Photoionized Gas – Ionization Equilibrium

- Ionization
- Recombination
- H nebulae case A and B
- Strömgren spheres
- H + He nebulae
- Heavy elements, dielectronic recombination
- Ionization structure

Ionization Equilibrium Equation

- Start with a pure H nebula
- # photoionizations/vol/sec = # recombinations/vol/sec:

$$n_{H^{0}} \int_{v_{0}}^{\infty} \frac{4\pi J_{v}}{hv} a_{v}(H^{0}) dv = n_{e} n_{p} \alpha(H^{0}, T) \quad (hv_{0} = 13.6 \text{ eV})$$
where : $J_{v} = \frac{1}{4\pi} \int I_{v} d\Omega$ = mean intensity (ergs s⁻¹cm⁻²Hz⁻¹sr⁻¹)
 a_{v} = ionization cross section
 α = recombination coefficient for H (cm³s⁻¹)

Ex) For a pure H nebula: $n_p = n_e$, $n_H = n_{H^0} + n_p$ At a distance of 5 pc from an O7 star (T = 40,000 K) If $n_H = 10 \text{ cm}^{-3} \rightarrow n_{H^0} / n_H \approx 4 \times 10^{-4}$ • Using the same parameters, when the hydrogen starts to go neutral, the thickness of the H II region is:

$$d \approx \frac{1}{n_{H^0} a_v} \approx 0.01 \text{ pc}$$

- So the H II region is almost completely ionized until it reaches a "transition region", which is very thin
- Such an idealized case is called a Strömgren sphere
- Above calculations depends on the atomic parameters: a_v , α and the details of atomic structure:

Ex) Hydrogen ground state: 1²S (or generally 1s ²S)

n = 1 (principal quantum number)

L = 0 (total angular momentum number)

 $L = 0, 1, 2, 3 \rightarrow S, P, D, F$

m = 2 = 2S+1 (where $S=spin = \frac{1}{2}$) (m =multiplicity when L > S)

Energy-Level Diagram for H I

(Osterbrock & Ferland, p. 19)

Atomic Parameters: Transition Probabilities For permitted transitions of H I ($\Delta L = \pm 1$): $A_{nL,n'L'} = 10^4 - 10^8 s^{-1}$, so lifetimes of states $\tau \approx 10^{-4} - 10^{-8} sec$ Ex) $2^2 P \rightarrow 1^2 S$ gives L α photon at $1216 \overset{\circ}{A}$ ($\tau \approx 10^{-8} sec$) Using previous example (O7 star at 5 pc):

#ionizations / H⁰ =
$$\int_{v_0}^{\infty} \frac{4\pi J_v}{hv} a_v(H^0) dv \approx 10^{-8} s^{-1}$$

So there are 10^8 sec between ionizations of an H atom \rightarrow all H⁰ atoms are essentially in ground state

Ex) $2^2 S \rightarrow 1^2 S$ gives two - photon continuum : $\tau \approx 0.12$ sec \rightarrow Forbidden transitions are common in nebulae

Photoionization Cross Sections

• For a hydrogenic ion, with charge Z:

 $a_{v}(Z) \sim Z^{-2}v^{-3}$ (approximately) for $hv > hv_{1}(= 13.6 Z^{2} eV)$

(Osterbrock & Ferland, p. 21)

Recombination Coefficients

• Ejected electrons set up a Maxwell-Boltzman distribution:

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT}\right)^{3/2} v^2 e^{-mv^2/2kT}$$

Recombination to level n, L :

$$\alpha_{nL}(H^0,T) = \int_0^\infty v \ \sigma_{nL}(H^0,v) \ f(v) \ dv$$

$$\alpha_{nL} \propto T^{-1/2} \ \text{(approximately, Osterbrock p. 21)}$$

• Total recombination coefficient:

$$\alpha_{A} = \sum_{nL} \alpha_{nL} (H^{0}, T)$$
At T = 10,000 K: $\alpha_{A} = 4.18 \times 10^{-13} \text{ cm}^{3} \text{sec}^{-1}$ (Osterbrock, p. 22)
Recombination time: $\tau_{rec} = \frac{1}{n_{e} \alpha_{A}} \approx \frac{10^{5}}{n_{e}} \text{ yrs}$

Radiation Field

Ex) Consider a pure H nebula around a single star:

$$J_{v} = J_{v \text{ stellar}} + J_{v \text{ diffuse}}$$

$$4\pi J_{v \text{ stellar}} = \frac{L_{v}}{4\pi r^{2}} e^{-\tau_{v}}$$
where $\tau_{v} = \int_{0}^{r} n_{H^{0}}(r') a_{v} dr'$ at location r
For a pure H nebula, $4\pi J_{v \text{ diffuse}} =$ ionizing flux from recombination

Case A) Optically thin nebula: $J_{v \text{ diffuse}} \approx 0$ (radiation escapes)

$$n_{H^{0}}\int_{v_{0}}^{\infty}\frac{L_{v}}{4\pi r^{2}hv} a_{v}e^{-\tau_{v}} dv = n_{e}n_{p}\alpha_{A}(H^{0},T)$$

where $\alpha_A = \sum_{n=1}^{\infty} \alpha_n(H^0, T)$

Case B) Optically thick nebula: \rightarrow Use "on the spot" approximation: recombinations to ground generate photons that are absorbed locally

$$n_{H^0} \int_{v_0}^{\infty} \frac{4\pi J_{v \text{ diffuse}}}{hv} a_v dv = n_e n_p \alpha_1(H^0, T)$$

n=2

Thus:
$$n_{H^0} \int_{v_0}^{\infty} \frac{L_v}{4\pi r^2 hv} a_v e^{-\tau_v} dv = n_e n_p \alpha_B(H^0, T)$$

 $\alpha_B = \sum_{v_0}^{\infty} \alpha_n(H^0, T)$

- Since τ is a function of (n_{H^0}, r) , $n_e = n_p$, and $n_H = n_p + n_{H^0}$, the ionization equilibrium equation above can be integrated outward for a given $n_H(r)$ and T(r) to get $n_p/n_H(r)$
- This is a crude model, since T(r) is not known a priori.

