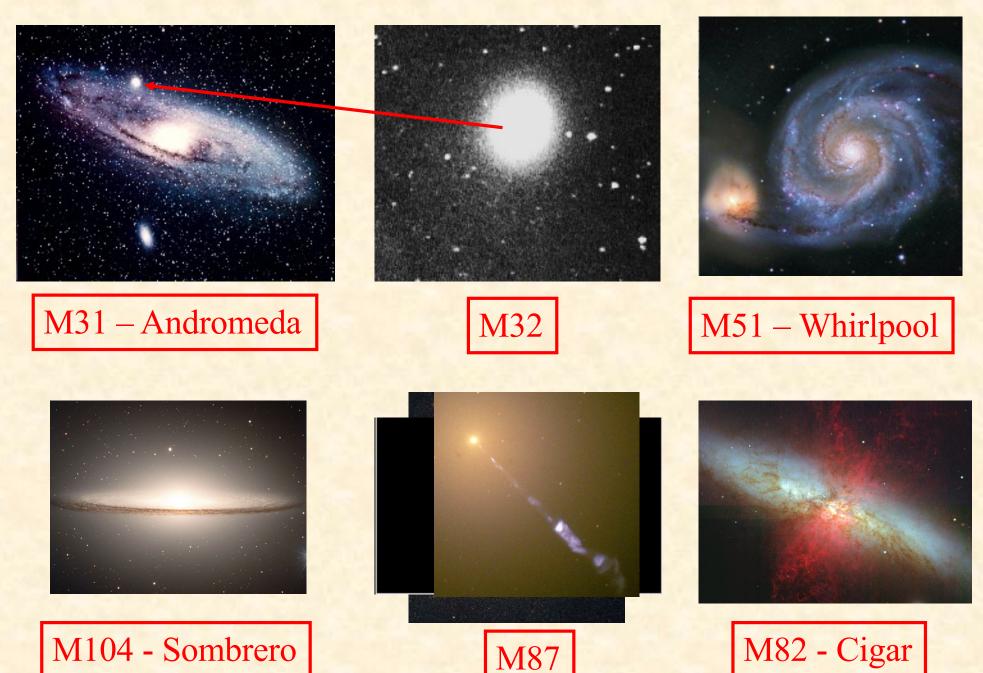


- History
- Famous Galaxies
- Catalogs and Atlases
- Classification Schemes


What is a galaxy?

- A gravitationally bound collection of stars
- A galaxy has 10^6 to 10^{12} stars
- Participates in the expansion of the Universe

Galaxies - History

- Originally grouped together with other extended sources (nonstellar in appearance) called nebulae
 - Early catalog of 110 objects by Messier in late 1700s
- Distinguished visually from other nebulae by
 - distinct continuous spectra (M31, Huggins, late 1800s)
 - spiral structure (Earl of Rosse, mid 1800s)
- Photography revealed many more "spiral nebulae" (Keeler & Curtis 1900).
- Kant (1755) first suggested they were "island universes".
- Famous Shapley-Curtis debate of 1920 Curtis argued that spiral nebulae were systems of stars like our Milky Way.
- Hubble (1924) found Cepheid variables in nearby (Local Group) galaxies, placing them outside of the Milky Way.

