Error Propagation in Arithmetic Calculations

courtesy of http://www.nuclear.utah.edu/

Type of Calculation	Example *	Standard Deviation of x
Addition or Subtraction	$x=p+q-r$	$s_{x}=\sqrt{s_{p}^{2}+s_{q}^{2}+s_{r}^{2}}$
Multiplication or Division	$x=\frac{p \cdot q}{r}$	$s_{x}=x \sqrt{\left(\frac{s_{p}}{p}\right)^{2}+\left(\frac{s_{q}}{q}\right)^{2}+\left(\frac{s_{r}}{r}\right)^{2}}$
Exponentiation	$x=p^{y}$	$s_{x}=y \cdot x \frac{s_{p}}{p}$
Logarithm	$x=\log _{10} p$	$s_{x}=0.434 \frac{s_{p}}{p}$
Natural Logarithm	$x=\ln p$	$s_{x}=\frac{s_{p}}{p}$
Antilogarithm	$x=a n t i \log _{10} p$	$s_{x}=2.303 \cdot x \cdot s_{p}$
Natural Antilogarithm	$x=e^{p}$	$s_{x}=x \cdot s_{p}$

* p, q, and r are experimental variables whose standard deviations are $\mathrm{s}_{\mathrm{p}}, \mathrm{s}_{\mathrm{q}}$, and s_{r}, respectively: y is a constant.

Least Squares Error Analysis

With a set of data points, the error for a linear fit can be found following these equations: (x and y are the data points and N is the number of data points)

$$
\begin{aligned}
& y=m \cdot x+b: \quad \text { line equation } \\
& \Delta=N \cdot \sum x^{2}-\left(\sum x\right)^{2}: \\
& b=\frac{\sum x^{2} \cdot \sum y-\sum x \cdot \sum x y}{\Delta}: \quad \text { y-intercept } \\
& m=\frac{N \cdot \sum x y-\sum x \cdot \sum y}{\Delta}: \quad \text { slope } \\
& \sigma_{y}=\sqrt{\frac{1}{N-2} \sum_{i=1}^{N}\left(y_{i}-b-m x_{i}\right)^{2}}: \quad \text { standard deviation of the y's } \\
& \sigma_{b}=\sigma_{y} \sqrt{\frac{\sum x^{2}}{\Delta}} \quad: \quad \text { standard deviation of the y-intercept } \\
& \sigma_{m}=\sigma_{y} \sqrt{\frac{N}{\Delta} \quad: \quad \text { standard deviation of the slope }} \\
& y=\left(m \pm \sigma_{m}\right) \cdot x+\left(b \pm \sigma_{b}\right): \quad \text { line equation with error }
\end{aligned}
$$

This system of equations is what Microsoft Excel uses in its LINEST function.

