations, and surface
gravities were calculated from masses and stellar radii.

Comparing the parameters derived by Dressing et al. (2017)
with those shown in Figures 5 and 6, we find cred

2 <1 in both
cases. This indicates that there is an excellent agreement
between our two methods and verifies the validity of our
approach. Additionally, our stellar parameters are consistent
with those from a number of previous publications (Crossfield
et al. 2015; Montet et al. 2015; Petigura et al. 2015; Mann et al.
2016; Obermeier et al. 2016; Schlieder et al. 2016).

The most highly discrepant system evident in Figure 6 seems
to be the effective temperature of EPIC 211770795. Our estimate
is significantly lower than the 4750 K estimated by Dressing

et al. (2017). Their value is larger than the 4500K upper limit
determined from our calibration sample (see Figure 2), providing
further evidence that our relations are not well calibrated beyond
this range. Furthermore, we see an offset between our effective
temperature values and those reported by Dressing et al. (2017),
demonstrating that systematic calibration errors may still play a
role in one or both of these analyses. As seen with the index-
based relations of Mann et al. (2015), our EW-based relations
also start to saturate around 4000 K and could systematically
effect any derived planetary parameters, such as equilibrium
temperatures.
Metallicity could be a factor for some stars and could cause a

shift in effective temperature and stellar radius. The larger
uncertainties in our stellar parameters when compared to those
of Dressing et al. (2017) may result from a range of stellar
metallicities.
Additionally, we compare all 34 of our stellar parameters

with the photometrically derived stellar parameters from Huber
et al. (2016), shown in Figures 7 and 8. Figure 7 shows that
there is a median increase of 0.15 Re when comparing our
stellar radii to those of Huber et al. (2016). Figure 8 shows a
general agreement in effective temperature between both of our
works, with the exception of EPIC 204489514 and EPIC
205145448.
We note that the analysis done in Huber et al. (2016) is

subject to the limitations of broadband photometry. Further-
more, Huber et al. (2016) note that model-based estimates tend
to underpredict stellar radii by 20% (Boyajian et al. 2012a) and
encourage the use of empirical calibrations for estimating the
stellar parameters in cool dwarfs. Lastly, our empirically
calculated parameters are in agreement with those in Dressing
et al. (2017) for the points where we disagree with the values of
Huber et al. (2016), giving us further confidence in our results.

4.4. Planetary Parameters

Radii and equilibrium temperatures of transiting planets are
calculated using the stellar parameters of its host star. Using
the transit depths and periods measured using K2 photome-
try(Crossfield et al. 2016) and our newly calculated stellar
parameters, planet radii are determined with the following

Table 2
J-, H-, and K-band Equivalent Width Features

Feature Feature Window Blue Continuum Red Continuum

(μm) (μm) (μm)

Ca I (1.03 μm) 1.0320 1.0365 1.0280 1.0315 1.0368 1.0377
Na I (1.14 μm) 1.1361 1.1432 1.1270 1.1327 1.1478 1.1572
Al (1.31 μm) 1.3125 1.3180 1.3060 1.3090 1.3180 1.3220
Mg (1.48 μm) 1.4865 1.4905 1.4810 1.4850 1.4920 1.4960
Mg (1.50 μm) 1.5002 1.5075 1.4910 1.4983 1.5090 1.5163
Mg (1.57 μm) 1.5725 1.5797 1.5665 1.5720 1.5810 1.5865
Si (1.58 μm) 1.5875 1.5925 1.5820 1.5865 1.5930 1.5975
CO (1.62 μm) 1.6178 1.6280 1.6048 1.6150 1.6300 1.6402
Al (1.67 μm) 1.6698 1.6790 1.6558 1.6650 1.6800 1.6892
Mg (1.71 μm) 1.7089 1.7139 1.7000 1.7050 1.7149 1.7199
Na I (2.20 μm) 2.2020 2.2120 2.1890 2.1990 2.2125 2.2225
Ca I (2.26 μm) 2.2586 2.2696 2.2480 2.2570 2.2700 2.2800
CO (2.29 μm) 2.292 2.315 2.286 2.290 2.315 2.320

Note. All the wavelengths are presented at their rest wavelength.

