Homework Set 1 - "Answers"

1. a) $1+z=\sqrt{\frac{1+\beta}{1-\beta}} \quad \rightarrow \quad(1+z)^{2}=\frac{1+\beta}{1-\beta}$

$$
\begin{aligned}
& (1+\beta)=(1+z)^{2}(1-\beta)=(1+z)^{2}-(1+z)^{2} \beta \\
& \beta+\beta(1+z)^{2}=(1+z)^{2}-1 \\
& \beta=\frac{(1+z)^{2}-1}{(1+z)^{2}+1}
\end{aligned}
$$

b) You can solve this algebraically or graphically. For a 1% error:

$$
\begin{aligned}
& \frac{z-\beta}{z}=0.01 \text { so } \frac{\beta}{z}=0.99 \\
& \frac{1}{z(1+z)^{2}-1}(1+z)^{2}+1 \\
& =0.99 \\
& \frac{z^{2}+2 z}{z^{2}+2 z+2}=0.99 z \\
& 0.99 z^{3}+2(0.99) z^{2}+(2)(0.99) z=z^{2}+2 z \\
& 0.99 z^{2}+1.98 z+1.98=z+2 \\
& 0.99 z^{2}+0.98 z-0.02=0
\end{aligned}
$$

Using the quadratic equation:

$$
\begin{aligned}
& z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& z=0.02 \quad \text { (the other solution is }-1.01, \text { which is not valid) }
\end{aligned}
$$

For a 10% error, use the same formalism to get:
$z=0.2$ (the other solution is -1.09 , which is not valid)

c) The Hubble flow velocity would have to be $\sim 6000 \mathrm{~km} \mathrm{~s}^{-1}$. $\mathrm{z}=\mathrm{v} / \mathrm{c}=0.02, \quad$ Galaxies with $\mathrm{z}<0.02$ are affected most severely.
2. a) NGC 4151: RA $=12 \mathrm{~h} 10 \mathrm{~m} 32.6 \mathrm{~s}+39 \mathrm{~d} 24 \mathrm{~m} 21 \mathrm{~s}(\mathrm{~J} 2000)$

- from "Optical Positions of Seyfert Galaxies", Clements, E.D. 1981, MNRAS, 197, 829.
b) $\mathrm{z}=0.003319, \mathrm{cz}=995 \mathrm{~km} / \mathrm{s}$ (heliocentric)
- from H I 21-cm emission from host galaxy, Third Reference Catalog of Bright Galaxies (RC3), deVaucouleurs et al. (1991)
c) Distance from z: $\mathrm{D}=\mathrm{cz} / \mathrm{H}_{0}=13.6 \mathrm{Mpc}$, where $\mathrm{H}_{0}=73 \mathrm{~km} / \mathrm{sec} / \mathrm{Mpc}$ Corrected z to CMB frame: $\mathrm{D}=17.0 \mathrm{Mpc}$
Distance from other techniques (average) $=14.1 \mathrm{Mpc}$
- huge variation depending on technique!
d) R'SAB(rs)ab - Spiral galaxy with weak bar, outer pseudo-ring, inner ring/spiral, early type (deVaucouleurs et al. 1991)
Seyfert 1.5
e)
$\theta=\frac{r}{D}=\frac{1 \mathrm{kpc}}{13.6 \times 10^{3} \mathrm{kpc}}=7.35 \times 10^{-5} \mathrm{rad}\left(\frac{206,265 \mathrm{arcsec}}{1 \mathrm{rad}}\right)=15 \mathrm{arcsec}$
Scale $=15 \mathrm{arcsec} / \mathrm{kpc}$
From
NED: Scale $=12 \mathrm{arcsec} / \mathrm{kpc}$ (using CMB correction)
f) Major, minor axes $=6.3 \times 4.5 \mathrm{arcmin}, 31 \times 22 \mathrm{kpc}$ (from POSS)
g) Inc $=\cos ^{-1}(\mathrm{a} / \mathrm{b})=44^{\circ}$

h) $E(B-V)=0.028$ mag (from Schlegel et al. maps of IR emission from Galactic dust)

3. a) Assume you are looking at a torus from different inclination angles along a hemisphere. At a given distance (r), the probability of viewing at angle θ is proportional to the solid angle determined by an annulus perpendicular to the disk with width $\mathrm{d} \theta$. So: $\mathrm{dP}(\theta)=\sin (\theta) \mathrm{d} \theta \quad$ (probability increases with increasing θ)

The probability of observing between angles θ_{1} and θ_{2} is:

$$
\begin{aligned}
& \mathrm{P}=\int_{\theta_{1}}^{\theta_{2}} \sin \theta \mathrm{~d} \theta / \int_{0}^{\pi / 2} \sin \theta \mathrm{~d} \theta \\
& \mathrm{P}=\cos \left(\theta_{1}\right)-\cos \left(\theta_{2}\right)
\end{aligned}
$$

The probability of observing a certain ratio of Seyfert 2s to Seyfert 1s is:

$$
\begin{aligned}
& x=\frac{\# \text { Seyfert } 2 \mathrm{~s}}{\# \text { Seyfert } 1 s}=\frac{N_{2}}{N_{1}} \\
& P=\frac{N_{2}}{N_{1}+N_{2}} \rightarrow P=\frac{x}{x+1} \\
& P=\cos \left(\theta_{\min }\right)-\cos (90)=\cos \left(\theta_{\min }\right) \\
& \theta_{\min }=\cos ^{-1}(P)=\cos ^{-1}\left(\frac{x}{x+1}\right)
\end{aligned}
$$

For $\mathrm{x}=1, \theta_{\text {min }}=60^{\circ}$
For $\mathrm{x}=2, \theta_{\text {min }}=48^{\circ}$
For $\mathrm{x}=3, \theta_{\text {min }}=41^{\circ}$

