Photoionization Models

- How photoionization codes work (simplified)
- Calculating a specific model
- Additional complications/considerations
- Unresolved emission-line regions
- Cloudy

Photoionization Codes

Equations for calculating a model:

1)
$$\frac{dI_{v}}{ds} = -I_{v} \frac{d\tau_{v}}{ds} + j_{v}$$
 (radiative transfer)

where
$$\frac{d\tau_{v}}{ds} = \sum_{j} n_{j} a_{v_{j}}$$
 (sum over all ions)

2)
$$n(X^{i}) \int_{v_{i}}^{\infty} \frac{4\pi J_{v}}{hv} a_{v}(X^{i}) dv = n(X^{i+1}) n_{e} \alpha(X^{i}, T)$$
 (ion. equil.)

where
$$\sum n(X^i) = n(X)$$
 and Abundance = $n(X)/n(H)$

3)
$$G = L_R + L_{EF} + L_C$$
 (conservation of energy)

Procedure:

- Assume a geometry (spherical, plane-parallel, etc.)
- Determine the ionizing flux at the incident face of the cloud (PN – inner face of shell, filled H II region – surface of star, AGN – ionized face of discrete cloud (usually a slab)
- Divide the cloud into zones and calculate the reduction of photons as you move into the cloud
- Use the on-the-spot approximation (all diffuse ionizing photons are absorbed locally) in the first series of calculations to determine: temperature, ionization fractions, emissivities, and reduction of ionizing photons in each zone
- In subsequent iterations, determine the diffuse field as you go to deeper zones in the cloud

Calculating a Specific Model

- Estimate the initial input parameters:
 - 1) Geometry (sphere, shell, slab, other?)
 - 2) n_e (or n_H) from [O II], [S II], critical densities, etc.
 - is density a function of distance: n(r)?
 - 3) Ionizing spectrum (spectral energy distribution)
 - clues from type of source, Zanstra method, etc.
 - 4) Flux of ionizing source (star, AGN, etc.) at surface of cloud
 - 5) Abundances (normally assume solar to begin with)
- Calculate the model
- Compare model spectrum to observed spectrum (usually line ratios relative to Hβ)
- Iterate

Additional Considerations

- Optical depth of cloud (when to terminate the integration?)

 Extremes:
 - 1) matter bounded optically thin to ionizing radiation
 - 2) radiation bounded optically thick to ionizing radiation
- Filling factor (ε): percentage of volume that is filled
 - are there discrete clouds?
- Covering factor (C): fraction of ionizing flux that is intercepted by the gas: $C = \Omega/4\pi$
- Multicomponent models (when one component just won't do!)
 - Ex) Condensations in a diffuse medium (two densities)
 - Ex) Two or more clouds at different distances from source
- Many other games you can play!

Unresolved Emission-Line Regions

- Ex) broad-line region (BLR) of AGN
- Problem: don't know distance from source to cloud(s)
- Assume a slab (discrete cloud, large distance from source)
- Use the ionization parameter (U):

$$U = \frac{\int_{v_0}^{\infty} \frac{L_v}{hv} dv}{4\pi r^2 cn_e} = \frac{\text{# ionizing photons/vol}}{\text{# electrons/vol}} \text{ at the incident face}$$

From the ionization equilibrium equation:

$$U = \frac{Q_{ion}}{4\pi r^2 cn_e} \approx \frac{\alpha(X^i, T)}{a_v(X^i) c} \frac{n(X^{i+1})}{n(X^i)}$$

- → U is a dimensionless parameter that specifies the ionization fractions
- → U is the most important factor in determining line ratios
 (n_e is next most important)

Emission-Line Ratios as a Function of U (Ferland & Netzer, 1983, ApJ, 264, 105)

[O III] 5007, [O II] 3727, [N II] 6584, [O I] 6300, [S II] 6731, [N I] 5200, C III] 1909, C IV 1549, He I 5876, He II 4686

- So for AGN models, the typical input parameters are:
 - 1) U Guess from ratios: C IV/C III], etc.
 - 2) n_H presence of lines with certain critical densities Ex) [O III] not present in BLR, so $n_H > 10^8$ cm⁻³
 - 3) SED from X-ray, UV, and optical observations (don't know EUV!)
 - 4) N_H integrate model until lines that form deep in cloud are matched usually very optically thick
 - 5) Abundances (last resort!)
- Usually, at least 2 components with different U, n_e needed
- Can derive distances of clouds from U, n_e

Cloudy - State of the Art

- Main web page (downloads, documentation, discussion, etc.):
 http://www.nublado.org/
- Status of numerical simulations of photoionized gas: Ferland, G.J. 2003, ARAA, 41, 517
- To reference cloudy in your published paper: Ferland, G.J., et al. 2013, RMxAA, 49, 137

Ex) HST/STIS Spectra of the Narrow-Line Region in NGC 1068 (Seyfert 2 Galaxy)

WFPC 2 image blue - stellar

red - Hα

green - [O III]

NGC 1068: NLR – [O III] Image

STIS Raw UV Spectrum

NGC 1068 - Hot Spot STIS Spectrum of NLR (Kraemer & Crenshaw, 2000, ApJ, 532, 256)

Huge range in ionization:

- Low: O I, Mg II, C II
- High: C IV, [O III], etc.
- Coronal: [Fe XI], [Fe XIV], [S XII] ($IP_C = 504 \text{ eV}$)

Redshift vs. Ionization Potential

- kinematic evidence for distinct components

NLR Photoionization Models – 3 components

- 1) LOWION: $U = 10^{-3.2}$, $n_H = 3 \times 10^4 \text{ cm}^{-3}$, $N_H = 1 \times 10^{21} \text{ cm}^{-2}$
- 2) HIGHION: $U = 10^{-1.5}$, $n_H = 6 \times 10^4 \text{ cm}^{-3}$, $N_H = 1 \times 10^{21} \text{ cm}^{-2}$
- 3) CORONAL: $U = 10^{0.2}$, $n_H = 7 \times 10^2 \text{ cm}^{-3}$, $N_H = 4 \times 10^{22} \text{ cm}^{-2}$ (?)

