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ABSTRACT

Space missions like Kepler have revolutionized asteroseismology, the science that infers the

stellar interiors by studying oscillation frequency spectra of pulsating stars.

Great advancements have been made in understanding solar-like oscillators. However,

this is not the case for variable stars of intermediate masses, such as δ Scuti and γ Doradus

variables. By studying these stars in eclipsing binaries (EBs), model independent funda-

mental parameters such as mass and radius can be inferred. On one hand, this synergy

constrains the parameter space and facilitates the asteroseismic modeling, and this is shown

for the δ Scuti type pulsating EB KIC 9851944. On the other hand, studies of binary stars

must address the complexities such as mass transfer. KIC 8262223 is such an example, which



consists of a mass-gaining δ Scuti primary and a pre-He white dwarf secondary. Some of

the eccentric binary systems, the ‘heartbeat’ stars, show tidally excited oscillations. After

briefly reviewing the linear theory of tidally forced stellar oscillations, we study the tidal

pulsating binary KIC 3230227 and demonstrate that both amplitude and phase can be used

to identify the tidally excited pulsation modes. We also discuss the variability of a Slowly

Pulsating B-star KOI-81 and a Cataclysmic variable KIC 9406652.

In the second part of this dissertation, we apply Bayesian statistics to some problems in

binaries and asteroseismology with the help of packages BUGS and JAGS. Special attention

is paid to the inverse problems (tomography) encountered in studying the double-line spec-

troscopic binaries.
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CHAPTER 1

An Introduction to δ Scuti /γ Doradus Variables and Solar-like Oscillating
Stars

1.1 Pulsating Stars On The H-R diagram

Figure 1.1 An overview of pulsating stars on the H-R diagram, taken from Degroote (2010).

Different classes of variables are indicated by ellipses, and these ellipses are filled with colors

in accordance with their spectral-types (effective temperatures). The rectangles mark the

positions of pulsators driven by different mechanisms (see text).
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Stars pulsate at various stages of their evolution. Figure 1.1 shows the positions of different

classes of pulsating stars in temperature and luminosity space. Due to their large pulsation

amplitudes, giant stars like Cepheids, Miras, and Semi-regular variables were discovered

first. They have long pulsation periods (≈ 1 − 100 days). The Cepheids are located in

the classical instability strip (between the straight dotted lines in Figure 1.1), and the strip

intercepts with the Main Sequence (MS) at a position where we find the δ Scuti variables

(periods of 0.6 − 6 hours). Lower on the MS at cooler temperatures, we find γ Doradus

variables (periods of ≈ 0.3 − 3 days) and solar-like oscillators (periods of a few minutes).

Red giants also show solar-like oscillations. Massive stars like β Cephei variables (periods of

a few hours) and Slowly Pulsating B-stars (SPB) (periods of half to a few days) are located

on the upper main sequence. Even more massive stars like supergiants can also pulsate. At

late stages of evolution, various classes of white dwarfs (GW Vir, DBV, DAV) pulsate with

very short periods (≈ 2 − 15 minutes). There are also special classes of variables such as

the sub-dwarf B stars, probably the results of binary evolution, which can pulsate with both

high frequency p-modes (periods of ≈ 1 hour) and low frequency g-modes (periods of 1− 6

minutes).

In Figure 1.1, the β Cephei, SPB, sdB, and DBV stars, located inside the red rectangle,

are driven by the opacity mechanism due to the bump of iron elements. The same mechanism,

but mainly driven by He II ionization, works for classical Cepheids, RR-Lyrae stars, δ Scuti

stars, and DAV white dwarfs (green rectangle). The cooler stars, including solar-like stars,

red-giants, Mira variables and semi-regular variables are driven by stochastic motions in
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their convection zones (orange rectangle). Note that γ Doradus pulsations are mainly driven

by the convective blocking mechanism (although they are located in the green rectangle).

There are pulsators that are not shown in Figure 1.1, for instance, the pre-MS δ Scuti

stars (Zwintz et al. 2014). Some O-type stars are found to show p-mode pulsations (Mahy

et al. 2009; Degroote et al. 2010). There is a possible class of pulsators located between

SPB and δ Scuti stars. Giant planets are believed to show pulsations. There are discoveries

of p-mode pulsations in Jupiter and indirect evidence of g-mode pulsations of Saturn that

manifest themselves in its rings (Gaulme et al. 2015).

The aforementioned pulsations are all self-driven. Recent observations especially those

from space have confirmed that stars can also show externally-driven (e.g., tidal force) pul-

sations, and some of these so-called heartbeat stars are detailed in Chapter 6. Stars can also

interact with the accretion disks and produce more complicated pulsational phenomenon,

e.g., white dwarfs in cataclysmic variables. An example of such a system will be discussed

in Chapter 7.

The focus of this dissertation is the properties of pulsating stars in eclipsing binaries in

which combined light curve and radial velocity analysis yields precise estimations of stellar

mass, radius, and effective temperature. We develop the tools to facilitate the analysis of the

observations and to explain the observed properties in the framework of theoretical modes

of stellar interiors and atmospheres. Chapter 2 briefly describes MESA stellar evolution

models and the effects on the evolutionary tracks of changing several physical parameters.

The linear theories of free and forced stellar oscillations are presented in Chapter 3. We
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apply these theories to Kepler field of view δ Scuti/γ Dor binaries as well as tidally induced

pulsators (heartbeat stars) in Chapter 5 and Chapter 6, respectively. The modeling tools

of binary stars are described in Chapter 4. Other routines encountered in analyzing binary

stars, such as fitting radial velocity data, and separating double-lined spectra, are dealt with

in a Bayesian framework in Chapter 8 and Chapter 9 with the help of the statistical package

BUGS/JAGS.