25 Using the effective temperatures from the Newton et al. (2015) relation.
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equation:

( )
*

D =
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R
, 4

p
2

where ΔL is the transit depth of the planet candidate with
respect to its host star.
Calculating the equilibrium temperature of a planet candidate

requires more parameters from the planet and its host star. The
following equation calculates the equilibrium temperatures for
each K2 planet or candidate as a comparison to our own Earth–
Sun system:
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where Teff is the effective temperature of the star, R* is the
radius of the star, and a is the semimajor axis of the planet
orbiting its parent star. Here we calculate the semimajor axis of
the planet by using Kepler’s third law. The 270 K equilibrium
temperature scaling factor corresponds to a Bond albedo of 0.3,
which is comparable to that inferred for gas giants more highly
irritated than Earth. All uncertainties are propagated through
the entire calculation for planet radii. We present the derived
values for our K2 planets and planet candidates in Table 5 and
plot these derived values (along with incident irradiation) in
Figure 9.
Our sample shown in Figure 9 includes 18 validated planets

and 19 remaining planet candidates. While fitting for the light-
curve parameters of these remaining candidates, degeneracies
(such as impact parameters near unity) arose that preclude any
precise determination of Rp/R*. The candidates have much
larger uncertainties on their size, which typically makes
statistical validation much more difficult. Based on the paucity
of large (>6R⊕) planets orbiting M dwarfs (Johnson
et al. 2007, 2010), the 9 candidates larger than this size are
likely false positives; since planet validation is not the aim of
this work, we retain the previously assigned designation of
planet candidate.
In addition to these likely false positives, our validated

planets include several hot Neptunes and two planets (K2-18b
and K2-72e) that lie near the habitable zone. Of our whole K2
sample, only eight planets (three of which are still planet
candidates) are smaller than 1.6 Earth radii. According to
Rogers (2015), planets smaller than 1.6 Earth radii are likely to

Table 3
Equivalent Width Formulae

Quantity Formula a b c

Teff ( ) ( )+ +a b cMg Al Al Ca I1.57 1.31 1.67 1.03 2989.5 −577.05 53.804

Uncertainties: 78.56147 52.42034 10.44419
Covariance:

6171.9 −3355.2 −493.87
−3355.2 2747.9 265.68
−493.87 265.68 109.08

R* ( Å) ( )+ +a b cMg CO Na I1.57 2.29 1.14 0.18552 1265.2 0.010852

Uncertainties: 0.02569482 117.2119 0.005063553
Covariance:

0.00066022 −1.8673 −0.00003695
−1.8673 13739 −0.2305
−0.00003695 −0.2305 0.00002564

Figure 2. Stellar radius for the stars in our interferometric calibration sample,
from the literature (blue circles) and derived using Equation (3) (red circles).
The middle and bottom panels show the absolute and fractional deviations for
each star. The dispersion of the residuals is 0.059 Re and 16.09%, respectively.
Our sample spans from 0.2 to 0.7 Re.

Figure 3. Stellar effective temperature for the stars in our interferometric
calibration sample, from the literature (blue circles) and derived using
Equation (2) (red circles). The middle and bottom panels show the absolute
and fractional deviations for each star. The dispersion of the residuals is 160 K
and 4.33%, respectively. Our sample spans from 3000 to 4500 K.
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Table 4
Derived Stellar Parameters

Stara SpT R* Teff M* L* α2000 δ2000 Kp J H K Notesb

(Re) (K) (Me) (Le) (mag) (mag) (mag) (mag)

