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What are the observational signatures of dust?

Absorption/Scattering:

- Extinction/reddening (scattering and absorption)

- Reflection (e.g., reflection nebula)

- Broad absorption features (e.g., 2200 A, 9.7um, 18um)

- Diffuse Interstellar Bands (DIBs) in optical: weak, relatively
broad absorption

- Polarization (elongated and aligned dust grains)
Emission in the IR:

- Thermal continuum (modified blackbody)

- Very Small Grain (VSG) continuum

- Polycyclic Aromatic Hydrocarbon (PAH) features in 3 -11um
region



Absorption: Extinction and Magnitudes
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FO= flux 1f no dust

Why do we use magnitudes to measure extinction ?

A = 2510g(ij—(2 5)(0.434) ln(F‘))
a2 F—O = (<. : F—l

A, =1.0867,

So A, 1s proportional to T, and the dust column




Extinction and Reddening

Separate into two terms: A, = R, E(B-V)

R, = A reddening curve
* EB-V) ( R :
E(B-V)=A_ -A, (measures amount of reddening)
F, F,
ARE SHSHlOgIE==S A= oRlog M aew
FBO Fvo Y,

E(B —V) is known as the color excess or “the reddening
B magnitude is at ~ 4400A
V magnitude is at ~ 5500A



How do we determine a reddening curve?

- find an identical object with no reddening
- get the fluxes at each wavelength (i.e., spectra)

F observed flux of unreddened object
Del 2l aa—=—

E, observed flux of reddened object

E(B-V)=2.5 (logX, - logX,)

To get reddening at any wavelength, relative to E(B-V):
E(A-V) A, —-A, logX, —logX,
E(B-V) A, —-A, logX —logX,

So to get the extinction curve observationally :

A E
R. = L fih V) where R X

= EB-V) EB-V) Ry VT E(B-V)




How do we determine Ay,?

- Need to know the reddened star’ s intrinsic (unreddened)

flux (Fyy)
- Assume the reddened (0) and unreddened (1) stars have
identical luminosities (e.g., same exact spectral type)

L, = 471:D1FVl =4nD’F, (D = distance)

0" VO
D2
SO K. Dg FVl
AL D, 5log| —¥0 intrinsic (unreddened) flux
ES observed flux

From determinations of Ay for local stars in Galaxy:

AV
e =3.1
E(B-V)




Standard Galactic Extinction Curve
(Savage & Mathis, 1979, ARAA, 17, 731)
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- Sharp rise to UV: due to small dust grains
- 2200 A bump: due to carbon (graphite? PAHs?)

To correct for extinction: F, = Fk100'4A>~ = Fkl()o-“RxE(B—V)



All Galactic reddening curves are not the same!
(Cardelli, Clayton, & Mathis, 1989, AplJ, 345, 245 [CCM])
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(see also: Mathis, 1990, ARAA, 28, 27)

- reddening curves are similar at A > 7000 A, diverge in UV
- the UV extinction can be parameterized by R, !



Relative Extinction vs. R,"! (CCM)
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- extinction at a particular wavelength only depends on
one parameter (increases linearly with R, ')
—> only one set of reddening curves for the Galaxy



Current Galactic Reddening Curves

(Fitzpatrick, 1999, PASP, 111, 63 [FM])
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- Fitzpatrick (1999) gives a prescription for reddening correction.
(available as IDL procedure FM_UNRED; good from 912 A to 3.5 pum)
- Which curve do I use? Depends on the information you have:

1) Derive from the star (or one nearby), best
2) Measure or assume Ry from environment. QK
3) Assume Ry, = 3.1 (average curve). not so great
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Extragalactic Reddening Curves
Ex) STIS Spectra of Seyfert 1 Galaxy NGC 3227

I T I

NGC 4151

Flux (107™ ergs s7' c¢m™ Z\")

—
|

TTTT T IT T T RET T T T T A T

NGC 3227

I 1 1 1 I 1 1 1 I 1 1 1 l

2000 4000 60004 8000 10600
Wavelength (A)

- X=ratio of continuum fits: NGC 4151/NGC3227
- E(B-V)=0.18, E(A-V)/E(B-V) from X
- Don’ t know intrinsic flux: get Ry from adding constant to
match other extinction curves in IR (Galaxy, LMC, SMC): Ry =3.2 |,



Extragalactic Reddening Curves
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- Sharp rise to UV in SMC and NGC 3227
—> Larger number of small dust grains

- 2200 A feature decreases from Galaxy to LMC to SMC
—> Decreases with metallicity

12



Gas Column vs. Dust Reddening
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(Bohlin, 1975, ApJ, 200, 402)

- There 1s a fairly uniform gas/dust ratio in the local ISM.

