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Abstract

A multiple-star combined-solution computer program which can

simultaneously fit astrometric, visual, and spectroscopic data, and

solve for the orbital parameters, parallax, proper motion, and

masses has been written and is now publicly available. Some fea-

tures of the program are the ability to scale the weights at run

time, hold selected parameters constant, handle up to five spec-

troscopic subcomponents for the primary and the secondary each,

account for the light travel time across the system, account for apsi-

dal motion, plot the results, and write the residuals in position to a

standard file for further analysis. The spectroscopic subcomponent

data can be represented by reflex velocities and/or by independent

measurements. A companion editing program which can manage

the data files is included in the package.

The program has been applied to the Population II binary µ Cas

to derive improved masses and an estimate of the primordial helium

abundance.
The source code, executables, sample data files, and documen-

tation for OpenVMS and Unix, including Linux, are available at
http://www.chara.gsu.edu/ g̃udehus/binary.html.
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1. INTRODUCTION

Several methods, both graphical and analytical, exist for solving for the
elements of binary star systems. Descriptions of some of the early ones can be
found in Petrie (1962), Smart (1962) and Aitken (1964). For example, for a
visual binary one can use the method of Thiele and Innes, where the geomet-
ric elements, given as a function of the Thiele-Innes rectangular constants,
and the dynamical elements are derived in two stages. For a spectroscopic
binary the method of Lehmann-Filhés can be used. When astrometric data
is available, the parallax and proper motion can be solved for simultaneously
with the Thiele-Innes constants. The above visual binary methods, however,
do not directly yield a covariance matrix for all the elements and do not
readily lend themselves to handling large numbers of independently weighted
data points. The Lehmann-Filhés method does not directly solve for all the
elements, but rather includes in its solution the reciprocal of the period, and
the amplitude, K, which is a function of several elements. These methods
can, on the other hand, serve to provide initial estimates for more rigorous
least squares reductions.

Early least squares methods for visual binaries often retained use of the
Thiele-Innes constants and/or considered the inverse of the period as an ele-
ment, e.g. Wielen (1962), or relied on lookup tables for the derivatives when
making differential corrections (Irwin 1961). Early least squares solutions
for spectroscopic binaries tended to retain K as solution element, or possess
biases in the treatment of the equations (see Popper (1974) for a discussion).

More recently, least squares methods by Barlow (Barlow and Scarfe, 1991)
and Tokovinin (1992, 1993) have been written which permit combined visual
and spectroscopic binary solutions. The purpose of this paper is to present
and make publicly available a least squares combined solution computer pro-
gram which can handle combined astrometric, visual, and spectroscopic mul-
tiple star data.

2. IMPLEMENTATION OF NONLINEAR LEAST SQUARES

2.1 Nonlinfit

The method of least squares, first concieved of by Gauss, is well known
and follows from the more general maximum likelihood method in the case
where the observations are samples from a multi-variate normal distribution.
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In this case the least squares estimate is the same as the maximum likeli-
hood estimate. Even when the distribution is not normal, the Gauss-Markov
theorem says that that the least squares method still gives the most efficient
unbiased linear estimators. When the condition equations are nonlinear, one
could in principle search in nonlinear space for a minimum variance. This
is the approach of the CERN least squares fitting package MINUIT. Tests
conducted by Mr. Slava Sharkin and the author many years ago on a version
MINUIT modified to function as a subroutine showed however that conver-
gence with this package is rather slow and the accuracy of the solution is not
as great as that of the subroutine Nonlinfit (Gudehus 1987).

Nonlinfit achieves a nonlinear least squares solution by expanding the
the condition equations in a first order Taylor series about a preliminary
solution, and iterating until an acceptable convergence criterion is achieved.
The function and the derivatives must be hard coded in subroutines for each
application. While it is possible to calculate the derivatives numerically, only
analytical formulations were used for the multiple star combined solution
application. Nonlinfit can operate interactively or automatically and through
the use of dynamic memory, the number of observations, parameters, and
dependent and independent dimensions is limited only by the computer main
memory.

If Nonlinfit is asked to solve a linear least squares problem, e.g. a polyno-
mial, the solution is obtained after the first iteration. For nonlinear problems,
not only will several iterations be required, but multiple minima will in gen-
eral be present. In Nonlinfit the decision whether to continue iterating can
be made manually (interactively) or automatically. In the latter case, ar-
rival at a limiting value of the ratio of the change of the parameters to their
value plus mean error (fractional tolerance) will signal convergence. In well
behaved situations the parameters will monotonically approach their final
values, but in general it may be necessary to relax the solution to prevent
excessive bouncing around. In the automatic iteration mode, the fractional
parameter change from one iteration to the next (fractional increment) is
automatically adjusted to achieve convergence. The adjustment can be done
so as to optimize for speed, or to optimize for searching among nearby min-
ima. In the latter case, the best fit parameters are retained at each stage,
but the solution is allowed to temporarily wander to parameters with larger
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mean errors, in a style of simulated annealing (Metropilis, 1953), cf Pourbaix
(1994).