1.2 δ Scuti Stars

Figure 1.2 An overview of the pulsation spectra of 170 δ Scuti stars observed by Kepler in

short cadence mode. Targets are selected from Uytterhoeven et al. (2011). The colors (from

no amplitude at blue to large amplitude as red) indicate the strength of the oscillations as

a function of frequency, where each row corresponds to a particular stars.
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δ Scuti stars are radial and non-radial p-mode pulsators. As shown in Figure 1.2, most of

the pulsational frequencies appear in the range from 4 to 30 d−1. Some of δ Scuti stars can

pulsate at frequencies as high as 60 d−1 or higher. δ Scuti stars are within the mass range

of 1.5 to 2.5 M� and of spectral type A2-F5. Their p-mode pulsations are driven by the κ

(opacity) mechanism, mainly due to the opacity bump that occurs at a depth corresponding

to the He II ionization zone. The convective blocking mechanism, which drives the γ Doradus

pulsations, also works for the cool δ Scuti stars. Almost all δ Scuti stars show low-frequency

pulsations, and all of them can be called δ Scuti and γ Dor hybrids (Balona 2010).

The observed frequency distributions of δ Scuti stars observed by the NASA Kepler

spacecraft in 10 different locations on the H-R diagram are shown in Figure 1.3. The range

of unstable modes from the current linear non-adiabatic theory seems agree more or less

with observations. However, strong differences still exist for the cool δ Scuti stars, and

we cannot explain the observed pulsations at very high frequencies either. For comparison

of individual frequencies, we still lack a mode selection mechanism. This problem may be

partially resolved with non-linear pulsation analysis which still awaits its development and

application to δ Scuti stars.

δ Scuti stars are generally fast rotators, with a mean projected rotational velocity of

v sin i of 120 km s−1. They can even rotate at velocities close to critical value. This makes

the asteroseismic modeling much more difficult. Some slow or intermediate-rotating δ Scuti

stars have been studied in detail (FG Vir, 44 Tau, 29 Cygni, etc.). There are efforts of

modeling Altair (v sin i ≈ 200 km s−1 ) by using one-dimensional (1-D) stellar models and
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perturbative approximation of rotation to the second order (Suárez et al. 2005). More

appropriate treatment needs 2-D stellar models so that the rotational distortion can be fully

taken into account. Such frontier modeling have been applied to α Oph (Deupree 2011;

Deupree et al. 2012), one of the fast rotating δ Scuti stars that have been imaged with

optical interferometry and observed by satellite. The lesson learned is that theory predicts

many more modes than observations, and better constraints on the stellar parameters are

needed (although this star is already the best known so far).

Magnetic fields have been found on the δ Scuti star HD 188774 (Neiner & Lampens 2015).

And spots generated by the B-field can mimic the signature of g-mode γ Dor type pulsations.

This suggests that the nature of δ Scuti and γ Dor hybrids may be more complicated.

δ Scuti stars in eclipsing binaries are the best laboratories to develop and test our pulsa-

tion theory for these stars. Although additional factors like eclipses and tidal effects need to

be taken into account, the trade-off is that masses and radii can be determined accurately (to

≈1 %). In Chapter 5, we will present detailed studies for a few such systems. And indeed,

in one system, the fundamental radial mode can be identified from single-band photometry

thanks to its binary nature.
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Figure 1.3 The observed (filled) and theoretical (solid blue curves) frequency distributions

of δ Scuti stars. Only unstable modes with degrees, l ≤ 6 are considered, and the mode

frequencies have been corrected for rotational effects with perturbation theory to the third

order. All models have metal abundance Z = 0.015. The lower 10 panels correspond to the

labeled regions on the H-R diagram shown in the upper panel. Figure is taken from Balona

et al. (2015).
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1.3 γ Doradus Stars

Figure 1.4 An overview of the pulsation spectra of 85 γ Doradus stars observed by Kepler,

in the same format as Figure 1.2. Targets are selected from Uytterhoeven et al. (2011).

γ Doradus stars are a relatively new class of variable (Balona et al. 1994). Figure 1.4 shows

the Fourier spectra of 85 γ Dor stars observed by Kepler. It can be seen that their pulsations

are mainly at low frequencies (<≈ 5 d−1). They are intermediate-mass (≈ 1.2−2.0M�) stars

with spectral type of F. On the H-R diagram, they are located in a small region on or just

above the main sequence. Their pulsations modes are driven by the modulation of radiative

flux by the convection zone (Guzik et al. 2000).

As γ Doradus pulsations are high-order g-modes in the asymptotic regime, we expect to

find near-equally spaced modes in period. Systematic studies can be found in Van Reeth et

al. (2015a, 2015b). Due to rotation, some of the observed period spacings, when plotted as

a function of period, show a linear slope. This can be used as a diagnostic to study their
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internal rotational distribution (Ouazzani et al. 2016).

1.4 Solar-like Oscillating Stars

Figure 1.5 An overview of the pulsation spectra of 1300 solar-like oscillating red-giant stars

observed by Kepler, in the same format as Figure 1.2. Targets are selected from Hekker et

al. (2011). The inset shows the power spectrum of one particular star with the oscillation

frequency of maximum power (νmax) marked by the red arrow. The oscillation spectrum is

shown as a Gaussian like power excess on top of the smooth trend signal due to the noise

background. The oscillations of each star form the visible red ridge extending from the lower

left to the upper right since the star numbers are sorted by their νmax.

