

Introduction to AGN

- General Characteristics
- History
- Components of AGN
- The AGN Zoo

AGN – What are they?

Active galactic nucleus – compact object in the gravitational center of a galaxy that shows evidence for a strong nonstellar continuum

AGN are characterized by:

- High luminosity
- Continuum radiation over a broad λ range radio to γ -rays
- Rapid variability (time scales of days or even hours)

AGN tend to have:

- Unusually blue colors / strong UV excess
- Emission lines with significant widths (≥ 300 km/sec)

Basic problem:

• What physical mechanism generates so much luminosity ($L_{bol} > 10^{43} \text{ ergs s}^{-1}$) in such a small volume (radius < 10 light days?)

A Brief History of AGN

- E.A. Fath (1908): discovered strong emission lines in the spiral "nebula" (now galaxy) NGC 1068
- C.K. Seyfert (1943, ApJ, 97, 28) obtained high dispersion spectra of 6 spiral galaxies with high excitation nuclear emission lines
 - NGC 1068, 1275, 3516, 4051, 4151, 7469
 - broad emission lines (5000 km/s) attributed to Doppler motions
- Various radio surveys (1950s; 3C, PKS, etc.) discovered sources identified optically as quasi-stellar radio sources (quasars)
- M. Schmidt (1963) realized that broad lines in the quasar 3C 273 were redshifted nebular lines (z = 0.158)
- Eventually, it was realized that quasars (and optically discovered QSOs) are distant, high-luminosity analogs of Seyfert galaxies
- Khachikian and Weedman (1974) defined two types of Seyferts:
 - Seyfert 2s: narrow permitted and forbidden emission lines
 - Seyfert 1: same lines as Seyfert 2s plus broad permitted emission lines

Optical Spectra of Seyfert Galaxies (HST/FOS spectra)

Mass Outflow in Seyfert 1 Galaxies (HST UV Spectra)

NGC 4151 Intrinsic absorption

Akn 120
No intrinsic absorption

Observed Spectral Components of AGN (and probable physical components)

Spatially Unresolved:

- Optical/UV/soft X-ray continuum → accretion disk
- Hard X-ray continuum $(E > 1 \text{ keV}) \rightarrow \text{hot X-ray corona}$
- IR thermal emission → dusty torus (or wind?)
- Broad emission lines → broad-line region (BLR)
- Intrinsic UV/X-ray absorption lines → mass outflow

Spatially Resolved:

- Narrow emission lines → narrow-line region (NLR)
- Ionized gas in the host galaxy → extended narrow-line region (ENLR)
- Radio synchrotron radiation → radio jets/lobes

Drum roll, please →

"Unified Model" of AGN

The AGN Zoo

- Classified according to the appearance of their optical spectra, luminosity, radio power:
- Seyfert galaxies (including subtypes)
- Broad-line radio galaxies (BLRG)
- Narrow-line radio galaxies (NLRG)
- Quasi-stellar radio sources (quasars)
- Quasi-stellar objects (QSOs or radio-quiet quasars)
- Blazars: BL Lac objects and Optically Violent Variables (OVVs)
- Low-ionization nuclear emission-line regions (LINERs)
- Ultraluminous IR galaxies (ULIRGs) most are starburst galaxies, but a minority may be AGN
- Where does it stop? evidence for very mild activity in the vicinity of the Milky Way's SMBH

Seyfert Galaxies

- Nucleus absolute blue magnitude: $M_B > -21.5$ (to distinguish from quasars)
- $L_{Bol} = 10^{43} 10^{45} \text{ ergs s}^{-1}$
- "Classic" Seyferts: z < 0.1 (SDSS discovered higher z Seys.)
- Broad permitted lines (FWHM = $800 8000 \text{ km s}^{-1}$) from BLR
- Narrow permitted and forbidden lines (FWHM = 200 500 km s⁻¹) NLR
 - Seyfert 1: both BLR and NLR, strong nonstellar continuum
 - Seyfert 2: only NLR, weak continuum (mostly stellar)
- Spectropolarimetry (Antonucci 1985) shows hidden BLR in some Seyfert 2s:
 - Balmer lines scattered into the line of sight by electrons and/or dust → Unified model

- Additional Osterbrock types:
 - Seyfert 1.5: narrow permitted components are easily seen
 - Seyfert 1.8: weak broad Hα and Hβ
 - Seyfert 1.9: only weak broad Hα detectable
 - Narrow-line Seyfert 1 galaxies (NLS1s) (not Seyfert 2s!) FWHM (BLR) = 800 – 2000 km/sec
 - 1) strong Fe II (high density region like other BLRs)
 - 2) strong excess below 1 –2 keV and rapid X-ray variability
- Seyferts are weak radio sources (radio blobs rather than jets)
- Strong X-ray sources at E > 2 keV
 - Seyfert 2 galaxies are weak in soft X-rays (E < 2 keV), due to absorption by a large column of gas (torus?)
- Seyfert host galaxies are almost always spirals
- Most well-known Seyferts are NGC galaxies or Markarian galaxies (strong UV excess in objective-prism surveys)

