AGN Central Engines

- Supermassive Black Holes (SMBHs)
- Masses and Accretion Rates
- SMBH Mass Determinations
- Accretion Disks

Supermassive Black Holes

- Need to generate $L > 10^{43}$ ergs/sec inside radius < 10 light days
- Fusion too inefficient ($\sim 0.7\%$ of the mass converted to energy)
- Solution: SMBH + dissipative accretion disk
- Energy from gravitational infall, gas heated to high temperatures by collision in accretion disk

Eddington limit:

- Consider a proton-electron pair in an accreting gas composed of ionized hydrogen
- To avoid disruption of the accretion, the inward gravitational force must equal or exceed the outward radiation force
- The opacity of the gas is provided by the Thomson cross section σ_e (proton is linked to electron by electromagnetism)

$$P_{rad} = \frac{L}{4\pi r^{2}c} \text{ (radiation pressure)}$$

$$F_{rad} = \sigma_{e} \frac{L}{4\pi r^{2}c} \text{ (radiation force)}$$

$$F_{rad} \leq F_{grav} \text{ (for accretion to occur)}$$

$$\frac{\sigma_{e} L}{4\pi r^{2}c} \leq \frac{GMm_{p}}{r^{2}}$$
So: $L \leq \frac{4\pi Gcm_{p}}{\sigma_{e}} M$ (upper limit on luminosity)

$$L_{E} \equiv \frac{4\pi Gcm_{p}}{\sigma_{e}} M \text{ is the Eddington luminosity}$$

$$M_{E} \equiv \frac{\sigma_{e}}{4\pi Gcm_{p}} L \text{ is the Eddington mass}$$
For a spherically accreting object: $L < L_{E}$, $M > M_{E}$

Plugging in for constants:

 $M_E = 8 \times 10^5 L_{44} M_{\odot}$, where $L_{44} = L_{bol} / 10^{44} \text{ ergs s}^{-1}$ For a Seyfert galaxy, L > $10^{43} \text{ ergs s}^{-1}$

 \rightarrow Seyferts have SMBHs with masses M_• > 8 x 10⁴ M_☉

or

 $L_E = 1.26 \times 10^{44} M_6 \text{ ergs s}^{-1}$, where $M_6 = M_{\bullet} / 10^6 M_{\odot}$ The mass of the SMBH can be estimated directly from the distances (r) and motions (v) of the BLR clouds (if Keplerian):

 $M \approx \frac{rv^2}{G}$ (r typically from reverberation mapping) Typical Seyferts: $L \approx 10^{44}$ ergs s⁻¹; $M \approx 10^7 M_{\odot} \rightarrow L_E \approx 10^{45}$ ergs s⁻¹ So for Seyferts: $L/L_E \approx 0.1$ (range is actually ~0.01 to ~1.0)

Accretion rate

For a black hole, the Schwarzschild radius is

$$R_{\rm S} = \frac{2GM}{c^2} \quad (\approx 10^{-3} \text{ M}_7 \text{ light days } \approx 40 \text{ M}_7 \text{ R}_\odot) \quad (R_{\rm S} = 2R_{\rm g})$$

Energy released by a particle of mass falling to $\sim 5R_s$:

$$U = \frac{GMm}{5R_s} = \frac{GMm}{10GM/c^2} = 0.1mc^2$$

So: $\eta \approx 0.1$ (compared to 0.007 for fusion)

Rate at which energy is emitted:

 $L=\eta Mc^2$ (M - mass accretion rate, η - efficiency)

•
$$M = \frac{L}{\eta c^2} \approx 1.8 \times 10^{-3} \frac{L_{44}}{\eta} M_{\odot} / yr$$

So for a Seyfert galaxy: M $\approx 0.02~M_{\odot}\,/\,yr \rightarrow\,$ not much fuel needed

Relative accretion rate:
$$\frac{M}{M} \propto \frac{L}{L_E}$$
 (Eddington ratio)

Measuring SMBH Masses 1) Ionized Disk Dynamics STIS Obervations of Hα emission in M84 (giant E, LINER)

- slit placed along ionized disk (diameter = 82 pc)
- classic Keplerian rotation curve: $M_{\odot} = 3 \times 10^9 \text{ MO}$!