GJ 176 M2.4(0.7) 0.528(53) 3605(170) 0.546(55) 0.0423(63) 04 42 55.s 774h m +18°57′29 404 L 6.462 5.824 5.607 1
GJ 205 M1.4(1.1) 0.645(56) 3735(172) 0.665(55) 0.0726(96) 05h31m27 395 −03°40′38 031 L 4.83 4.05 3.90 2
GJ 436 M2.5(0.6) 0.469(53) 3630(165) 0.484(57) 0.0343(57) 11h42m11 094 +26°42′23 65 L 6.900 6.319 6.073 3
GJ 526 M2.3(1.0) 0.457(53) 3647(173) 0.472(57) 0.0332(56) 13h45m43 776 +14°53′29 463 L 5.18 4.78 4.415 2
GJ 551 M4.8(0.6) 0.150(59) 2887(234) 0.104(78) 0.00141(79) 14h29m42 948 −62°40′46 163 L 5.357 4.835 4.384 4
GJ 570A K4.1(0.7) 0.615(55) 4498(417) 0.636(55) 0.139(22) 14h57m28 001 −21°24′55 713 L 3.83 3.23 3.10 4
GJ 581 M2.5(0.7) 0.279(60) 3624(208) 0.266(72) 0.0121(37) 15h19m26 823 −07°43′20 21 L 6.706 6.095 5.837 5
GJ 699 M3.1(0.8) 0.268(55) 3182(185) 0.253(68) 0.0066(20) 17h57m48 498 +04°41′36 207 L 5.244 4.83 4.524 2, 6
GJ 702B M3.5(0.6) 0.641(56) 4009(225) 0.661(56) 0.095(13) 18h05m27 421 +02°29′56 42 L L L L 2
GJ 845 M1.1(2.3) 0.74(16) 4565(706) 0.76(15) 0.216(72) 22h03m21 658 −56°47′09 516 L 2.894 2.349 2.237 4
GJ 876 M2.4(0.6) 0.291(54) 3309(170) 0.282(65) 0.0091(24) 22h53m16 733 −14°15′49 318 L 5.934 5.349 5.010 1
GJ 880 M0.7(1.0) 0.571(54) 3897(193) 0.591(55) 0.0676(97) 22h56m34 804 +16°33′12 354 L 5.360 4.800 4.523 2
201205469 M0.9(1.0) 0.559(57) 3923(198) 0.577(58) 0.066(10) 11h16m28 114 −03°58′31 58 14.887 12.422 11.712 11.577 L
201208431 K7.7(1.2) 0.658(56) 3900(195) 0.678(55) 0.090(12) 11h38m58 954 −03°54′20 11 14.409 12.367 11.747 11.571 L
201367065 M0.1(1.1) 0.565(61) 3976(205) 0.584(63) 0.072(12) 11h29m20 388 −01°27′17 23 11.574 9.421 8.805 8.561 L
201465501 M2.8(0.6) 0.366(53) 3460(164) 0.369(61) 0.0173(36) 11h45m03 472 +00°00′19 08 14.957 12.451 11.710 11.495 L
201617985 M0.5(0.7) 0.606(39) 3853(135) 0.626(39) 0.0975(70) 11h57m57 998 +02°19′17 31 14.110 11.719 11.094 10.900 8
201690311 K4.2(1.2) 0.697(94) 3948(203) 0.714(92) 0.106(21) 11h49m16 849 +03°28′32 05 15.288 13.463 12.873 12.729 L
201717274 M3.0(0.8) 0.368(80) 3528(165) 0.373(92) 0.0188(59) 11h35m18 664 +03°56′02 96 14.828 12.911 12.367 12.153 L
201912552 M3.0(0.9) 0.411(53) 3527(162) 0.419(58) 0.0234(44) 11h30m14 510 +07°35′18 21 12.473 9.763 9.135 8.899 L
204489514 M2.7(1.3) 0.230(56) 3096(198) 0.207(71) 0.0044(15) 16h03m01 616 −22°07′52 40 14.080 12.731 12.110 11.729 L
205145448 M1.8(1.9) 0.402(52) 4035(259) 0.409(59) 0.0384(75) 16h33m47 672 −19°10′40 04 13.651 10.977 10.351 10.120 L
205916793 M0.0(0.8) 0.707(60) 4103(230) 0.724(56) 0.127(17) 22h32m13 004 −17°32′38 38 13.441 11.850 11.231 11.075 L
205924614 K4.2(1.2) 0.769(63) 4240(259) 0.785(59) 0.172(22) 22h15m00 462 −17°15′02 55 13.087 11.230 10.615 10.471 7