Structure of Pure H Nebula:Models

(Osterbrock & Ferland, p. 26)

- assuming $n_{\rm H} = 10$ cm⁻³ and T = 7500 K, constants as function of radius

Global Ionization Balance

Consider a Stromgren sphere (pure H nebula around a single star): $Q(H^0) = \#$ ionizing photons emitted by star per second

 $Q(H^0) = \int_{v_0}^{\infty} \frac{L_v}{hv} dv = \frac{4}{3}\pi r_1^3 n_H^2 \alpha_B \rightarrow r_1 = \text{radius of Stromgren sphere}$

Spectral type	$T_{*}\left(\mathrm{K}\right)$	M_V	log Q(H ⁰) (photons/s)	$\begin{array}{c} \log n_e n_p r_1^3 \\ n \sin \ \mathrm{cm}^{-3}; \\ r \ \mathrm{in \ pc} \end{array}$	$\frac{\log n_e n_p r_1^3}{n \text{ in cm}^{-3}}$ $\frac{r_1 \text{ in pc}}{r_1 \text{ or } r_1}$	$r_1 (pc)$ $n_e = n_p$ $= 1 \text{ cm}^{-3}$
03 V	51 200	-5.78	49.87	49.18	6.26	122
04 V	48,700	-5.55	49.70	48.99	6,09	107
04 5 V	47,400	-5.44	49.61	48.90	0.00	100
05 V	46,100	-5.33	49.53	48.81	5.92	94
05.5 V	44,800	-5.22	49.43	48.72	5.82	87
06 V	43,600	-5.11	49.34	48.61	5.73	81
06.5 V	42,300	-4.99	49.23	48.49	5.62	75
07 V	41,000	-4.88	49.12	48.34	5.51	69
07.5 V	39,700	-4.77	49.00	48.16	5.39	63
08 V	38,400	-4.66	48.87	47.92	5.26	57
08.5 V	37,200	-4.55	48.72	47.63	5.11	51
09 V	35,900	-4.43	48.56	47.25	4.95	45
09.5 V	34,600	-4.32	48.38	46.77	4.77	39
B0 V	33,300	-4.21	48.16	46.23	4.55	33
B0.5 V	32,000	-4.10	47.90	45.69	4.29	27

(Osterbrock & Ferland, p. 27)

Adding He: Energy Levels for He⁰

- He⁰ is a two-electron system: S = 0 or 1 (m = 1 or 3)
 - $\frac{3}{4}$ of the recombinations go to triplet state (J = L-1, L, L+1)
 - $\frac{1}{4}$ go to singlet state (J = L)
 - 2^{3} S is a metastable state:
 - can be collisionally excited to 2¹S or 2¹P (at $n_e \approx 10^4 \text{ cm}^{-3}$)
 - can decay to 1^1 S by forbidden photon at 19.8 eV
- Transition to 1¹S results in H-ionizing photon: ionization equilibrium equations get more complicated (Osterbrock, p. 30)

H + He Nebula Models

(Osterbrock & Ferland, p. 32)

- Due to its abundance, H controls the full extent of the ionized zone
- For very hot (O) stars, H⁺ and He⁺ zones are coincident
- For an H II region, few photons have $hv > 54.4 \text{ eV} \rightarrow no \text{ He}^{+2}$ zone

Planetary Nebula Model - ionization of He⁺ important

(Osterbrock and Ferland, p. 36)

Photoionization of Heavy Elements

- # ionizations of Xⁱ = # recombinations of Xⁱ⁺¹
 n(X) = n(X⁰) + n(X⁺) + ... + n(X⁺ⁿ)
 where n(X)/n(H) = fractional abundance of element X
- Heavy element contribution to diffuse field ≈ 0
- $a_v, \alpha(T)$ not well known for many ions
- a_v can show complicated structure, due to resonances.
- There can also be ionizations of inner shell electrons from X-rays (important in AGN). Vacancies are filled with outer electrons:
 - 1) Producing X-ray emission lines and/or
 - 2) Auger effect: one or more electrons move down, one or more are ejected from the atom.

Recombination of Heavy Elements

- Dielectronic recombination:
- Larger than normal recombination for some ions
- Relative importance tends to increase with Temperature
- Captured free electron excites bound electron in atom, leading to a "double excited" state
- Both electrons eventually decay to ground state
- Charge exchange
- Occurs when two ions have about the same I.P.
- Example:

 $O^0 + H^+ \rightarrow O^+ + H^0$

(works in reverse as well)

$$\frac{n(O^0)}{n(O^+)} \approx \frac{n(H^0)}{n(H^+)}$$
 (O ionization locked to H)

"Real" Photoionization Models
The input parameters are typically:

Input energy spectrum (type of star, AGN, etc.)
Ionizing flux or luminosity plus distance
Density of hydrogen (ionized + neutral)
Abundances of the elements

- most simple models assume plane-parallel geometry (slab) and constant density in slab.

The output parameters include:

- 1) Ionization structure into the slab.
- 2) Temperature structure of the slab.
- 3) Emission line fluxes or ratios