Seyfert 1.5 - BLR+NLR

Seyfert 1.9

Schematic Continuum SED for Seyferts

Seyfert 2

NLR in NGC 1068 (HST [O III] image)

NGC 1068

- bright knot in NLR
- huge range in ionization(O I to [S XII])
- requires X-ray photoionization

Quasars

- Higher luminosities than Seyferts: $L = 10^{45} 10^{47}$ ergs s⁻¹
- At redshifts z = 0.1 to ~ 6
- Quasars (quasi-stellar radio sources): discovered first by radio surveys, emission-line spectra revealed high redshifts
- QSOs (quasi-stellar objects): discovered optically from their strong blue continua, broad emission lines, X-ray flux, etc.
 - the terms "quasars" and "QSOs" have become interchangeable; often we use "radio —loud" or "radio-quiet" quasars
 - Radio loud: $vF_v(6 \text{ cm}) / vF_v(4400 \text{ Å}) \ge 10$
 - Only ~5% of all quasars are radio-loud
- Quasars have spectra like Seyfert 1 galaxies, but
 - stellar absorption features not easily detected
 - narrow-lines tend to be weak
- A number of type 2 quasars (no broad lines) have recently been detected.

Radio Galaxies

- Low-luminosity analogs of RL quasars (Seyferts are lowluminosity analogs of RQ quasars)
- Characterized by compact radio source, lobes, and (often) jets
 - 1. FR I: lower luminosity; bright in center and weak toward edges
 - 2. FR II: high luminosity; lobes brighter at edges
 - 3. Dividing line: $L_v = 10^{32}$ ergs s⁻¹ Hz⁻¹ at 1.4GHz
- Radio galaxies with emission lines are similar to Seyferts, but are typically found in giant ellipticals (E or cD)
- Broad-line radio galaxies (BLRG): similar to Seyferts 1s, but
 - 1. Balmer profiles are broader and more flat-topped
 - 2. Fe II emission is weaker
 - 3. Hα/Hβ ratios higher (steeper Balmer decrement)
- Narrow-line radio galaxies (NLRG): optical spectra are essentially identical to Seyfert 2s

Fanaroff-Riley (FR) Types

FR II

(Peterson, p. 11)

(Peterson, p. 12)

NLRG

BLRG

Blazars

- Defined by 1) strong variability (time scales one day or less) from radio to X-rays and high polarizations (1-4%)
- Moderate to strong radio sources (radio loud)
- Two classes:
 - 1) BL-Lac objects: no strong emission or absorption lines
 - 2) Optically-violent variables (OVVs): highly polarized, variable, but have broad emission lines (aka FSRQ or flat-spectrum radio quasars)
- Continuous spectra are less complicated than those of quasars likely synchrotron radiation plus Compton "upscattering"
- Interpretation: relativistically beamed jets close to our line of sight (overwhelms other emission components)
- Two types of BL Lacs:
 - X-ray BL Lacs (XBLs): synchrotron peak in X-rays
 - Radio BL Lacs (RBLs): synchrotron peak in radio

Blazar SEDs (Urry 1998)

Synchrotron Compton

LBL: low-frequency blazars (or RBL)

HBL: high-frequency blasars (or XBL)

LINERS

- Low-ionization nuclear emission-line regions (LINERs) (Heckman 1980)
- Strong low-ionization lines like Seyferts: [O I], [S II], [N II]
- However, high-ionization lines are weak (e.g., [O III]/H β < 3)
- Lower luminosities than Seyferts: $10^{39} 10^{42}$ ergs s⁻¹
- Difficult to detect against background of host galaxy
- Recent evidence shows that most LINERs are AGN
 (previous explanations include very hot stars and shock heating)
- About 1/3 of all luminous galaxies contain LINERs!
- Broad Balmer emission detected in ~20% (type 1 LINERs)
- LINERs are radio-loud (for their optical luminosities)
- There are some transition objects, which may be H II galaxies or a combination of H II/ AGN

LINER (NGC 1052)

AGN – Approximate Space Densities (Local)

Type of Object	# per Mpc ³
Field galaxies	10-1
Luminous spirals	10-2
LINERs	3 x 10 ⁻³
Seyfert galaxies	10 ⁻⁴ (~1% of spirals)
Radio galaxies	10-6
Radio-quiet quasars (QSOs)	10-7
Radio-loud quasars	10-9

(Osterbrock & Ferland, p. 327 - modified)