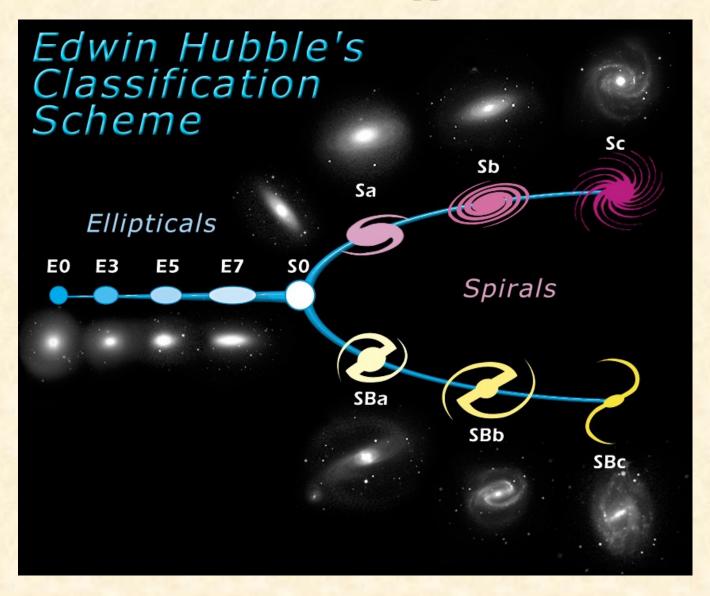
Messier Galaxies

Galaxy Catalogs

- New General Catalog (NGC): includes clusters, nebulae, etc.
 - Visual surveys by Herschels (late 1700s), updated and published by Dreyer in 1888, 7840 entries
 - Modern version: RNGC (Sulentic & Tifft, 1983)
 - Index Catalog (IC): supplements with ~5100 more entries
 - NGC 2000 contains both NGC and IC (electronic version at http://spider.seds.org/ngc/ngc.html.
- Third Reference Catalog of Bright Galaxies (RC3), de Vaucouleurs et al. (1991)
 - redshifts, magnitudes, classifications, sizes, etc. for
 ~23,000 galaxies
- Revised Shapley-Ames Catalog of Bright Galaxies (RSA), Sandage and Tammann (1981)
 - Complete data for 1300 galaxies brighter than B = 13.2, with photos

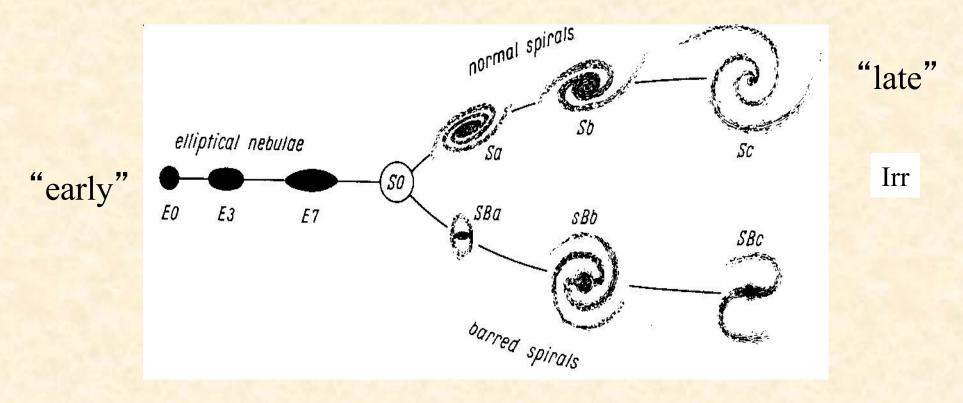
More Catalogs

- Uppsala General Catalog of Galaxies (UGC), Nilsson, 1973
- Morphological Catalog of Galaxies (MCG), Vorontsov-Velyaminov et al. (1974)
- Catalog of Galaxies and Clusters of Galaxies, Zwicky (1968)
 - Above three from Palomar Sky Survey (POSS)
- Catalog of Selected Compact Galaxies and of Post-Eruptive Galaxies, Zwicky et al. (1971)
 - normal, interacting, and Seyfert galaxies (e.g., I Zw 1)
 - http://nedwww.ipac.caltech.edu/level5/Sept02/Zwicky/frames.html


Selected Atlases

- Hubble Atlas of Galaxies, Sandage (1961)
- Atlas of Peculiar Galaxies, Arp (1966)
- Atlas of Galaxies Useful for Measuring the Cosmological Distance Scale, Sandage and Bedke (1988)
- Carnegie Atlas of Galaxies, Sandage and J. Bedke (1994)
 - Includes nearly all 1300 RSA galaxies!

These atlases (and others) are useful for classifying galaxies on a (semi-) objective scale.