206011691 K7.9(1.1) 0.721(59) 3952(202) 0.737(56) 0.114(14) 22h41m12 885 −14°29′20 35 12.316 10.251 9.633 9.417 7
206061524 M0.7(1.2) 0.726(62) 3961(213) 0.743(59) 0.117(15) 22h20m13 766 −13°06′52 66 14.443 12.413 11.796 11.579 L
206162305 M1.1(1.1) 0.695(58) 3896(202) 0.713(56) 0.100(13) 22h23m02 289 −10°29′18 89 14.807 12.608 11.933 11.766 L
206192813 M1.6(1.2) 0.622(62) 3966(225) 0.642(62) 0.086(13) 22h46m53 865 −09°52′53 83 14.875 12.598 11.927 11.732 L
206209135 M2.7(0.9) 0.359(54) 3370(166) 0.361(61) 0.0149(32) 22h18m29 271 −09°36′44 58 14.407 11.685 11.122 10.962 7
211331236 M1.0(1.0) 0.467(66) 3781(203) 0.481(71) 0.0400(82) 08h55m25 364 +10°28′08 87 13.905 11.447 10.801 10.589 7
211357309 M2.1(0.7) 0.506(54) 3790(179) 0.523(57) 0.0474(75) 08h52m55 831 +10°56′41 00 13.155 10.781 10.165 9.885 7
211428897 M2.7(1.2) 0.324(54) 3577(200) 0.321(63) 0.0155(37) 08h35m25 812 +12°04′33 04 13.205 10.414 9.863 9.624 7
211770795 K4.3(1.3) 0.637(58) 4311(291) 0.656(58) 0.126(18) 08h48m02 336 +16°54′06 67 14.489 12.841 12.265 12.174 7
211799258 M3.0(0.8) 0.271(54) 3411(176) 0.257(66) 0.0089(26) 08h32m59 077 +17°18′23 57 15.979 13.017 12.420 12.185 7
211831378 M0.3(1.5) 0.608(61) 4141(250) 0.627(61) 0.098(15) 08h24m33 033 +17°45′43 16 16.270 13.972 13.228 13.085 L
211916756 M1.2(0.9) 0.420(90) 3704(214) 0.43(10) 0.0299(93) 08h37m27 058 +18°58′36 07 15.498 13.312 12.738 12.474 L
211970234 M4.2(0.8) 0.185(57) 3000(213) 0.148(74) 0.0025(11) 09h04m21 043 +19°46′48 98 16.122 13.851 13.186 12.987 L
212006344 M0.8(0.9) 0.595(55) 3918(226) 0.615(56) 0.075(11) 08h25m54 315 +20°21′34 45 12.466 10.104 9.457 9.275 7
212069861 M0.6(0.9) 0.692(58) 4078(223) 0.709(56) 0.119(15) 08h57m46 605 +21°27′12 72 14.102 11.907 11.250 11.055 7
212154564 M2.7(1.2) 0.32(15) 3502(162) 0.32(18) 0.0140(94) 08h54m33 884 +23°07′58 40 15.105 12.838 12.227 11.975 7
212315941 K7.9(0.9) 0.48(13) 4056(219) 0.49(14) 0.057(22) 13h32m20 944 −17°03′40 29 14.406 12.844 12.295 12.175 L
212354731 M1.8(1.1) 0.356(55) 3369(166) 0.356(62) 0.0147(33) 13h33m22 379 −16°00′23 85 15.805 13.412 12.822 12.507 7
212565386 M1.0(0.8) 0.570(56) 3989(228) 0.590(58) 0.074(11) 13h30m26 554 −11°20′29 42 14.727 12.368 11.746 11.513 7
212679798 M0.6(1.1) 0.545(53) 3716(171) 0.563(55) 0.0508(74) 13h29m56 550 −08°44′58 70 14.846 13.056 12.469 12.338 7
212756297 K4.6(0.8) 0.717(60) 4242(257) 0.735(58) 0.150(20) 13h50m37 408 −06°48′14 42 13.009 11.350 10.794 10.619 L
212773309 M0.6(0.8) 0.506(56) 3886(199) 0.523(59) 0.0524(86) 13h49m32 380 −06°19′21 87 11.391 9.802 9.272 9.114 7