M84 Rotation Curve

(Bower, G., et al. 1998, ApJ, 492, L111)

Ionized gas disks in AGN are rare (seen in only a few percent of AGN)
Most of the extended ionized gas in AGN (i.e., in the narrow-line region) is pushed outward by radiation pressure and/or winds
→ can' t use in general to determine the black hole mass

2) H₂O Maser Disks (AGN) - NGC 4258 (LINER)

(Herrnstein, et al. 2005, ApJ, 629, 719)

- masers from dense, unresolved clumps of molecular gas, heated by X-rays
- high velocity masers are self-amplified, systemic masers amplify radio core
- Keplerian rotation curve for a warped disk: $M_{\odot} = 4 \times 10^7 M_{\odot}$
 - \rightarrow Only works for nearly edge-on systems!

3) Reverberation Mapping (IUE/Optical Campaign on NGC 5548)

Light curves and cross-correlation functions (CCFs) relative to 1350 Å

- Emission-line light curves delayed relative to continuum variations.
- Lag due to light travel time effects, since recombination time is small: $\tau_{rec} = (n_e \alpha_B)^{-1} \approx 400$ sec for $n_e = 10^{10}$
- Further evidence for photoionization
- Time lag gives approximate radius of BLR
- Low-ionization lines have longer lags
 →ionization stratification in BLR

Use to measure black hole mass!

$$M = f \frac{rv^2}{G}, r = \text{BLR size} = c\tau_{lag}$$

v = width of line (e.g., FWHM)

(Peterson, p. 86)

Reverberation Mapping

(Peterson, p. 83)

- Consider a δ -function continuum at τ = 0, and a thin spherical shell BLR
- When the ionizing continuum reaches the shell, it responds instantaneously
- The observer sees isodelay surfaces at $\tau = (1 + \cos\theta)r/c \rightarrow$ paraboloid
- Intersection with the shell gives an annulus with surface area $2\pi r^2 \sin\theta d\theta$
- If emissivity (ϵ) is same at all locations, the emission-line response is:

- CCF from above will give a box with centroid (lag) of $\tau = r/c$
- In general, $\Psi(\tau)$ gives the emission-line light curve for a δ -function continuum (Blandford & McKee 1982, ApJ, 255, 419)
- Observationally, the continuum is not a δ -function, so the emissionline light curve is a convolution of the continuum and transfer function:

 $L(t) = \int_{-\infty}^{\infty} \psi(\tau) C(t - \tau) d\tau \quad (L = \text{line flux}, C = \text{continuum flux})$ Deconvolution requires high S/N spectra at high temporal resolution Observationally, we usually settle for the CCF:

 $CCF = \int_{-\infty}^{\infty} L(\tau) C(t - \tau) d\tau \rightarrow \text{peak gives an average "lag"} \rightarrow \text{"radius"}$ "It can be shown that" (Peterson, p. 84):

 $CCF = \int_{-\infty}^{\infty} \psi(\tau) \operatorname{ACF}(t - \tau) d\tau \quad (ACF \text{ is for the continuum})$

 \rightarrow CCF gives a characteristic size, Ψ gives the geometry.

Attempt to recover the transfer function for Hβ in NGC 5548 data set (Horne et al. 1991, ApJ, 367, L5)
Lack of response at 0 time delay indicates 1) Lack of gas in line of sight (disk?) or
2) Optically thick gas in line of sight

Mass Determinations

4) BLR Radius - Luminosity Relation

(Kaspi, et al. 2005, ApJ, 629, 61)

 $r \propto L^{0.5} \text{ (Vestergaard \& Peterson, 2006, ApJ, 641, 689; Bentz et al. 2013, ApJ, 767, 149)} \\ \log M_{\bullet} = \log \left\{ \left[\frac{\text{FWHM}(\text{H}\beta)}{1000 \text{ km s}^{-1}} \right]^2 \left[\frac{\lambda L_{\lambda}(5100)}{10^{44} \text{ ergs s}^{-1}} \right]^{0.5} \right\} + (6.91 \pm 0.43)$

Summary: Measurements of SMBH Masses in AGN

- Direct Measurements:
 - 1) Ionized gas disks (only a few cases)
 - 2) H_20 maser disks (only a few cases)
 - 3) Reverberation mapping (RM)
 - time delay between a change in the ionizing continuum and broad emission lines gives BLR size (r); FWHM of lines gives velocity (v)
- Indirect measurements (in order of decreasing quality):
 - 1) RM of 35 Seyfert galaxies gives $R_{BLR} \sim L_{\lambda}(5100\text{\AA})^{0.5}$ (Kaspi et al. 2000)
 - mass from luminosity, widths of permitted lines (e.g., $H\beta$)
 - however, R-L relation has considerable scatter
 - 2) Mass from M.- σ_* relation for bulges, ellipticals
 - same as for normal galaxies (to be continued)