Morphological Classification

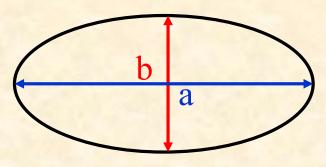
- based on visual appearance

Courtesy of Space Telescope Science Institute

Hubble's Tuning-Fork Diagram (Realm of the Nebulae, Hubble, 1936)

Ellipticals: increasing ellipticity →

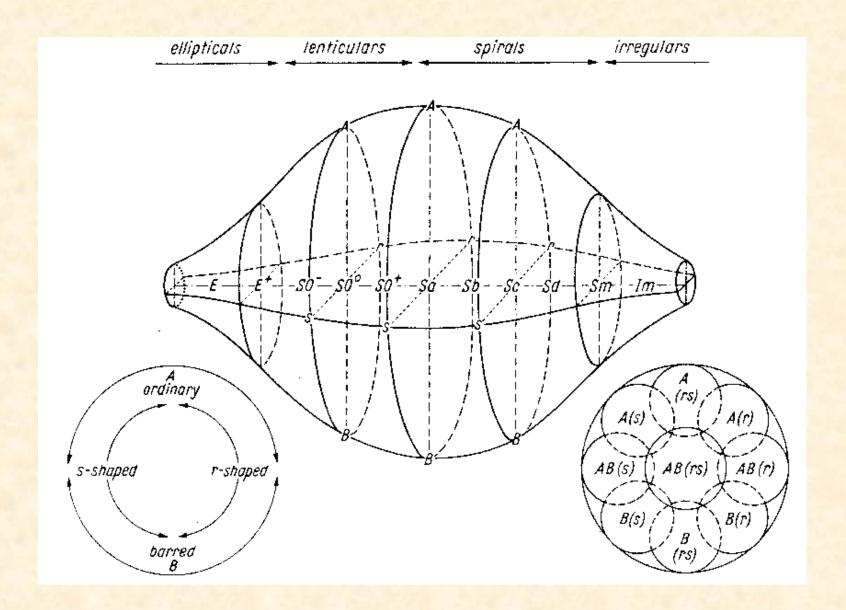
Spirals: decreasing bulge/disk →


decreasing "tightness" of spiral arms →

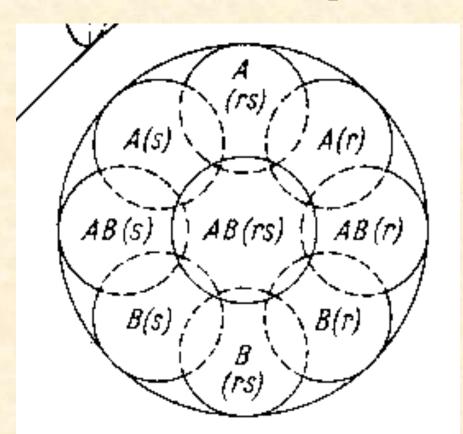
(Increasing gas and dust →)

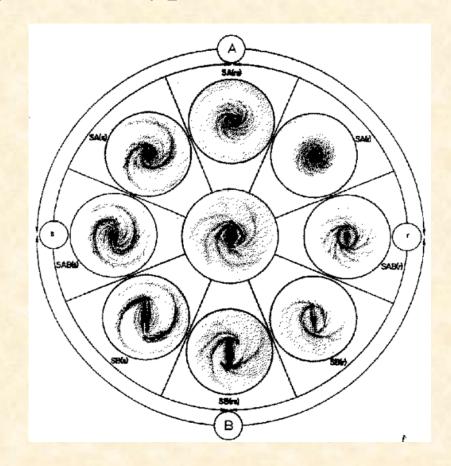
(Increasing # of blue (young) stars →)