The solar-like oscillators include main sequence stars with spectral type later than about F4,

sub-giant stars, and red-giants. They show pressure-mode oscillations stochastically driven
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by convection. I calculated the power spectrum of 1300 solar-like oscillating red-giant stars

in Hekker et al. (2011). In Figure 1.5, each spectrum is represented as a horizontal density

plot. The oscillation amplitudes increase from blue to green to yellow and to red. As shown

in the inset of Figure 1.5, the power spectrum of a typical solar-like oscillator is composed

of a broad smooth trend and a Gaussian-like power excess due to oscillations. The trend is

caused by the noise and stellar activity, and it is often modeled by several components such

as granulation, Harvey-like profiles, etc., (shown as dashed lines). The oscillations reach

the maximum power at a frequency defined as νmax. The oscillation spectrum is usually

analyzed after subtracting the background signal. Note that the oscillation frequency peaks

are nearly equally-spaced with a spacing of about 0.5∆ν, and this can be seen in the inset

of Figure 1.6. This inset panel shows that the Sun has a large frequency separation (∆ν) of

135 µHz, which is the spacing between frequencies of consecutive radial orders.

There are scaling relations between quantities (Figure 1.6) of the oscillations and νmax.

Such quantities include ∆ν, mean mode amplitude at νmax (Hmax), stellar background at

νmax (Bmax), stellar radius (R), effective temperature (Teff), etc. (Mosser et al. 2013). In

other words, all these quantities are proportional to νmax in the log-log plot. And these

relations hold from MS stars to red-giants on the tip of RGB. The period-luminosity relation

of evolved giants is actually a direct reflection of these scaling relations, although for these

stars, we can only observe one or two frequencies.
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Figure 1.6 The power density spectrum of solar-like oscillating stars from the Main Sequence

(grey and black), to the bottom (red and orange) and then to the tip of RGB (purple). The

spectra are identified by their ∆ν marked on top. The blow-up inset shows the oscillations

of the Sun, and its large frequency separation ∆ν =135 µHz is labeled. Figures are taken

from Mosser et al. (2013) and Aerts et al. (2010).

In the analysis of power spectrum of red-giants, we firstly determine the global parameters

∆ν and νmax from techniques such as autocorrelation (Huber et al. 2009). Then we get the

ratio nmax = νmax/∆ν, which is a proxy for the radial order n at maximum power. And
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since the oscillation spectra of red-giant stars follow a universal pattern, the modes with

frequencies νn,l can be identified by the relation in Mosser et al. (2011):

νn,l
∆ν

= n+
l

2
+ ε(∆ν)− d0l(∆ν) +

αl
2

(n− nmax)2

for l = 2, 0, 3, 1

(1.1)

The ε(∆ν), d0l(∆ν) are functions of ∆ν given by the empirical relations:

d0,2 = (0.14) + (−0.033) log10(∆ν)

d0,0 = 0.0

d0,3 = (0.28) + (0.0) log10(∆ν)

d0,1 = (−0.056) + (−0.002) log10(∆ν)

ε = (0.634) + (0.546) log10(∆ν)

(1.2)

and αl are given by:

α2 = 0.005

α0 = 0.008

α3 = 0.005

α1 = 0.003

(1.3)

Note that these values are given in the order of l as [l = 2, l = 0, l = 3, l = 1] for

convenience, since modes in the observed spectra follow this order in frequency repeatedly.
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We usually calculate the theoretical mode positions for a series of n (around nmax), and then

compare with observed mode positions for identification.
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Figure 1.7 Upper panel: The power density spectrum of a hydrogen-burning RGB star

and a Red Clump (RC) star, which is burning He in the core. The short red lines associated

with the l = 1 modes indicate the spacing between the series of mixed l = 1 modes. Lower

panel: The power spectrum of a red-giant star which shows rotational splittings in the l = 1

mixed modes (light blue). The l = 2, l = 0 and l = 3 modes are highlighted in green, red

and cyan, respectively. The purple numbers are the theoretical positions of l = 1 modes in

µHz. Figures are taken from Bedding et al. (2011) and Mosser et al. (2012).
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The l = 2, 0 and l = 1 modes usually have higher amplitudes in the power spectrum, and

l = 3 modes have low amplitudes and sometimes are not visible at all. Due to the mode

coupling (between p-modes in the convective envelope and g-modes in the radiative core),

l = 1 modes are sometimes mixed p- and g-modes. And in this case there will be a series of

l = 1 mixed modes, instead of just one peak predicted by the above equation for universal

pattern. As shown in the upper two panels of Figure 1.7, by measuring the spacing of these

l = 1 mixed modes in period, the evolutionary stage (RGB stars or Red Clump stars) of

red-giant can be determined (Bedding et al. 2011). We can sometimes even see rotational

splittings in these series of mixed modes (the lower panel in Figure 1.7), and this can provide

us with information on the rotation of the core. The core is found to be rotating a few times

faster than the envelope (Beck et al. 2012), and similar results have been found for some

sub-giant oscillators as well (Deheuvels et al. 2012). Mosser et al. (2012) found that the spin

of the core increases slightly for stars ascending the RGB, and then slows down for red-clump

stars.