Accretion Disks - Isothermal

Isothermal disk (naive): Virial theorem says that 1/2 of gravitational potential goes into heating the gas; the other 1/2 is radiated away

$$L = \frac{GM\dot{M}}{2r} = 2\pi r^2 \sigma T^4 \quad \rightarrow \quad T = \left(\frac{GM\dot{M}}{4\pi\sigma r^3}\right)^{1/2}$$

If the radiation is dominated by a disk with radius $r = (\text{const.}) R_s$:

$$T \propto \left(\frac{M\dot{M}}{R_s^3}\right)^{1/4} \propto \left(\frac{M\dot{M}}{M^3}\right)^{1/4} \propto \left(\frac{\dot{M}}{M^2}\right)^{1/4} \propto \left(\frac{\dot{L}}{L_E}M\right)^{1/4} \left(\frac{L}{L_E}M\right)^{1/4}$$

$$T \propto \left(\frac{L}{L_E}\right)^{1/4} M^{-1/4}$$

→ temperature decreases with increasing mass: radiation peaks in the X-rays for stellar mass black holes, EUV for SMBHs

Thin (Alpha) Disk (Shakura & Sunyaev, 1973, A&A, 24, 337) The height to radius ratio at any location in the disk is:

 $\frac{h}{r} \approx \frac{c_s}{v_{rot}}$ (where c_s = sound speed, v_{rot} = rotation velocity

If the disk has a high density and viscosity (α) is efficient, then radiative cooling is high, the efficiency is high ($\eta \approx 0.1$), and T is low:

1)
$$\frac{c_s}{v_{rot}} \ll 1 \rightarrow$$
 the disk is thin

2) The temperature at each annulus can be characterized by a black body:A "proper" derivation for a viscous disk (see Krolik, p. 147 - 150) gives:

 $T(r) = \left\{ \frac{3GMM}{8\pi\sigma r^3} \left[1 - \left(\frac{r_{\min}}{r}\right)^{1/2} \right] \right\}^{1/4}, \text{ where } r_{\min} = \text{ last stable orbit}$

For $r \gg r_{\min}$ and $r_{\min} = (\text{const.}) R_s$: $T(r) \propto \left(\frac{MM}{R_s^3}\right)^{1/4} \left(\frac{r}{R_s}\right)^{-3/4}$

As shown previously:

$$\left(\frac{MM}{R_s^3}\right)^{1/4} \propto \left(\frac{L}{L_E}\right)^{1/4} M^{-1/4}$$

$$T(r) \propto \left(\frac{L}{L_E}\right)^{1/4} M^{-1/4} \left(\frac{r}{R_s}\right)^{-3/4}$$
 (for an annulus)

Plugging in the constants (Peterson, p. 37):

$$T(r) = 6.3 \times 10^5 (L/L_E)^{1/4} M_8^{-1/4} \left(\frac{r}{R_s}\right)^{-3/4} K$$

For $L / L_E = 1$, $M_8 = 1$, and $r = 3R_s$: T = 276,000 K

Using Wien's law: $\lambda_{\text{peak}} = 2.898 \times 10^7 / 276,000 \text{ K} = 105 \text{ Å} \ (= 0.12 \text{ keV})$ Contributions from larger radii \rightarrow Spectrum peaks in the EUV

If the optical radiation at 5000 Å is coming from the accretion disk:

 $r \propto \lambda_{peak}^{4/3} = 184 R_s = 2.1$ light days (at 1500 Å, r = 0.4 light days)

Limitations of the SS Model

- Doesn't explain hard X-rays (corona) or soft X-ray excess.
- Doesn't match the shape of the observed continuum in the optical/UV(superposition of blackbody spectra).
- Although observations of variability confirm decreasing temperature with radius, observed accretion disks are 2 – 3 times those predicted by the thin disk model.

→ Need accretion disk model that includes the effects of GR (including Kerr BHs) and magnetic fields (GRMHD), and generates winds/jets to dispose of angular momentum.

Other Types of Accretion Disks

- ADAFs (advection-dominated accretion flows):
 - At low accretion rates ($L/L_E \ll 0.01$), densities are low.
 - Radiative cooling is inefficient, heat is "advected" inward.
 - The radiative efficiency (η) is << 0.1
 - The temperature of the gas rises.
 - \rightarrow The central accretion disk puffs up to form an "ion torus".
 - Cooling is mainly bremsstrahlung \rightarrow no EUV bump
- Super-Eddington $(L/L_E \ge 1)$ accretion :
 - At high accretion rates, densities are high
 - Radiation is trapped in the vertical direction
 - Once again, heat is advected radially inward.

→The disk puffs up into a "radiation torus", characterized by a single temperature (few x 10^4 K) →large EUV bump