ASTRONOMY 8400 – SPRING 2024 Homework Set 3, Due 4/2/24 at 10:30 AM

- 1. Suppose that you had a face-on disk galaxy at a distance of 10 Mpc that contains only solar-type stars (and no dust), with a uniform luminosity per area of 1 L \odot pc⁻².
- a) What is the surface brightness of this galaxy in the B band (μ_B) in mag arcsec⁻²?
- b) If there was an identical face-on galaxy behind it at a distance of 50 Mpc, what would the combined surface brightness (μ_B) be in the area of overlap?
- c) What if the more distant galaxy was inclined to the line of sight by 60° ? What would the combined surface brightness (μ_B) be in the area of overlap?
- d) If the diameter of each galaxy in c) was 30 kpc, what would be their separate and combined B magnitudes?
- 2. Given the Schechter luminosity function for galaxies, what is the average luminosity density (in L \odot Mpc⁻³) of the present-day Universe? If the critical density for the present-day Universe is 2.8 x 10¹¹ h² M \odot Mpc⁻³, what would the corresponding \mathcal{M}/L (mass-to-light ratio in solar units) be for a critical-density Universe?
- 3. Surface brightness profiles and luminosity:
- a) Show that the deVaucouluer $R^{1/4}$ law results in a total luminosity of 7.22 π R_e^2 $I(R_e)$.
- b) Show that half of the above luminosity come from within a radius Re.
- c) Derive an expression for the total luminosity in a disk galaxy, where the surface brightness along the major axis is characterized by the exponential law.