2.2 Application to Astrometric Data

Astrometric data, obtained from measuring engines or by other means, is
read by the program as X and Y coordinates in some chosen angular unit,
along with time measured in years. Data, with parallax and proper motion
included, or not included, can be handled by the program. The program
uses the data format and header keywords to decide what form the data is
in. For a single star, up to fifteen parameters (period, P ; time of periastron
passage, T ; eccentricity, e; angle of line of nodes, Ω; inclination, i; angle
from node to periastron, ω; semimajor axis, a; parallax, π; X and Y center,
proper motion, and acceleration; and apsidal motion) can be solved for. For
a pair of stars, R, the ratio of semimajor axes (total to primary) becomes an
additional parameter.

2.3 Application to Visual Data

Visual data is usually in the form of position angle in degree and separation
of the secondary relative to the primary in some chosen angular unit, and time
in years, but the program will also accept X and Y coordinates. Astrometric
data with parallax and proper motion removed is not completely equivalent
to visual data for the primary in the form of X and Y coordinates since the
former is absoute position data and the latter, relative. Data for one star,
e.g. speckle data, can be modeled with up to eight parameters (P , T , e, Ω,
i, ω, a, and apsidal motion. For a pair of stars, R is added to the list of
parameters.

2.4 Application to Spectroscopic Data

Spectroscopic data can be in the form of velocity in any chosen unit, and
time in either Julian Days or Besselian years. A soution for a single-lined
binary is modeled by up to seven parameters (P , T , e, ω, system radial
velocity, V ; the product asini, with a in units of AU; and apsidal motion).
The program will also calculate K, though this is not an element and is never
used as a parameter in the solution. For a double-lined binary, R is added to
the list of parameters.

The program will make allowance for the light travel time across the orbit
if requested, and also allows for the possibility of subcomponents whose data
may be present either as reflex velocities in the primary or secondary data,
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or in separate files. Up to five subcomponents per binary component are
allowed, for a total of twelve stars. Up to three ranges of phase may be
excluded from the solution to test for data compromised by line blending.

2.5 Combined Solution Considerations

Because in a combined solution various independent sets of data are being
used for one solution, it is important to establish a uniform set of definitions
for the various elements. Thus, a is taken to be that of the primary when
possible, and is complemented by R when available. The angle ω is also taken
to be that of the primary, even when only data for the secondary exists.

Combined astrometric or visual plus spectroscopic data allow one to solve
for the parallax. The program automatically determines when this condition
applies from the header and keyword items in the data files, and from the
user choices as to whether a particular file pertains to a primary or secondary.
This task, the semimajor axis assignment, the calculation of dimensions and
offsets, and other logical states are carried out in a subroutine dedicated to
that purpose.

For astrometric data, the equator for the X and Y positions is assumed
to be that of the the star’s RA and Dec, given in the header. On the other
hand, for visual (or speckle) data, the equator is assumed to be that of the
epoch of observation. Astrometric data has two characteristics which must
be taken into account when solving for the parallax and semimajor axis in
a combined solution. Astrometric parallax is affected by the the motions of
the background standard stars, but the parallax derived from combined visual
and spectroscopic data is not. Thus the ratio of the apparent to true parallax
must be provided to the program. An astrometrically derived semimajor
axis is a photocentric value, whereas the value from combined visual and
spectroscopic data is a true value. Again the program must be provided with
the ratio of the photocentric to true semimajor axis.

In a least squares application with more than one data dimension, the
possible presence of different data units with different standard deviations,
requires that one minimize the sum of the squares of the residuals in an
unbiased way. Therefore for a total of Nk observations i of dimension k, and
a total number of dimensions equal to ND, the sum of the squares of the
observed minus calculated points,

5



   

Nk∑
i

ND∑
k

(Oik − Cik)2wik

should be minimized. Here, wik is the weight of observation i of dimension
k, which is equal to the inverse square of the standard deviation, σik. The
standard deviation for a particular dimension could be determined from a
solution of the binary system with only its matching kind of data (astrometric,
visual, or spectroscopic) if enough points are available, or from estimates
based on similar data. Note that since normal points are never used, there are
never any additional dimensionless weighting factors in the above equation.