Notes.
a Stars that are not Gliese stars (GJ) are the EPIC ID of K2 stars.
b Notes indicate stars with interferometrically determined radii and temperatures from (1) von Braun et al. (2014), (2) Boyajian et al. (2012b), (3) von Braun et al. (2012), (4) Demory et al. (2009), (5) von Braun et al. (2011), and (6) Boyajian et al.

(2008). (7) indicates those stars with parameters reported in the companion paper by Dressing et al. (2017). Finally, (8) indicates the averages of spectra obtained between two separate nights.
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have compositions dominated by rock or iron, while larger
planets are more likely to be volatile-rich. However, there may
still be rocky planets larger than this limit. For example,
Buchhave et al. (2016) found that Kepler-20b, a 1.9R⊕ planet,
has a density consistent with a rocky composition even though
it is beyond the rocky-to-gaseous transition.

We compare our calculations of the insolation flux from our
K2 sample to those from Crossfield et al. (2016) in Figure 10.
The discrepancies between our values and those in Crossfield
et al. (2016) highlight the importance of using spectro-
scopically derived stellar parameters in order to compute
planet parameters.

5. Conclusion and Future Prospects

In this paper, we derive stellar and planetary parameters for
K2 K and M dwarf systems. We adopt similar calibration
techniques from Neves et al. (2014), Maldonado et al. (2015),
and Terrien et al. (2015) by measuring EWs in the near-infrared
part of the spectrum. Interferometric calibration samples are

Figure 4.We show stellar radius and effective temperature for all our K2 target
stars (black points with error bars) derived using Equations (2) and (3). The red
squares and dashed line show the average values for each SpT as calculated by
Boyajian et al. (2012b).

Figure 5. Comparison of our stellar radii to those of Dressing et al. (2017). The
dotted line shows a 1:1 agreement, while any deviation from the dotted line
presents the small discrepancies. Overall, there is a general agreement between
our works in deriving our stellar radii.

Figure 6. Comparison of our effective temperatures to those of Dressing et al.
(2017). The dotted line shows a 1:1 agreement, while any deviation from the
dotted line presents the small discrepancies. Overall, there is a general
agreement between our works in deriving our effective temperatures. We
address small caveats in Section 4.3 for the outlier, EPIC 211770795.

Figure 7. Comparison of our stellar radii to those of Huber et al. (2016). The
dotted line shows a 1:1 agreement, while any deviation from the dotted line
presents the small discrepancies. As discussed in Section 4.3, we find that the
majority of the objects in the sample are larger in our work and find a 0.15 Re
median increase.

Figure 8. Comparison of our effective temperatures to those of Huber et al.
(2016). The dotted line shows a 1:1 agreement, while any deviation from the
dotted line presents the small discrepancies. See Section 4.3 for a discussion.
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used from Demory et al. (2009), von Braun et al. (2011, 2012),
Boyajian et al. (2012b), and von Braun et al. (2014) in order to
provide a more precise baseline to calculate the stellar radii and
effective temperatures of the stars in our sample. Various
functions (whether they are linear, quadratic, or a ratio of EWs)
are tested, and we use the functions with the best BIC value and
the lowest residuals to calculate stellar parameters.

