Chapter 3
The Science of Astronomy

In what ways do all humans employ scientific thinking?

• Scientific thinking is based on everyday ideas of observation and trial-and-error experiments.

What did ancient civilizations achieve in astronomy?

• Daily timekeeping
• Tracking the seasons and calendar
• Monitoring lunar cycles
• Monitoring planets and stars
• Predicting eclipses
• And more…

• Egyptian obelisk: Shadows tell time of day.
England: Stonehenge (completed around 1550 B.C.)

Scotland: 4,000-year-old stone circle; Moon rises as shown here every 18.6 years.

Peru: Lines and patterns, some aligned with stars.
Macchu Pichu, Peru: Structures aligned with solstices.

South Pacific: Polynesians were very skilled in art of celestial navigation

"On the Jisi day, the 7th day of the month, a big new star appeared in the company of the Ho star."

"On the Xinwei day the new star dwindled."

Bone or tortoise shell inscription from the 14th century BC.

China: Earliest known records of supernova explosions (1400 B.C.)

Our mathematical and scientific heritage originated with the civilizations of the Middle East.
Why does modern science trace its roots to the Greeks?

- Greeks were the first people known to make models of nature.
- They tried to explain patterns in nature without resorting to myth or the supernatural.

Greek geocentric model (c. 400 B.C.)

How did the Greeks explain planetary motion?

Underpinnings of the Greek geocentric model:

- Earth at the center of the universe
- Heavens must be “perfect”: Objects moving on perfect spheres or in perfect circles.

Plato

Aristotle

Special Topic: Eratosthenes measures the Earth (c. 240 BC)

Measurements:
Syene to Alexandria distance ≈ 5000 stadia
angle = 7°

\[
\frac{5000 \text{ stadia}}{\text{circum. Earth} = 360°} = \frac{7°}{360°}
\]

→ circum. Earth = \(360/7 \times 5000\) stadia \(\approx 250,000\) stadia

Greek stadium \(\approx 1/6 \text{ km} \times 250,000\) stadia \(\approx 42,000\) km

Compare to modern value \(\approx 40,100\) km:

But this made it difficult to explain apparent retrograde motion of planets…

Review: Over a period of 10 weeks, Mars appears to stop, back up, then go forward again.
The most sophisticated geocentric model was that of Ptolemy (A.D. 100-170) — the Ptolemaic model:
• Sufficiently accurate to remain in use for 1,500 years.

So how does the Ptolemaic model explain retrograde motion? Planets *really do* go backward in this model.

How was Greek knowledge preserved through history?
• Muslim world preserved and enhanced the knowledge they received from the Greeks
• With the fall of Constantinople (Istanbul) in 1453, Eastern scholars headed west to Europe, carrying knowledge that helped ignite the European Renaissance.

How did Copernicus, Tycho, and Kepler challenge the Earth-centered idea?
Copernicus (1473-1543):
• Proposed Sun-centered model (published 1543)
• Used model to determine layout of solar system
But . . .
• Model was no more accurate than Ptolemaic model in predicting planetary positions, because it still used perfect circles.
Tycho Brahe (1546-1601)

- Compiled the most accurate (one arcminute) naked eye measurements ever made of planetary positions.
- Still could not detect stellar parallax, and thus still thought Earth must be at center of solar system
- Hired Kepler, who used Tycho’s observations to discover the truth about planetary motion.

Johannes Kepler (1571-1630)

- Kepler first tried to match Tycho’s observations with circular orbits
- But an 8-arcminute discrepancy led him eventually to ellipses...
  
  “If I had believed that we could ignore these eight minutes [of arc], I would have patched up my hypothesis accordingly. But, since it was not permissible to ignore, those eight minutes pointed the road to a complete reformation in astronomy.”

What are Kepler’s three laws of planetary motion?

**Kepler’s First Law:** The orbit of each planet around the Sun is an **ellipse** with the Sun at one focus.

**Kepler’s Second Law:** The line connecting the planet to the Sun sweeps out equal areas in equal times.

**Kepler’s Third Law:** The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.

What is an ellipse?

An ellipse looks like an elongated circle

\[
\text{eccentricity (e)} = \frac{d}{a} = \frac{\text{distance from center to focus}}{\text{semi-major axis}}
\]
Eccentricity of an Ellipse

Kepler’s Second Law: As a planet moves around its orbit, it sweeps out equal areas in equal times.