Standard relation: N (H ) =5.2 x 10! E(B-V)

(cm™)

(Shull & Van Steenburg, 1985, ApJ, 294, 599)

13



So what 1s the dust/gas ratio (locally)?

« Depletions: about 1/3 of the CNO 1s depleted
 (Cosmic abundances: the mass fraction of CNO 1s 0.011

» The heavier elements are mostly depleted; their mass
fraction 1s 0.0027

 So the mass fraction of CNO in dustis: ~0.0037
 The mass fraction of heavier elements 1s: ~0.0027

So Passt _ 0006
pgas

Iftn, =1 cm”, P =1.6 X 10** g cm™

Thenp, =1 % 10* gem®

e Dust mass 1s only ~1% of the gas mass, but the dust 1s
much more effective in reprocessing starlight than the gas!
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Dust Absorption in the Mid-IR
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ISO Spectrum of Galactic Center (Lutz, et al. 1996, A&A, 315, L269)

9.7 and 18 um absorption due to silicates (9.7 um: Si1-O bending and
stretching, 18 um: O-Si1-O bending modes) — may appear in emission
in hot dust.

e 3 um absorption due to O-H bond in H,O ice
- evidence for ice mantles around dust grains in molecular clouds
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http://www.dynamicscience.com.au/tester/solutions1/chemistry/analytical%20chem/infrared.htm
http://www.dynamicscience.com.au/tester/solutions1/chemistry/analytical%20chem/infrared.htm

Diffuse Interstellar Bands
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(Kerr, et al. 1998, AplJ, 495, 941)
* High resolution spectrum of one band: weak (low constrast)

* Correlates with ISM column density and dust extinction, but
origin still unknown (PAHs?).



Polarization

e Many stars show linear polarizations of up to a few
percent.

* The polarization is due to dust, so:
1) The dust grains are elongated, to preferentially absorb
the E or B vector.
2) They are preferentially aligned, so that the polarization
caused by individual grains do not cancel out

- they are aligned by the Galactic B field, which induces
a magnetic moment in each grain

- Polarization as a function of Galactic latitude and
longitude have been used to map the Galactic B field (1
- 10 uGauss),

17



Galactic Magnetic Field

Credit: ESA and the Planck Collaboration

Polarized dust emission from the Planck mission.
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What 1s the dust like? Theoretical Extinction Curves:
The decrease 1n flux due to dust extinction 1is:

2 .
F=F exp(-t,) where T =n_ ma’sQ_ (assuming spheres)
(n, = dust particles per cm”, a = grain radius, s = path length)

optical cross section

Q. = extinction efficiency = , .
geometric cross section

Q.= Q. TQ, (Q =scattering efficiency, Q, =absorption efficiency)
Q,, Q, are functions of:
1)a, . — parameterized by x = 2ma/A
2) m = complex index of refraction for material
(real: scattering, imaginary: absorption)
and can be determined from the Mie theory of scattering (solution

of Maxwell's equations for spherical particles) o



Theoretical Efficiency Factors (Spheres)

() m=o00 pure rdflection
—=— (b) m = 1.33 icc
...... {e) m=1.33-0.09i |[dirty ice
———= (d) m = 4.27-4.37 i ]ir0On

x=2mwa/\

(Spitzer, page 152)

- no absorption for pure reflections and ice spheres
- sharp increase near A~ 2ma (classic diffraction case)



Theoretical Efficiency Factors for Cylinders (m=1.33)

T T T T I T 1 I 1
- B
4 _—
-
3 L
|
Qe 2
l [ *
/ HO I S :
” —-——Q¢E T T . 8
0 LR A A
———Qu AR VI S ¥
— ecsensecese lo(QcE-QQH) e rd
] 1 L | N ] ] e |
0 5 10