In the absence of any systematic effects, and with properly weighted data,
the reduced chi squared, χ2

r, should be approximately unity for each dimen-
sion, both for solutions of one particular kind, and for a combined solution. In
the event that χ2

r is nonunity, one can investigate possible improper weights,
and/or systematic effects by making use of program features that allow scal-
ing of the weights during run time, and exclusion of data points which deviate
by a given factor beyond the mean error. In addition, a companion editing
program, “editdata”, permits one to permanently adjust values in the data
files. Individual data points can be excluded by setting their sigmas to the
key value 9999.99999.

3. APPLICATION TO µ Cas

3.1 Scientific Importance

µ Cas (HD 6582), a nearby high velocity population II star, is interesting
because a determination of the masses, luminosities, and metal abundance of
its components allows its helium abundance to be determined. Since the age
of the star predates that of the disk of the Galaxy, the abundance is nearly
primordial and is therefore of cosmological interest (Dennis 1965).

3.2 Determination of Masses

In principle the masses of a binary could be found by combining a single
measurement of the separation of the components with a knowledge of the
astrometric orbit. For µ Cas, however, it was soon discovered that the masses
depended on whether the orbit of Lippincott (1981) or of Russell & Gatewood
(1984) was used (McCarthy 1984). Haywood et al. (1992) pointed out that
the two astrometric orbits differed mainly in their values of ω, and proposed
solving for ω plus the semimajor axis of the relative orbit while holding all
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the other parameters constant, using the combined astrometric and relative
orbit data. This approach yielded, for the first time, masses that were much
more consistent between the two sets of data.

Since the Haywood et al. study, another astrometric orbit has been pub-
lished by Heintz and Cantor (1994), and additional relative orbit measur-
ments have become available by McCarthy et al. (1993) and Drummond et
al. (1995). In addition, spectroscopic measurements by Jasniewicz & Mayor
(1988) and Duquennoy et al. (1991), which had not been considered in the
mass determinations, are available. With the additional new data and the
complete astrometric data sets kindly made available by Sara Lee Lippincott,
Wulff Heintz, and Drs. Russell & Gatewood, it seemed promising to try a
combined solution with the new software.

For Lippincott’s data, the ratio of apparent to true parallax is calculated
from her published results for µ Cas to be 0.9841; for the Heintz and Cantor
data this value is 0.9845; and for the Russell & Gatewood data the value
is 0.978. The ratio of photocentric to true semimajor axis, based on the
temperatures and radii of components A and B from Haywood et al., is
calculated to be 0.998. With these values and the average weights scaled so as
to yield χr = 1 for each dimension, the orbital elements and other parameters
shown in Table 1 were obtained in combined solutions for each data set. Also
shown are the mean errors for an observation of average weight, MEOAW .
As Haywood et al. found earlier with their restricted solution, the masses for
the Lippincott and Russell & Gatewood data agree very well. The errors here
however are somehat smaller. The mass agreement for the primary is slightly
fortuitous because the Russell & Gatewood values of primary a, and π, are
smaller and larger, respectively, than those of Lippincott, which together with
a value of R that is larger than that of Lippincott, give a canceling effect for
the mass variation. For the Heintz & Cantor data, a slightly larger π and
smaller R combine to give a somewhat lower primary mass than that from
Lippincott.

Russell & Gatewood’s astrometric MEOAW s are substantially larger
than those of the other data sets but this is compensated for by a larger
number of observations. Of the 370 observations in their data, seven were
excluded because of much larger deviations from the calculated orbit. Heintz
and Cantor fixed the proper motion acceleration in their solution at the true
perspective values. A combined solution with this restriction increased the
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MEOAW in the X direction by 20% and decreased the primary mass, MA,
to 0.68 M¯.

The last line in Table 1 shows the helium abundance calculated from the
interpolation formula and the bolometric magnitude from Haywood et al.’s
paper. The value of metal abundance, Z = 0.0021, is an average of the results
of Perrin et al. (1977) and Tomkin & Lambert (1980). The values of Y from
the Lippincott and Russell & Gatewood data sets are not greatly different
from what one might expect from current cosmogical predictions. The errors
in Y are computed solely from the uncertanties in mass and parallax and
thus do not include errors originating from the bolometric correction, the
stellar models of VandenBerg (1985) and VandenBerg & Bell (1985), or the
interpolation formula.