What does this imply?
A planet travels faster when it is nearer to the Sun and slower when it is farther from the Sun.

Kepler’s Third Law

More distant planets orbit the Sun at slower average speeds, obeying the relationship

\[ p^2 = a^3 \]

\( p \) = orbital period in years
\( a \) = semi-major axis
= avg. distance from Sun in AU

(Earth is 1 AU from the Sun on average)
Thought Question:
An asteroid orbits the Sun at an average distance \( a = 4 \text{ AU} \). How long does it take to orbit the Sun?

A. 4 years  
B. 8 years  
C. 16 years  
D. 64 years

Hint: Remember that \( p^2 = a^3 \)

How did Galileo solidify the Copernican revolution?
Galileo (1564-1642) overcame major objections to Copernican view. Three key objections rooted in Aristotelian view were:

1. Earth could not be moving because objects in air would be left behind.  
2. Non-circular orbits are not “perfect” as heavens should be.  
3. If Earth were really orbiting Sun, we’d detect stellar parallax.

An asteroid orbits the Sun at an average distance \( a = 4 \text{ AU} \). How long does it take to orbit the Sun?

A. 4 years  
B. 8 years  
C. 16 years  
D. 64 years

We need to find \( p \) so that \( p^2 = a^3 \)
Since \( a = 4 \), \( a^3 = 4^3 = 64 \)  
Therefore \( p = 8 \), \( p^2 = 8^2 = 64 \)
Overcoming the first objection (nature of motion):

Galileo’s experiments showed that objects in air would stay with a moving Earth.

- Aristotle thought that all objects naturally come to rest.
- Galileo showed that objects will stay in motion unless a force acts to slow them down (Newton’s first law of motion).

Overcoming the second objection (heavenly perfection):

Using his telescope, Galileo saw:

- Sunspots on Sun ("imperfections")
- Mountains and valleys on the Moon (proving it is not a perfect sphere)

Galileo was the first person to use a telescope for astronomical observations.

Overcoming the third objection (parallax):

- Tycho thought he had measured stellar distances, so lack of parallax seemed to rule out an orbiting Earth.
- Galileo showed stars must be much farther than Tycho thought — in part by using his telescope to see the Milky Way is countless individual stars.
  - If stars were much farther away, then lack of detectable parallax was no longer so troubling.

Galileo also saw four moons orbiting Jupiter, proving that not all objects orbit the Earth.
Galileo’s observations of phases of Venus proved that it orbits the Sun and not Earth.

The Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun in 1633.

His book on the subject was removed from the Church’s index of banned books in 1824.

Galileo was formally vindicated by the Church in 1992.

The idealized scientific method

- Based on proposing and testing hypotheses
- hypothesis = educated guess

But science rarely proceeds in this idealized way… For example:

- Sometimes we start by “just looking” then coming up with possible explanations.
- Sometimes we follow our intuition rather than a particular line of evidence.
Hallmarks of Science: #1

Modern science seeks explanations for observed phenomena that rely solely on natural causes.

(A scientific model cannot include divine intervention)

Hallmarks of Science: #2

Science progresses through the creation and testing of models of nature that explain the observations as simply as possible.

(Simplicity = “Occam’s razor”)

Hallmarks of Science: #3

A scientific model must make testable predictions about natural phenomena that would force us to revise or abandon the model if the predictions do not agree with observations.

What is a scientific theory?

• The word theory has a different meaning in science than in everyday life.
• In science, a theory is NOT the same as a hypothesis, rather:
• A scientific theory must:
  —Explain a wide variety of observations with a few simple principles, AND
  —Must be supported by a large, compelling body of evidence.
  —Must NOT have failed any crucial test of its validity.
Thought Question
Darwin’s theory of evolution meets all the criteria of a scientific theory. This means:

A. Scientific opinion is about evenly split as to whether evolution really happened.
B. Scientific opinion runs about 90% in favor of the theory of evolution and about 10% opposed.
C. After more than 100 years of testing, Darwin’s theory stands stronger than ever, having successfully met every scientific challenge to its validity.
D. There is no longer any doubt that the theory of evolution is absolutely true.

How is astrology different from astronomy?

• Astronomy is a science focused on learning about how stars, planets, and other celestial objects work.
• Astrology is a search for hidden influences on human lives based on the positions of planets and stars in the sky.
• Scientific tests have shown that astrological predictions are no more accurate than we should expect from pure chance.