Interestingly, some of the red-giants stars have unusual l = 1 modes with very low

amplitudes. Recent studies suggest that these modes are likely suppressed by the internal

magnetic field which is presumably dipolar (Fuller et al. 2015; Stello et al. 2016).
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CHAPTER 2

Stellar Evolutionary Models

Modules for Experiments in Stellar Astrophysics (MESA) offer researchers a one-dimensional,

open-source stellar evolution code (Paxton et al. 2011, 2013), developed by a team of as-

trophysicists since 2009. A large scientific community has been formed, which continuously

maintains and improves the code. Various numerical improvements in the code enable it

to model the evolution of a star from pre-Main Sequence to White Dwarf phase, bypassing

the difficulties in calculating the He-burning phase (He-flash). This is not possible in many

other stellar evolution codes, e.g., the Aarhus STellar Evolution Code (ASTEC), Warsaw-

New Jersey Stellar Evolution Code, etc. MESA is designed to be very user-friendly and fast.

Evolving a model for a low-mass star like the Sun from the pre-MS to the WD stage takes

about 3− 4 hours on a personal laptop. It is usually sufficient to evolve a star from pre-MS

to the base of Red Giant Branch, and this only takes about several minutes.

The capabilities of MESA include modeling of mass loss, element diffusion, gravitational

settling, rotation, binary evolution, and many more. This chapter includes the modeling of

an eclipsing binary KIC 9851944 with MESA, and comparison of different stellar evolutionary

models. MESA is also used for modeling the non-conservative mass transfer in the EL CVn

type binary KIC 8262223 (Chapter 5) as well as the heartbeat star KIC 3230227 (Chapter

6). The coupling of MESA with stellar oscillation package GYRE (Townsend & Teitler 2013)

makes it possible to analyze the oscillations in the aforementioned systems.
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2.1 MESA Evolutionary Models and Applications to KIC 9851944

The fundamental parameters of the primary and secondary star of KIC 9851944 have been de-

termined from a combined analysis of the Kepler light curve and ground-based spectroscopy

(Guo et al. 2016). This short-period (P = 2.16 d) eclipsing binary has a circular orbit and

is composed of two A-type stars. We only briefly summarize the results in the following

Table 2.1. Details of the derivations are presented in Chapter 5. The modeling process is

elaborated in this section.

Table 2.1: Fundamental Parameters of KIC 9851944

Parameters Primary Secondary
Mass (M�) 1.76± 0.07 1.79± 0.07
Radius (R�) 2.27± 0.03 3.19± 0.04
Teff (K) 7026± 100 6902± 100
log g (cgs) 3.96± 0.03 3.69± 0.03

The accurate stellar parameters that can be derived from eclipsing binaries offer us op-

portunities to confront our current stellar structure and evolution theories with observations.

We adopted a forward modeling approach and computed non-rotating models with the stellar

evolution code MESA with different stellar physics. Convection is described by the mixing

length theory (Böhm-Vitense 1958), with the value of mixing length parameter αMLT fixed

to 1.8. Convective core overshoot is described by the exponentially decaying prescription of

Herwig (2000). The OPAL opacity tables (Iglesias & Rogers 1996) and the MESA equation-

of-state are used. The default solar mixtures of Grevesse & Sauval (1998) are adopted as
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they are close to the solar mixture used in our spectroscopic analysis (see Chapter 5). Note

that the updated solar mixtures in Asplund et al. (2009) have a slightly lower metallicity.

We scanned the mass range from 1.7 to 1.9 M� in steps of 0.01M�, which covers the

1 sigma uncertainty box of both stars. The exponentially decaying overshooting parameter

(fov) was varied in the range from 0.0 to 0.02 in steps of 0.005, which corresponds to the

traditional step-wise overshoot parameter of αov ∈ [0.0, 0.2] expressed in terms of the local

pressure scale height Hp. The metal mass fraction (Z) was also varied from 0.01 to 0.02 with

a step of 0.002, with the helium mass fraction fixed to Y= 0.28. Note the solar metal mass

fraction Z� we adopted in MESA is 0.02.
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Figure 2.1 The evolutionary tracks for stellar models with M = 1.8M� and Y = 0.28.

The upper panel illustrates the effect of changing the metal mass fraction from Z = 0.01

to Z = 0.02. The lower panel shows the result of changing convective core overshooting

parameter fov from 0.00 to 0.02. For clarity, most of the pre-MS tracks are indicated by

dotted lines.

Here, we show the effect on the evolutionary tracks of changing various physical param-

eters for a typical δ Scuti star (M = 1.8M�). Note in the upper panel of Figure 2.1, the



20

effect of decreasing metal mass fraction (Z = 0.02 → 0.01) is a near horizontal shift of the

tracks to lower effective temperatures. Increasing the convective overshooting parameter of

the core (fov = 0.00→ 0.02), the evolutionary tracks show a prolonged main sequence (MS)

in the R − Teff plane. The main sequence tracks with higher fov are generally above those

with lower fov values, and the effects of fov on pre-MS tracks are small.
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Figure 2.2 The evolutionary tracks for stellar models with M = 1.8M�, Z = 0.02 and

fov = 0.00. The upper panel illustrates the effects of changing the initial He abundance from

Y = 0.28 to Y = 0.27. The lower panel shows the result of changing the Mixing Length

parameter αMLT from 0.5 to 1.8. For clarity, most of the pre-MS tracks are indicated by

dotted lines.