Finally, Figure 1 shows a portion of Russell & Gatewood’s data and the
visual data in the time interval 1974 to 1995 in absolute coordinates. Figure
2 shows Lippincott’s data with parallax and proper motion removed, and the
visual data in absolute coordinates. Figure 3 shows the spectroscopic data
transposed to cover one cycle.

4. SUMMARY

A combined solution approach to binary star research can be beneficial in
two ways: 1) by making maximal use of the available data to yield improved
orbital parameters and mass estimates and 2) by revealing inconsistencies be-
tween data sets through the use of the program diagnostic values ofMEOAW

and χr. The program, which has been developed to run on both OpenVMS
and Unix platforms comes with full plotting capability. The instructions,
source code, executables, and sample data are available at the author’s web
site at http://www.chara.gsu.edu/˜gudehus/binary.html. A companion bi-
nary star editing program is included as well.

New combined solution estimates of the masses of the components of µ
Cas from three different data sets show only small differences from each other.
When averaged together, they are

MA = 0.748± 0.027M¯

MB = 0.1698± 0.0051M¯.

Dedicated to Daniel Popper
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TABLE 1

µ Cas COMBINED SOLUTIONS

Parameter Data Set I Data Set II Data Set III

P (years) 21.480±0.042 21.467±0.046 21.858±0.048

T (years) 1975.727±0.064 1975.708±0.068 1976.076±0.097

e 0.5904±0.0098 0.596±0.010 0.514±0.013

Ω(◦) 47.27±0.68 46.47±0.67 47.63±0.85

i(◦) −109.69±0.63 −110.45± 0.67 −109.49± 0.89

ω(◦) 334.3±1.6 333.9±1.7 337.35±2.2

a(′′) 0.1851±0.0021 0.1868±0.0021 0.1823±0.0027

R 5.36±0.12 5.29±0.13 5.66±0.15

π(′′) 0.1311±0.0016 0.1332±0.0019 0.1353±0.0024

µα(′′/y) 3.42486±0.00079 3.42236±0.00049 3.4721±0.0012

µ̇α(′′/y2) 0.000019±0.000020 −0.000068±0.000015 0.000474±0.000030

µδ(′′/y) −1.58789± 0.00088 −1.58804±0.00050 −1.6080±0.0011

µ̇δ(′′/y2) −0.000067± 0.000023 −0.000057±0.000014 −0.000322±0.000026

Vr(km s−1) −98.236±0.092 −98.249±0.094 −98.065±0.087

N 257 293 405

MEOAWA,X(′′) 0.01516± 0.00074 0.01847± 0.00083 0.0313± 0.0012

MEOAWA,Y (′′) 0.01733± 0.00084 0.01997± 0.00090 0.0289± 0.0011

MEOAWB,X(′′) 0.039± 0.010 0.040± 0.010 0.042± 0.011

MEOAWB,Y (′′) 0.051± 0.013 0.050± 0.012 0.0303± 0.0076

MEOAWA,V (km s−1) 0.498± 0.067 0.511± 0.068 0.450± 0.060

MA(M¯) 0.764±0.059 0.719±0.059 0.767±0.069

MB(M¯) 0.175±0.010 0.168±0.010 0.165±0.012

YA,Z=0.0021,t=8 0.236±0.005 0.278±0.004 0.226±0.006

YA,Z=0.0021,t=10 0.222±0.005 0.265±0.004 0.211±0.006

YA,Z=0.0021,t=12 0.208±0.005 0.253±0.005 0.198±0.006

Data Set I = Astrometric: Lippincott (1981); Speckle: Wickes & Dicke (1974); Wickes

(1975); Haywood et al. (1992); Karovska et al. (1986); McCarthy et al. (1993); Drum-

mond et al. (1995); Spectroscopic: Jasniewicz & Mayor (1988); Duquennoy et al. (1991)

Data Set II = Same as I except Heintz & Cantor (1994) instead of Lippincott (1981)

Data Set III = Same as I except Russell and Gatewood (1984) instead of Lippincott (1981)



  

FIG. 1 A portion of the orbit of µ Cas in absolute coordinates for the time

period 1974 to 1995. The astrometric data for the primary was provided by

Wulff Heintz, and the secondary data are from the various observations noted

in Table 1.



  

FIG. 2 The orbits of µ Cas A and B in absolute coordinates. The astrometric

data for the primary was provided by Sara Lee Lippincott, and the secondary

data are from the various observations noted in Table 1.



  

FIG. 3 Radial velocity measurements of Jasniewicz & Mayor (1988) and

Duquennoy et al. (1991) of µ Cas A transposed to cover one cycle.
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