Our spectroscopically derived stellar radii improve on
previously reported values that relied on stellar models poorly
calibrated to these low-mass stars. We find a median increase of
0.15 Re when comparing our measurements to those of Huber
et al. (2016), consistent with the median increase in size found
by Newton et al. (2015) when revising the photometrically
based stellar radius estimates determined by Dressing &
Charbonneau (2013) for cool dwarfs observed during the
prime Kepler mission. Finally, we calculate the K2 planet or
planet candidate radius and equilibrium temperature.

Since our team also obtained optical spectra, using the
EFOSC2 spectrograph (Buzzoni et al. 1984) on the NTT, in a
future work we will apply the same techniques in order to
cross-check our stellar properties. Furthermore, this work does

not calculate stellar metallicities; however, we plan to do so in
later works.
Our work paves the way for future exoplanet surveys. Other

spectroscopic and photometric surveys focusing on M dwarfs
are currently underway or are being planned for the near future.
SPECULOOS, a 1 m near-infrared telescope, will observe
approximately 500 of the nearest M and brown dwarfs in the
southern hemisphere (Gillon et al. 2013). CARMENES will
provide high-resolution (R=82,000) spectra between 0.5 and
1.7 μm for late-type M dwarfs and search for Earth-like planets
in the habitable zone (Quirrenbach et al. 2012). The Habitable
Zone Planet Finder will also provide spectra for M dwarfs and
will attempt to find planets through the Doppler effect
(Mahadevan et al. 2010). Yet another RV survey, SPIRou,
aims to find exoplanets around low-mass stars using high-
resolution spectra between 0.98 and 2.35 μm (Santerne
et al. 2013).
Future transit surveys will detect many new Earth-like

planets around M dwarfs, just like previous and ongoing
photometric surveys such as Kepler and K2. Although the
current Gaia mission (Lindegren 2010) focuses more on
astrometry (for which stellar mass is a key input), its two

Table 5
K2 Planet and Candidate Parameters

Namea EPIC P R* Teff M* a Sinc RP Teq
(days) (Re) (K) (Me) (au) (S⊕) (R⊕) (K)

K2-43b 201205469.01 3.471140 0.559(57) 3923(198) 0.577(58) 0.0374(13) 47.7(8.2) 4.01(45) 720
K2-4b 201208431.01 10.004438 0.658(56) 3900(195) 0.678(56) 0.0800(22) 14.0(2.0) 2.52(37) 530
K2-3b 201367065.01 10.054428 0.565(61) 3976(205) 0.584(62) 0.0762(27) 12.4(2.2) 2.15(26) 510
K2-3c 201367065.02 24.643479 0.565(61) 3976(205) 0.584(62) 0.1384(50) 3.72(68) 1.76(22) 380
K2-3d 201367065.03 44.560906 0.565(61) 3976(205) 0.584(62) 0.2055(75) 1.70(30) 1.44(18) 310
K2-9b 201465501.01 18.447385 0.366(53) 3460(164) 0.370(61) 0.0980(56) 1.78(45) 4.9(1.1) 320

201617985.01 7.281384 0.608(55) 3868(193) 0.627(56) 0.0630(19) 19.0(2.9) 27(23) 570
K2-49b 201690311.01 2.770645 0.697(94) 3948(203) 0.713(92) 0.0346(15) 89(18) 2.90(44) 840

201717274.01 3.527432 0.368(80) 3528(165) 0.371(93) 0.0326(29) 18.1(6.8) 1.55(39) 560
K2-18b 201912552.01 32.941798 0.411(53) 3527(162) 0.419(58) 0.1502(70) 1.04(23) 2.31(31) 280

204489514.01 10.223626 0.230(56) 3096(198) 0.206(71) 0.0544(66) 1.5(1.1) 14.8(6.6) 300
K2-54b 205916793.01 9.784339 0.707(60) 4103(230) 0.725(57) 0.0804(21) 19.8(2.8) 2.10(27) 580
K2-55b 205924614.01 2.849258 0.769(63) 4240(259) 0.784(59) 0.03620(90) 131(18) 4.63(40) 920
K2-21b 206011691.01 9.323890 0.721(59) 3952(202) 0.739(57) 0.0786(20) 18.4(2.5) 1.92(18) 560
K2-21c 206011691.02 15.501158 0.721(59) 3952(202) 0.739(57) 0.1101(28) 9.4(1.3) 2.37(24) 480