As shown in the upper panel of Figure 2.2, an increase of initial He abundance (Y) from

0.27 to 0.28 shifts the evolutionary track to the left (region with higher temperatures). The
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effect of coefficient αMLT in Mixing Length Theory is only important when stars are closer

to the Hayashi line when they have large fractional convective envelopes (lower panel).

In the modeling of KIC 9851944, more than 30000 structure models were computed. Out

of these models, we choose a pair of models with the same age and metal mass fraction (Z)

which represent the primary and secondary star, respectively. All coeval models which fall

within the 2σ error box of the observed effective temperature and radius of the two stars have

been selected. We use a χ2 like cost function as the criterion to characterize the goodness of

fit:

χ2 =
2∑
i=1

((
Ti − Tobs,i
σTobs,i

)2 + (
Ri −Robs,i

σRobs,i
)2 + (

Mi −Mobs,i

σMobs,i

)2).
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Figure 2.3 The distribution of physical parameters of coeval MESA models for the primary

star. The minimum of χ2 has been normalized to 1.
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Figure 2.4 The distribution of physical parameters of coeval MESA models for the secondary

star. The minimum of χ2 has been normalized to 1.
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Figure 2.5 Best coeval MESA models in the Teff-R plane. The evolutionary tracks of the

primary (M = 1.70M�) and the secondary (M = 1.82M�) are indicated by the black and

green solid curves, respectively. Two diamonds indicate the observational estimates for

the primary and secondary stars. The long dash line connecting two models in the tracks

represents an isochrone of 1.23 Gyr. The thin black solid line shows the Zero-Age Main

Sequence. The radial fundamental red and blue edges (1R, 1B) and the 4th overtone radial

red and blue edges (4R, 4B) of the δ Scuti instability strip are indicated by the blue/red

solid and dotted lines. The cross lines are the red and blue edges of the γ Dor instability

strip (l = 1 and mixing length αMLT = 2.0) (Dupret et al. 2005).
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Figures 2.3 and 2.4 show the χ2 of a grid of fundamental stellar parameters (mass, effective

temperature, radius, and age) and two stellar physics parameters (metal mass fraction Z

and overshooting parameter fov). The best coeval models have a mass of 1.70M�, radius of

2.27R� and effective temperature of 7049 K for the primary, and 1.81M�, 3.19R�, 6906 K

for the secondary, with an age of about 1.25 Gyr. The corresponding evolutionary tracks

and the δ Scuti and γ Doradus instability strips are shown in Figure 2.5. The primary is a

hydrogen-burning main sequence star located in the middle of the MS phase. The secondary

is more evolved and has exhausted the central hydrogen. After a short contraction it is now

in the expanding hydrogen shell burning post-MS phase. Only models with metal fraction

Z of 0.018 or 0.020 can fit the two data points simultaneously, so this suggests that the bulk

metallicity of both stars is close to the solar value. The convective overshooting parameter

fov of the primary star is not well constrained (note the broad lower envelope in Fig. 2.3)

but the model seems to favor a higher value from 0.010 to 0.015. For the secondary star, no

overshooting or low overshooting (fov less than 0.005) can fit the observations well. The best

fitting model pair has a mass ratio of 1.06 which is higher than the observed 1.01± 0.03 at

the 1.6σ level. However, we do acknowledge that if the radii are more similar to each other

(suggested by spectroscopy, detailed in Chapter 5), then a mass ratio closer to 1.0 does fit

the evolutionary tracks in Figure 2.5.

We also fit the two stars individually, relaxing the constraints of coevality. The single

best-fit models for the primary have a mass range of 1.74−1.75M�, an age range of 1.1−1.2

Gyr, an overshooting parameter of 0.00 − 0.005, and metallicity of 0.018 or 0.02. For the
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secondary star, mass is constrained as ≈ 1.84M�, age as of 1.2− 1.4 Gyr. The overshooting

parameter is poorly constrained, but favors a higher value 0.015 − 0.02. The metallicity

is also poorly constrained. Both stars can be fitted reasonably well with an isochrone of

solar-metallicity.
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Figure 2.6 Comparison of observations with the Dartmouth and Yonsei-Yale isochrones in

the Teff-log g plane. The primary and secondary star are indicated by filled dots and open

diamonds, respectively.
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We also compare the observations with two other stellar evolutionary models: the Dart-

mouth model (Dotter et al. 2008) and Yonsei-Yale (Y 2) model (Yi et al. 2001). In the

log g-Teff plane (Fig. 2.6), Dartmouth isochrones of ≈ 1.4− 1.6 Gyr can fit the observations

of the two stars well, while the best fitting Yonsei-Yale isochrones have ages of 1.2 − 1.4

Gyr. In both cases, solar metallicity agrees with the observations well. However, the same

mass discrepancy exists: the best fitting Dartmouth isochrone intersects the observation box

at masses of 1.65M� and 1.80M�,and this gives an even higher mass ratio of 1.09. This

is not surprising because these two evolutionary models have only fixed physics, while in

MESA models we can partially alleviate this discrepancy by evoking different overshooting

parameters in the two stars.

2.2 Bayesian Isochrone Fitting

As shown in the last section, isochrone fitting is an important way of inferring the age of

stars. The traditional method of χ2 minimization neglects some important prior information,

e.g., stars spend more time on the main sequence than in the sub-giant phase. We show two

examples in Figure 2.7. A rough comparison with the isochrones suggests that a much more

constrained age can be derived for star A. However, for star B, nearly all isochrones young

enough can match its position. We need a way to determine the distribution of probable age

instead of just a point estimate from χ2
min.
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Figure 2.7 Padova isochrones (Bressan et al. 2012) on the log Teff − log g plane with age

labeled. The filled circle and diamond mark the positions of two hypothetical stars for which

we want to determine their ages. The assumed 1σ error bars of log(Teff) for both stars are

0.02, and similarly σ(log g) = 0.2.