_ 27a
x- x

(Spitzer, page 173)
a = cylinder radius, length = 2a
- Extinction declines more sharply with decreasing A
- Difference between E and H vectors give polarization
(wiggles average out for a distribution of particles)
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Detailed Calculations
(Draine & Lee, 1984, ApJ, 285, 89)
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A distribution of grain sizes can match
the observations (Mathis, Rumpl, &
Nordsieck (1977, ApJ, 217, 425) :

n, o< a=¥ (n, = dust density)

a=0.005um to 0.25um
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Problems (or Challenges)

Large number of extinction curves to understand!

Many combinations of

1) a C-based grain (e.g., graphite, PAHs, amorphous) and

2) a silicate grain (e.g., pyroxenes, olivenes, amorphous)

can provide a general match to curves and absorption features

Need to match specific models against high-accuracy
extinction curves and spectral features

But note: m affected by damage to grain by UV photons or
cosmic rays, or by 1on contamination
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Thermal Continuum Emission

 In the diffuse ISM, the dust temperature (Tp) 1s due to ambient
starlight (otherwise 1t would be 3K).

* At adistance r from a star with luminosity L, the flux balance
for a dust sphere with radius a 1s:

Lk 2 9
|2 ma’Q, (a.1) di = [4ma’Qy, (a,A) TB(A,Ty,) dA
47tr
2hc? 1

where B = (Planck fct.)
A> exp(hc/AkT ) -1

* Given Q, and Qg,, (absorption in the UV, emission in the IR), the
above can be solved for Tp
« Typically Qg,, ~A'! (dust grains radiate inefficiently at long A)
—>shifted slightly toward shorter A (“hotter” than a BB would be).
e For the IR “cirrus”: Tp = 20 K >peaks at ~150 pum, (far-IR )
 Star formation regions: Tp = 100 K >peaks at ~30 um (mid-IR)
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Very Small Grain (VSG) Continuum

VSGs (< 100 A in size) are not in thermal equilibrium with the
radiation field.

A VSG 1s heated by a single photon and releases energy quickly
(temperature of a single grain is highly time-dependent)

Results in emission at shorter A, in near- to mid-IR (1 - 30 um).

About 1/3 of the diffuse ISM dust emission can be attributed to
VSGs (Draine, 2003, ARAA, 41, 241).
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PAH Emission Features
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* Polycyclic Aromatic Hydrocarbons (PAHs): linked benzene
(C¢Hg) rings: naphthalene (C,,Hy) ... ovalene (C;,H,,) ...

* Seen 1n emission in photodissociation regions (PDRs) -
responsible for 2200 A absorption feature?
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http://aa.springer.de/papers/0359003/2300887/fig1.htm
https://en.wikipedia.org/wiki/Polycyclic_aromatic_hydrocarbon

Lifestyles of Galactic Dust Grains
* (Created 1n dense, cooling gas flows

- primarily red giant winds and ejection of planetary nebulae;
also novae, supernovae, and supermassive stars (1 Car).

- molecules with refractive elements condense to solid phase first
- clusters of molecules clump together to form dust grains

- high temperatures (300 — 1500 K) and densities (ng~10° cm)
provide the pressure for molecules to stick together

 @Grains cycle through molecular clouds ~10 times before being
incorporated 1n a new star (Mathis, 1990, ARAA, 28, 37)
- grains grow massive by coagulation of smaller grains and
condensation of molecules onto grains
- ice mantles form (or ice fills the voids in fluffy dust grains?)

 @Grains can be destroyed or reduced in size by:
- cosmic-ray sputtering (atoms knocked out by + 10ns)
- shocks from SNRs, UV photoejection of electrons
- sublimation: graphites and silicates sublimate at ~ 1500 K, ice
mantles sublimate at 20 - 100K



What are the dust particles like?
- shapes, masses, and exact compositions still uncertain

- one possibility: fractal dust grains (Wright,1987, ApJ, 320, 818)
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JWST PAH Image of NGC 628
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Credit: Gabriel Brammer / Janice Lee et al. and the PHANGS-JWST collaboration




