

What properties of our solar system must a formation theory explain?

- 1. Patterns of motion of the large bodies
 - Orbit in same direction and plane
- 2. Existence of two types of planets
 - Terrestrial and jovian
- 3. Existence of smaller bodies
 - Asteroids and comets
- 4. Notable exceptions to usual patterns
 - Rotation of Uranus, Earth's moon, etc.

What theory best explains the features of our solar system?

- The *nebular theory* states that our solar system formed from the gravitational collapse of a giant interstellar gas cloud—the *solar nebula* (*Nebula* is the Latin word for cloud)
- Kant and Laplace proposed the *nebular hypothesis* over two centuries ago
- A large amount of evidence now supports this idea

Close Encounter Hypothesis

- A rival idea proposed that the planets formed from debris torn off the Sun by a close encounter with another star.
- That hypothesis could not explain observed motions and types of planets.

Evidence from Other Gas Clouds

• We can see stars forming in other interstellar gas clouds, lending support to the nebular theory

Interactive Figure

What caused the orderly patterns of motion in our solar system?

Conservation of Angular Momentum

Rotation speed of the cloud from which our solar system formed must have increased as the cloud contracted

Rotation of a cloud speeds same reason a skater speeds up as she pulls

Flattening

Collisions between • particles in the cloud caused it to flatten into a disk

Disks around Other Stars

ng as Addi

© 2008 Peamon Education Inc. mbi

• Observations of disks around other stars support the nebular hypothesis

Inside the *frost line*: Too hot for hydrogen compounds to form ices.

Outside the *frost line*: Cold enough for ices to form.

© 2008 Pearson Education Inc. public

ing as Add

© 2008 Per

• Leftover planetesimals bombarded other objects in the late stages of solar system formation

Origin of Earth's Water

• Outgassing from vents in the surface

• Water may have also come by way of icy planetesimals (comets).

How do we explain the existence of our Moon?

Thought Question

How would the solar system be different if the solar nebula had cooled, with a temperature half its actual value?

- a) Jovian planets would have formed closer to Sun
- b) There would be no asteroids
- c) There would be no comets
- d) Terrestrial planets would be larger

- c) There would be no comets
- d) Terrestrial planets would be larger

Thought Question Which of these facts is NOT explained by the nebular theory?

- a) There are two main types of planets: terrestrial and jovian.
- b) Planets orbit in same direction and plane.
- c) Existence of asteroids and comets.
- d) Number of planets of each type (4 terrestrial and 4 jovian).

Was our solar system destined to be?

- Formation of planets in the solar nebula seems inevitable
- But details of individual planets could have been different

Thought Question Which of these facts is NOT explained by the nebular theory?

- a) There are two main types of planets: terrestrial and jovian.
- b) Planets orbit in same direction and plane.
- c) Existence of asteroids and comets.
- d) Number of planets of each type (4 terrestrial and 4 jovian).

- Radiometric dating tells us that oldest moon rocks are 4.4 billion years old
- Oldest meteorites are 4.55 billion years old
- Planets probably formed 4.5 billion years ago

© 2008 Pearson Education Inc, publishing as Addison-We