Here, we follow the method of Bayesian isochrone fitting introduced in Jørgensen &

Lindegren (2005). This method takes into account priors such as the initial mass function,

evolutionary speed, etc., and can generate the posterior probability distributions instead of

just one point estimate.

We briefly summarize the algorithm here. For simplicity and without loss of generality,
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we only consider models with solar metallicity here. The stellar evolutionary models provide

a mapping from the parameter space p = (τ,m) to the data space q = (log g, Teff). τ and

m are the age and initial mass, respectively. We can treat the observed quantities qobs as

functions of parameters of interest p plus some Gaussian noise, qobs = q(p)+e = q(τ,m)+e.

We want to get the posterior probability distribution of parameters of interest p((τ,m)|qobs),

which is ∝ p(qobs|τ,m)p(τ,m) following Bayes’ rule.

p(qobs|τ,m) is the likelihood function. Assuming independent uncertainties in log g and

Teff , it can be expressed as:

p(qobs|τ,m) = N (q(τ,m),Cq) =
I∏
i

N(qi(τ,m), σi)

=

(
I∏
i

1√
2πσ2

i

)
exp(−χ2/2)

(2.1)

where

χ2 =
I∑
i

(
qobsi − qi(τ,m)

σi

)2

(2.2)

N(q, σ) and N (q,Cq) are normal distribution and multivariate normal distribution, respec-

tively. σ is the standard deviation of q and Cq is the covariance matrix of q. I is the number

of data points (or stars) on the log g − Teff plane, with i as an index.

p(τ,m) is the prior distribution of parameters. Assume that age and initial mass are

independent, the prior is then p(τ)p(m). The prior on stellar age p(τ) relates to the star

formation rate, and we use a flat distribution for convenience. For the prior on stellar initial

mass p(m), we use p(m) ∼ m−2.7, which corresponds to a Salpeter initial mass function.

Thus the posterior is p((τ,m)|qobs) ∝ p(qobs|τ,m)p(m). If we need the posterior of one
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parameter, for example, the age τ , we can marginalize over other parameters, m:

p(τ |qobs) ∝
∫
p((τ,m)|qobs)dm ∝

∫
p(qobs|τ,m)p(m)dm (2.3)

Numerically, we can evaluate the above equation for each age τi as

p(τi|qobs) ∝
∑
k

p(qobs|τi,mi,k)p(mk)∆mk. (2.4)

This is a sum for each massmk on the isochrone of age τi, and ∆mk is the grid spacing in mass.

For the extension of this equation to include metallicity, see eq.(11) in the original paper

(Jørgensen & Lindegren 2005). We can of course select different parameters in parameter

space and data space (Prada Moroni et al. 2012).
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Figure 2.8 The relative posterior probability density of age for star A.
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Figure 2.9 The relarive posterior probability density of age for star B.

We have implemented the above algorithm with the Padova evolutionary models (Girardi

et al. 2000), and the IDL source code has been included in the appendix. In Figure 2.8 and

2.9, we show the results of Bayesian isochrone fitting for star A and star B, respectively.

Note that the age of star A is much better constrained and the distribution for the age of

star B is very broad.

We show similar calculations for the eclipsing binary KIC 9851944 in Figure 2.10 and 2.11.

Note that the posterior distribution of age is sharper when we consider the two components

simultaneously, assuming that the two components are coeval.
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Figure 2.10 Position of KIC 9851944 on the log Teff − log g plane. The primary and sec-

ondary star are indicated by the green and blue symbol, respectively. Padova isochrones are

overlayed for comparison.
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Figure 2.11 The posterior probability distributions of age for KIC 9851944. The solid and

dotted line are the results from fitting the observed (log Teff , log g) of the primary and

secondary, respectively. The much sharper distribution in red is the result of considering the

two components simultaneously, assuming coevality.
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2.3 Differences between Y2 and Dartmouth Isochrones for Low Mass Stars

Isochrones

3.9 3.8 3.7 3.6 3.5
Log(Teff)

4.8

4.6

4.4

4.2

4.0

3.8

lo
g 

g

M=0.5
M=0.6

M=0.7
M=0.8

M=0.9
M=1.0

M=1.1

Yonsei Yale
Dartmouth

1G yr

2G yr
3G yr

Figure 2.12 The isochrones from Dartmouth (red) and Yonsei-Yale (black) evolutionary

models on the log g − log Teff plane. The masses on isochrones are labeled respectively by

the red and green dots.

We rely heavily on stellar evolutionary models for inference of fundamental parameters. In

most observational work, only one model is considered and differences between different

evolutionary models are not taken into account.

Figure 2.6 in the last section already shows the differences between Yonsei-Yale (Y2)
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and Dartmouth evolutionary models (DSEP) for KIC 9851944. In Figure 2.12, we show the

isochrones from these two models again but for low mass stars. The most distinct differences

are for stars with masses lower than 0.8M�. The Dartmouth isochrones have systematically

higher surface gravities. This difference will affect the derived masses and radii of exoplanets

as discussed below.
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12 Huber et al.