- More morphology:
- a = major axis, b = minor axis



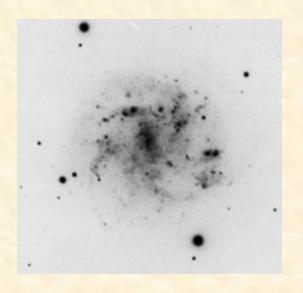
- based on appearance only; e.g., a prolate spheroid
 viewed along its long axis would be classified as E0
- Includes cD galaxies, other giant E's, dwarf E's, and spheroidal E's (in order of decreasing luminosity
- S0's and SB0's (lenticulars): no spiral arms
 - S0₁, S0₂, S0₃: no dust → strong dust lane
 - SB0₁, SB0₂, SB0₃: broad "knobs" → well-defined bar
- Spirals: regular and barred
 - b/a gives the disk inclination; inc. = \cos^{-1} (b/a)
 - fraction that are SB's: 30 80% (depends on luminosity, waveband, strength of bar, etc.)


De Vaucouleur's Modifications (used in NED)

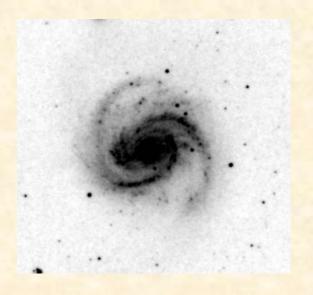

- Three main classes of spirals: SA (formerly S), SAB (weak bar), and SB (strong bar)
- More spiral subclasses (e.g., ab, bc)
- Extended spirals to "later" subtypes: d, m
 - d: very loose arms, very small or no bulge
 - m: weak, often "stubby" spiral structure like LMC (SBm)
 - Sequence: a, ab, b, bc, c, cd, d, dm,m
 - Irregulars become Im (like **SMC**)
- Inner structure: r (ring) or s (spiral)
 - Ex) The Milky Way is thought to be SAB(rs)bc
- Prefix "R": outer ring
- Suffix P: peculiar
- For small galaxies, dIrr and dSph (spheroidal) are often used.

De Vaucouleur's Original Scheme (Graphical)

Example for Spiral Subtype bc

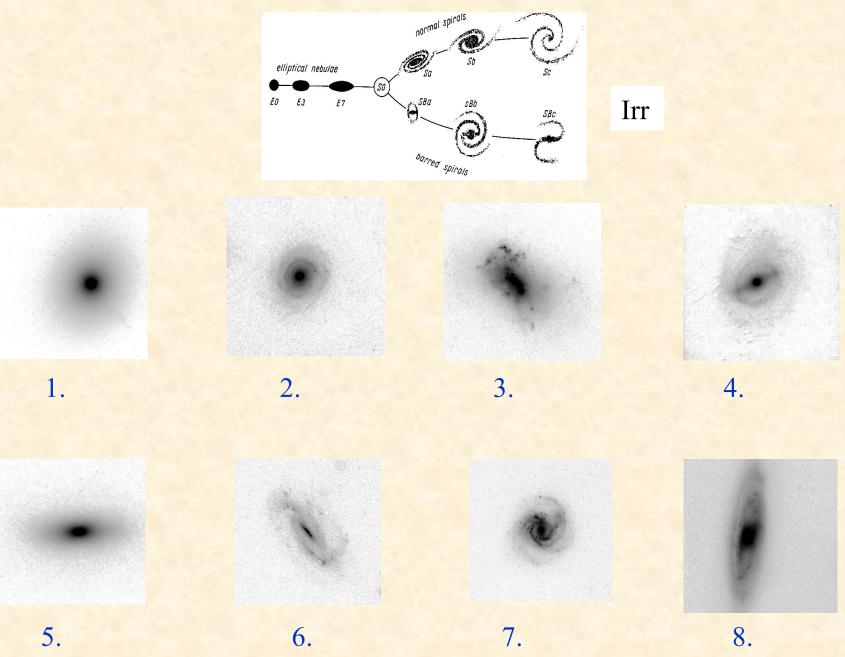


Hubble Stage (T) (from Binney & Merrifield, p. 155)