206061524.01 5.879750 0.726(62) 3961(213) 0.742(58) 0.0576(15) 35.0(5.2) 6.92(61) 660
K2-69b 206162305.01 7.065991 0.695(58) 3896(202) 0.714(56) 0.0644(17) 24.1(3.3) 3.25(37) 600
K2-71b 206192813.01 6.985406 0.622(62) 3966(225) 0.640(62) 0.0615(20) 22.9(3.7) 3.11(42) 600
K2-72b 206209135.01 5.577387 0.359(54) 3370(166) 0.362(61) 0.0438(26) 7.8(2.0) 1.15(20) 460
K2-72c 206209135.02 15.187114 0.359(54) 3370(166) 0.362(61) 0.0855(50) 2.05(53) 1.30(22) 330
K2-72d 206209135.03 7.759932 0.359(54) 3370(166) 0.362(61) 0.0548(32) 5.0(1.3) 1.10(21) 410
K2-72e 206209135.04 24.166851 0.359(54) 3370(166) 0.362(61) 0.1163(67) 1.11(28) 1.25(24) 280

211331236.01 1.291651 0.467(66) 3781(203) 0.481(71) 0.01819(92) 119(28) 1.46(57) 900
211428897.01 1.610918 0.324(54) 3577(200) 0.320(64) 0.0183(13) 46(13) 0.86(16) 710
211770795.01 7.729341 0.637(58) 4311(291) 0.656(57) 0.0665(19) 28.2(4.5) 2.3(1.3) 630
211799258.01 19.535120 0.271(54) 3411(176) 0.257(66) 0.0900(82) 1.12(41) 15.7(7.9) 280

K2-95b 211916756.01 10.133866 0.420(90) 3704(214) 0.43(10) 0.0691(60) 6.2(2.4) 13(14) 430
211970234.01 1.483459 0.185(57) 3000(213) 0.150(75) 0.0136(23) 13(35) 10.0(6.8) 520
212006344.01 2.219215 0.595(55) 3918(226) 0.615(56) 0.02835(87) 93(14) 1.28(15) 850
212069861.01 30.953052 0.692(58) 4078(223) 0.709(56) 0.1721(44) 4.01(57) 3.12(36) 390
212154564.01 6.413647 0.32(15) 3502(162) 0.32(18) 0.0464(91) 7.1(0.3) 2.5(1.2) 450
212315941.01 12.935695 0.48(13) 4056(219) 0.50(14) 0.0851(87) 8.0(4.1) 5.9(3.7) 460
212354731.01 20.397357 0.356(55) 3369(166) 0.358(63) 0.1037(60) 1.34(36) 25.5(9.7) 290
212679798.01 1.834810 0.545(53) 3716(171) 0.562(55) 0.02417(80) 86(13) 28(18) 830
212756297.01 1.337116 0.717(60) 4242(257) 0.733(58) 0.02142(56) 326(45) 13.7(1.2) 1160

Note.
a K2 names indicate validated planets, while those without a K2 name indication remain planet candidates.
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photometers can provide light curves for exoplanet detection.
The Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2009) and PLAnetary Transits and Oscillations of stars
(PLATO; Rauer et al. 2014) will also find planets, some of
which will be high-priority targets for the James Webb Space
Telescope ( JWST; Gardner et al. 2006). The recent announce-
ment of a roughly Earth-mass planet candidate orbiting
Proxima Centauri (Anglada-Escudé et al. 2016) adds yet more
urgency to the need to search for more planets and characterize
their low-mass host stars. The combination of all of these
surveys will yield many new M dwarf systems in need of stellar

and planetary parameters and of a large, precise calibration
sample.
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