Fig. 10.— (a) Fractional difference between published radii
and masses and values derived in this work for confirmed planet
host stars (black) and planet-candidate host stars analyzed by
Buchhave et al. (2012) (red). Only stars with relative uncertainties
better than 20% are shown. (b) Same as panel (a) but for stellar
masses.

studies used in the consolidation of literature values
adopted the same models as in this study, hence remov-
ing the need to re-fit the parameters to ensure consis-
tency with the remaining sample. For these reasons,
we have adopted literature values for all stars with pub-
lished masses, radii and densities that are based on DSEP
models. These studies include Dressing & Charbonneau
(2013) and Muirhead et al. (2012a) for M dwarfs, and
Chaplin et al. (2014) and Huber et al. (2013a) for F-G
dwarfs with asteroseismic measurements. Note that the
latter two studies used a variety of models including
DSEP, hence providing more robust estimates of uncer-
tainties on stellar properties.

6.5. Final Catalog Description

The complete Q1–Q16 star properties catalog is pre-
sented in Table 5. For each star we list the best-fitting
Teff , log g, [Fe/H], radius, mass and density, together
with the uncertainty based on the 1-σ interval around the
best fit, as described in Section 6.228. For stars with pub-

28 We note that the procedure also yielded additional parameters
(such as distances) which, however, were omitted from this catalog

Fig. 11.— (a) Stellar masses in the Q1–Q16 catalog compared
to empirical values calculated from Teff , log g and [Fe/H] using the
relations by Torres et al. (2010). The dashed line shows the 1:1
relation. (b) Same as panel (a) but for stellar radii.

lished masses, radii and densities based on DSEP models,
stellar properties and uncertainties as given in the liter-
ature are listed (see Section 6.4). Each entry contains
provenance flags specifying the origin of the input Teff ,
log g, and [Fe/H]. The provenance consists of a three let-
ter abbreviation of the method used to derive the param-
eter and a number specifying the reference from which
the parameter was adopted. The abbreviations are as
follows (see also Section 4):

• AST = Asteroseismology

due to the large uncertainties. Additional parameters for subsets of
stars are available on request, and will be added to future updates
of the catalog.

Figure 2.13 (a) Fractional difference between published radii and masses derived in Huber et

al. (2014) for confirmed planet host stars (black) and planet-candidate host stars analyzed

by Buchhave et al. (2012) (red). (b) Same as panel (a) but for stellar masses. Figure is

taken from Huber et al. (2014).
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Figure 2.13 shows a comparison for confirmed Kepler planet host stars taken from the

NASA exoplanet archive (black), as well as the larger sample of planet-candidate host stars

by Buchhave et al. (2012) (red). In both cases the majority of the radii and masses were

derived using Yonsei-Yale (Y2) evolutionary models. Overall the residuals show an offset

of 1% for radius and an offset of 3% for mass. We observe systematic differences at the

low-mass end (≤ 0.8M�), resulting in a ‘kink’ with higher DSEP masses and radii between

≈ 0.6− 0.8M�, and lower DSEP masses and radii for ≤ 0.6M�.

Table 2.2 presents the differences in the adopted stellar physics between these two models.

Mcritical is the mass when stars start to develop a convective core. For [Fe/H] = 0 and

[α/Fe] = 0, Mcritical is about 1.2M�. Most of the listed physics is similar. The difference

in the treatment of convective core overshooting has nothing to do with low-mass stars

(≤ 0.8M�). The aforementioned observed systematic differences for the low-mass stars is

thus likely due to different equations of state adopted.
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CHAPTER 3

Linear Oscillation Theory

This chapter contains the theory of linear stellar oscillations. The theory of free oscillations

with and without rotation is from Unno et al. (1989) and Townsend (1997). The linear tidal

oscillation theory without rotation is mainly from Fuller & Lai (2012), Burkart et al. (2012),

and Valsecchi et al. (2013). Although most of the content is a review of the theory in the

literature, I summarize and present them in a general framework following the formulism

used in GYRE (Townsend & Teitler 2013). The Hough function, used in the traditional

approximation, is discussed in detail and presented graphically. I have tried to fill in the

gaps in the derivations especially for the tidal oscillation theory. All figures are based on

my own calculations and the adiabatic and non-adiabatic tidal eigenfunctions are the main

contributions.

This chapter is directly related to Chapter 1 and Chapter 5, in which we utilize the

results from solving the free oscillation equations. In Chapter 6, we apply the amplitude and

phase equations of tidally forced oscillations to Kepler heartbeat stars.

The variables and terms used in the adiabatic and non-adiabatic stellar oscillations in

this chapter are listed in Table 3.1, and some of them are also listed in Valsecchi et al. (2013).

Table 3.1: Definition of Variables

Symbol Expression/Description
δρ Lagrangian density perturbation
ρ′ Eulerian density perturbation
δr or ξ Lagrangian displacement
ξR or ξr radial part of the Lag. displacement
ξS horizontal part of the Lag. displacement
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v velocity
Φ gravitational potential
Φ′ or δΦ Eulerian gravitational potential perturbation
δp Lag. pressure perturbation
p′ Eulerian pressure perturbation

Γ1 = (∂ ln p
∂ ln ρ

)s adiabatic index

Vg
V
Γ1

= gr/c2
s

V −d lnP/d ln r = GMrρ/rp
c1 ( r

R
)3 M
Mr

N2 Brunt-Väisälä frequency = g( 1
Γ1

d ln p
dr

d ln ρ
dr

)