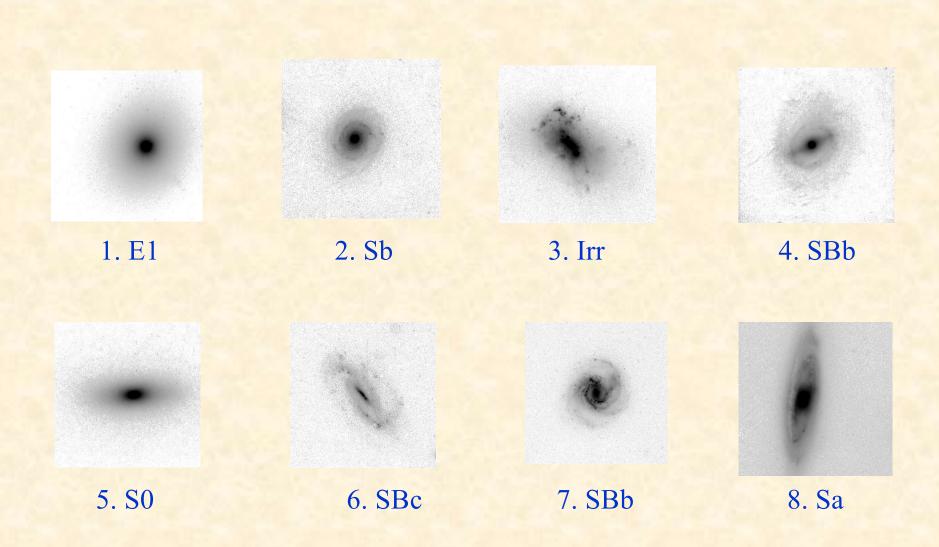

Hubble	Е	E-S0	S0	S0/a	Sa	Sa-b	Sb	Sb-c	Sc	Sc-I	Irr
De Vauc.	Е	S0-	$S0^0$	S0 ⁺	Sa	Sab	Sb	Sbc	Scd	Sdm	Im
T	-5	-3	-2	0	1	2	3	4	6	8	10

Further Classification of Spiral Arms

- Van den Bergh Luminosity Class: I → V
 - long, organized arms → choppy, unorganized arms
 - most luminous → least luminous (not a great correlation)
- Elmegreen & Elmegreen (1982): 12 arm classes
 - Class 1 multiple arms, fragmented ("flocculent")
 - Class 12 two long symmetric arms ("grand design")



NGC 2500 – flocculent



NGC 4321 – grand design

The Classification Game

The Classification Game

Finding Galaxies: Large-Area Surveys

Waveband	Survey	Telescope	Coverage	
Optical B and R bands	Palomar Sky Survey (POSS-I), 1960	Palomar 48" Schmidt	-30 to +90°	
B, R, I bands	POSS-II, 1999	"	0° to +90°	
Optical B and R bands	ESO/SERC Southern Sky Survey, 1980	UK 1.2-m, ESO 1-m Schmidt	-90° to 0°	
B, R, I bands	2 nd SERC, 2000	UK 1.2m Schmidt	-90° to 0°	
Near- IR: J, H, K _s	Two Micron All Sky Survey (2MASS)	Mt Hopkins 1.3m CTIO 1.3-m	All sky	
Radio 1.4GHz	NRAO VLA Sky Survey	Very Large Array	-40 to +90°	
H I 21cm	Bell Labs H I Survey	Bell AT&T 20-foot	-40 to +90°	
Mid-IR:12, 25, 60, 100μm	IRAS (Infrared Astronomica	All-sky		
EUV: 70-760Å	EUVE (Extreme Ultraviolet	All-sky		
Soft X-rays: 0.1- 2 keV	ROSAT (Roentgen Satellite)	All-sky		
Hard X-rays: 14 – 195 keV	Swift BAT Survey	All-sky		
γ-rays: 0.1 MeV –30 GeV	CGRO (Compton Gamma-R	All-sky		
UV:1500, 2300 Å	GALEX (Galaxy Explorer)	All-sky		