1. a) \(1 + z = \frac{1 + \beta}{\sqrt{1 - \beta}} \rightarrow (1 + z)^2 = \frac{1 + \beta}{1 - \beta} \)

\((1 + \beta) = (1 + z)^2 (1 - \beta) = (1 + z)^2 - (1 + z)^2 \beta \)

\(\beta + \beta (1 + z)^2 = (1 + z)^2 - 1 \)

\(\beta = \frac{(1 + z)^2 - 1}{(1 + z)^2 + 1} \)

b) You can solve this algebraically or graphically. For a 1% error.

\(\frac{z - \beta}{z} = 0.01 \) so \(\frac{\beta}{z} = 0.99 \)

\(\frac{1}{z} \frac{(1 + z)^2 - 1}{(1 + z)^2} = 0.99 \)

\(\frac{z^2 + 2z}{z^2 + 2z + 2} = 0.99z \)

\(0.99z^3 + 2(0.99)z^2 + (2)(0.99)z = z^2 + 2z \)

\(0.99z^2 + 1.98z + 1.98 = z + 2 \)

\(0.99z^2 + 0.98z - 0.02 = 0 \)

Using the quadratic equation:

\(z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)

\(z = 0.02 \) (the other solution is -1.01, which is not valid)

For a 10% error, use the same formalism to get:

\(z = 0.2 \) (the other solution is -1.09, which is not valid)
c) The Hubble flow velocity would have to be ~6000 km s\(^{-1}\).
\[z = \frac{v}{c} = 0.02, \quad \text{Galaxies with } z < 0.02 \text{ are affected most severely.} \]

2. a) NGC 4151: RA = 12h10m32.6s +39d24m21s (J2000)
b) \(z = 0.003319 \), \(cz = 995 \text{ km/s (heliocentric)} \)
- from H I 21-cm emission from host galaxy, Third Reference Catalog of Bright Galaxies (RC3), deVaucouleurs et al. (1991)
c) Distance from \(z \): \(D = \frac{cz}{H_0} = 13.6 \text{ Mpc} \), where \(H_0 = 73 \text{ km/sec/Mpc} \)
Corrected \(z \) to CMB frame: \(D = 17.0 \text{ Mpc} \)
Distance from other techniques (average) = 14.1 Mpc
- huge variation depending on technique!
d) R’SAB(rs)ab – Spiral galaxy with weak bar, outer pseudo-ring, inner ring/spiral, early type (deVaucouleurs et al. 1991)
Seyfert 1.5
e) \[\theta = \frac{r}{D} = \frac{1 \text{ kpc}}{13.6 \times 10^3 \text{ kpc}} = 7.35 \times 10^{-5} \text{ rad} \left(\frac{206,265 \text{ arcsec}}{1 \text{ rad}} \right) = 15 \text{ arcsec} \]
Scale = 15 arcsec/kpc

From NED: Scale = 12 arcsec/kpc (using CMB correction)
f) Major, minor axes = 6.3 x 4.5 arcmin, 31 x 22 kpc (from POSS)
g) \(\text{Inc} = \cos^{-1}(a/b) = 44^\circ \)

3. a) Assume you are looking at a torus from different inclination angles along a hemisphere. At a given distance (\(r \)), the probability of viewing at angle \(\theta \) is proportional to the solid angle determined by an annulus perpendicular to the disk with width \(d\theta \). So:
\[dP(\theta) = \sin(\theta)d\theta \] (probability increases with increasing \(\theta \))

The probability observing between angles \(\theta_1 \) and \(\theta_2 \) is:
\[P = \int_{\theta_1}^{\theta_2} \sin \theta \, d\theta \int_{\theta_1}^{\pi/2} \sin \theta \, d\theta \]
\[P = \cos(\theta_1) - \cos(\theta_2) \]

The probability of observing a certain ratio of Seyfert 2s to Seyfert 1s is:
4. a) Sample biases:
1) Eddington bias: random errors in AGN magnitudes tend to increase number counts in surveys to a certain flux limit
2) Variablity: variable sources may be above or below the flux limit at any specific time
3) Emission-line equivalent width: surveys based on emission lines may miss sources with weak emission lines (low equivalent widths)
4) Absorption lines: strong absorption lines may suppress continuum flux, especially shortward of Lyα
5) Internal absorption: reddening by internal dust can suppress the entire flux, especially in the blue; strongly affects surveys that use color selection

b) Biases in specific wavebands
1) Radio: miss radio-quiet AGN, 90% of the population
2) Infrared: could miss Type 2 AGN in near-IR (not seeing inner part of torus, confusion with intense starbursts in far-IR
3) Optical/UV: miss AGN that are heavily reddened/extincted by host galaxy; miss some Type 2 AGN obscured by torus
4) EUV: miss about everything!
5) X-rays: miss obscured (Type 2) AGN in soft X-rays; miss some Compton-thick AGN even in hard X-rays

\[
x = \frac{\text{# Seyfert 2s}}{\text{# Seyfert 1s}} = \frac{N_2}{N_1}
\]

\[
P = \frac{N_2}{N_1 + N_2} \Rightarrow P = \frac{x}{x+1}
\]

\[
P = \cos(\theta_{\text{min}}) - \cos(90) = \cos(\theta_{\text{min}})
\]

\[
\theta_{\text{min}} = \cos^{-1}(P) = \cos^{-1}\left(\frac{x}{x+1}\right)
\]

For \(x = 1\), \(\theta_{\text{min}} = 60°\)
For \(x = 2\), \(\theta_{\text{min}} = 48°\)
For \(x = 3\), \(\theta_{\text{min}} = 41°\)