RUNG 2: MOVING CLUSTER METHOD

Aparna V
Extragalactic Astronomy
Spring 2018
INTRODUCTION

• Used to determine distances within the Milky Way!
 • A few hundred pcs

• Most important motion based method

• Clusters are gravitationally bound
 • Stars move through space collectively
 • Record change in positions of stars in the cluster with time
 • Cos of the bulk motion of the cluster
 • Direction of motion can be determined (\vec{v})
• Remove Sun’s peculiar motion
• Trace the directional vectors of each star to get a Convergent Point
 • Highest density in great Circle intersections
DIRECTIONAL VECTORS

- \(v_r = v \cos \phi \)
- \(v_t = v \sin \phi \)
- \(v_t = v_r \tan \phi \)

- \(v_t \rightarrow \text{tangential velocity} \)
- \(v_r \rightarrow \text{radial velocity} \)
- \(v \rightarrow \text{space velocity} \)
Observables:

- Proper motion
 - Direction
 - Convergent Point
- Radial Velocity
 - Spectra
DISTANCE TO THE CLUSTER

• Transverse velocity $v_t \equiv \text{proper motion } \mu$

• $\mu = \frac{v_t}{d}$

• d can then be determined
 • Average radial velocity v_r
 • Average μ

• $d = \frac{\langle v_r \rangle \tan \varnothing}{\langle \mu \rangle}$ \text{SI units}$

• $d = \frac{\langle v_r \rangle \tan \varnothing}{4.74 \langle \mu^\prime \rangle}$ \text{pc, km/s \& arcsec/yr}$
ASSUMPTIONS & UNCERTAINTIES

• All stars gravitationally bound
 • Belong to the cluster
• Similar age, distance, kinematics, metallicity
• Space velocity vectors are parallel
 • Random motions, rotation can contribute to errors
• Defining a convergent point accurately
 • Works best with clusters with large angular size
• Cluster must be close enough
 • Proper motions can be measured accurately
• Foreground and Background stars must be identified
 • Error in direction, radial velocity
• Increasing distance – less change in proper motion
Open clusters
- Hyades (200) – 47 pc
- Ursa Major (60) – 24 pc
- Pleiades (600) – 115 pc
- Scorpio-Centaurus (100) – 170 pc
- Works for a few hundred parsecs
• Historically important
• Trigonometric parallax didn't work
 • For some stars
 • Distances
 • Absolute magnitude
• Set the scale to galactic and extra-galactic distances
 • Main sequence fitting
• Not anymore
 • Parallax measurements have improved

HYADES WAS STANDARD

Carrol & Ostlie 2nd Ed.
RECENT WORK

- Galli, P. A. B. et al. 2017
 - Distance to Pleiades
 - DOI: 10.1051/0004-6361/201629239
 - Mean parallax – 7.44 ± 0.08 mas
 - Distance – 134.4 ± 2.8 pc

- Non-HIPPARCOS weighted mean – 135.0 ± 0.6 pc
 - VLBI – 136.2 ± 1.2 pc
 - 133 ± 5 pc – Gaia using brightest cluster members

- HIPPARCOS
 - 115-120 pc