Intrinsic and Filtered Continua (for LOWION)

(Absorber: $U = 10^{-1.0}$, $N_H = 7 \times 10^{22}$ cm⁻²)

Line Ratios from Model Components, Composite, and Observations (Relative to $H\beta$) Emission Line HIGHION^a TOMION_P Composite Observed* C m 1977 (1.47)(1.08)(1.37)N III 1990 (0.64)(0.78)(0.68)Lyα λ1216 34.18 40.44 35.74 30.17 + 5.65N v 1240 0.00 2.50 3.33 16.19 + 2.86Сп 1335 0.03 0.09 (4.02) 1.01 0.98 ± 0.19 O IV] \$1402 + Si IV \$1398 4.74 0.00 3.56 4.99 ± 0.19 N IV] 1486 299 0.00 2.24 0.76 ± 0.13 C IV 11550..... 32.52 0.03 24.40 19.83 ± 2.53 Не п 11640 6.30 1.29 5.05 4.34 ± 0.57 O m 11663 1.71 0.091.31 N m 11750 0.81 0.05 0.62 C m] \$1909 + Si m] \$\$\$1883, 1892..... 6.66 1.04 5.25 7.16 ± 0.96 Сп] 12326 + Оп] 12321..... 0.24 1.96 0.67 0.47 ± 0.09 [Ne IV] 12423 1.62 0.01 1.22 1.44 ± 0.20 [O II] 12470 0.00 0.77 0.19 Mg II λ2800 0.00 3.05 (8.54) 2.13 1.91 ± 0.21 Не п 13204 0.36 80.0 0.29 0.89 ± 0.21 [Ne V] \(\lambda 3346 \dots \d 1.83 0.00 1.38 1.74 ± 0.17 [Ne V] 13426 499 0.00 3.74 4.94 + 0.36[Fe VII] \$3588 0.46 0.000.340.44 + 0.07[O II] 13727 0.00 2.81 0.70 0.56 + 0.08[Fe VII] 13760 0.00 0.48 0.85 ± 0.07 0.63 [Ne III] 13869 2.35 + 0.191.12 1.67 1.26 [Nc III] λ3967 + Hε..... 0.50 0.68 0.55 0.86 ± 0.10 [S II] Å4072 0.00 0.87 0.22 0.33 ± 0.05 Ηδ λ4100 0.26 0.26 0.26 0.33 ± 0.05 Hy λ4340 0.47 0.47 0.47 0.66 ± 0.06 [O III] 14363 0.63 0.07 0.49 0.43 ± 0.05 Не п 14686 0.87 0.19 0.70 0.60 + 0.05Ηβ 1.00 1.00 1.00 1.00 [O III] 14959 6.60 2.85 5.66 4.96 ± 0.38 [O m] 15007 19.80 8.56 16.99 15.12 + 0.98[Fe VII] \(\lambda 5721\) 0.79 0.83 ± 0.07 0.00 0.60 He I 15876..... 0.02 0.13 0.05 0.25 ± 0.12 [Fe VII] λ6087 1.18 0.00 0.88 1.08 ± 0.10 [O I] \$\ddot 6300 + [S III] \$\dot 6312 \dots \do 0.00 2.29 0.57 0.27 ± 0.03 [O I] $\lambda 6364 + [Fe X] \lambda 6374 \dots$ 1.17 0.71 1.06 0.80 ± 0.07 [N II] \$6548 0.00 2.65 0.66 0.98 + 0.22Ηα λ6563 2.78 2.94 2.82 2.81 + 0.51 2.94 ± 0.66 [N II] \$6584 0.00 7.65 1.91 [S II] \$6716 0.00 1.03 0.26 0.17 + 0.03[S II] \$\lambda 6731 1.22 0.00 0.30 0.21 + 0.04[O II] 17325 0.00 0.98 0.24 0.24 ± 0.04 [S III] 19069 0.00 1.17 0.30 0.51 ± 0.09 [S III] 19532 0.01 3.08 0.72 1.28 ± 0.17

"CORONAL" Model

PREDICTED MEAN IONIZATION FRACTIONS (FROM CORONAL MODEL)

Element	VII	VIII	IX	x	ХI	XII	XIII	XIV	xv
Si	0.001ª	0.034ª	0.191	0.339	0.288	0.099	0.046	0.002	
S		0.019	0.124	0.235	0.261	0.221ª	0.107	0.025	0.007
Ar	0.001	0.012	0.101	0.179ª	0.229	0.228	0.150	0.077	0.019
Fe	a		0.003	0.020ª	0.076ª	0.188	0.252	0.193^a	0.160
Ní			0.001	0.022	0.106	0.180	0.181ª	0.170	0.144 ^a

Observed in hot spot spectrum.

Atomic Data Needed

- "Toy model" generated to match the ionization states seen
- To get a real model of the emission lines, we need:
 - 1) Collision strengths for these intermediate ionization states
 - 2) Accurate dielectronic recombination rates (over a temperature range 40,000 100,000 °K)