A∗ rg−1N2

U d lnMr

d ln r
= 4πρr3

Mr

Mr mass contained within a radius of r
M∗ or M total mass of the star
R∗ or R radius of the star
δS Lag. entropy perturbation
cP specific heat at constant pressure
δLR Lag. perturbation of radiative luminosity
LR radiative luminosity
κ Opacity
κT ( ∂ lnκ

∂ lnT
)ρ

κρ (∂ lnκ
∂ ln ρ

)T
S Specific entropy
κad (∂ lnκ

∂ ln p
)S = κT∇ad + κρ

Γ1

κs cP (∂ lnκ
∂S

)p = κT − νTκρ
∇ d lnT

d ln p

∇ad (d lnT
d ln p

)S
c2 or ckap (κad − 4∇ad)V∇+∇ad(

d ln∇ad
d ln r

+ V )

c3
4πr3ρεN
LR

c4
4πr3ρTcP

LR

√
GM
R3

νT cP∇ad
ρT
p

εN Nuclear generation rate
εT (∂ ln εN

∂ lnT
)ρ

ερ (∂ ln εN
∂ ln ρ

)T
εad (∂ ln εN

∂ ln p
)S = εT∇ad + ερ

Γ1

g gravitational acceleration
c speed of light
G gravitational constant
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3.1 Free Oscillations

3.1.1 Without Rotation

The basic hydrodynamic equations describing stellar structures include the conservation of

mass, momentum, and energy, supplemented with the Poisson equation for the gravitational

potential, equations of state, equations for energy generation rate and opacity (Unno et

al. 1989). Ignoring the effects of magnetic field and rotation, we then get the linearized

equations for adiabatic (entropy perturbation is zero) non-radial oscillations:

δρ

ρ
+∇ · (δr) = 0

∂v

∂t
= −∇Φ′ − ρ′

ρ
∇Φ− 1

ρ
∇p′

δp

p
= Γ1

δρ

ρ

∇2Φ′ = 4πGρ′

(3.1)

where ρ and p are density and pressure, Φ and Φ′ are gravitational potential and its perturba-

tion, Γ1 is adiabatic index equal to (∂p
∂ρ

)s, and v is velocity of the fluid element. These equa-

tions correspond to the mass conservation equation, the equation of motion, the adiabatic

state equation, and the Poisson equation, respectively. δ refers to Lagrangian perturbations,

and prime means Euler perturbations. The Lagrangian description is a way of looking at

fluid motion where the observer follows an individual fluid parcel as it moves through space

and time. The Eulerian specification focuses on specific fixed locations in the space through



44

which the fluid flows as time passes. The Lagrangian displacement vector δr is often written

as ξ in literature. Expressing these equations in spherical coordinates, and utilizing variable

separation, the displacement vector is :

ξ = δr =

[
ξR(r), ξS(r)

∂

∂θ
, ξS(r)

∂

sin θ∂φ

]
Y m
l (θ, φ)e−iσt, (3.2)

where ξR(r) and ξS(r) refer to the radial part of the radial and horizontal displacement,

respectively. Perturbations of various variables can be expressed as, for example, the pressure

perturbation,

p′(r, θ, φ, t) = p′(r)Y m
l (θ, φ)e−iσt. (3.3)

For numerical convenience, Dziembowski (1971) first introduced the dimensionless depen-

dent variables. Following the treatment of Townsend & Teilter (2013) and inspired by private

communications with Joshua Burkart, the linearized dimensionless oscillation equations can

be written as:

dy

dx
= A(x, ω)y (3.4)

where ω is the eigenvalue (dimensionless oscillation frequency) and vector y, as functions of

dimensionless radial coordinates x = lnx′ = ln(r/R) and ω, is the eigenfunction, representing

various oscillation variables (e.g., ξr/r, etc.).
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In the adiabatic case, the eigenfunction vector can be written as (Dziembowski 1971):

y =


y(1)

y(2)

y(3)

y(4)

 (3.5)

where

y(1) =
ξr
r

y(2) =
1

gr
(
p′

ρ
+ Φ′)

y(3) =
1

gr
Φ′

y(4) =
1

g

dΦ′

dr
.

(3.6)

A(r, ω) is the coefficient matrix (4 by 4 for adiabatic case). The inner (r = 0) and outer

(r = R) boundary conditions (BCs) are:

Biny(0) = 0, Bouty(R) = 0 (3.7)

where Bin and Bout are 2 by 4 matrices for adiabatic oscillations.

We begin with a stellar equilibrium model that is given on a depth grid from center to

surface with index 1 ≤ i ≤ N . The various physical quantities are evaluated at the ith grid

point (or perhaps taken as the average of values at grid points i and i + 1). Define the

increment ∆xi = xi+1−xi. Then we can assume the coefficient matrix A is constant at each

ith grid point, and thus we have the Taylor expansion:
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y(xi + ∆xi) = y(xi) +
dy

dx
∆xi +

1

2!

d2y

dr2
∆x2

i + · · ·

= (1 + Ai∆xi +
1

2!
A2
i∆x

2 + · · ·)y(xi)

= exp(Ai∆x)y(xi).

(3.8)

Further define the matrix Ti = exp(Ai∆ri), and the above equations can then be written

as yi+1 = Tiyi. We can then connect each individual grid value by applying the this relation

repeatedly (from i = 1 to N), along with the boundary conditions from equation (3.7). We

thus have:

yN = (T1T2 · · · TN)y1 = Ty1 (3.9)

and

Biny1 = BoutTy1 = 0. (3.10)

For convenience we define a vector:

u =

 y1
...
yN

 (3.11)

and the above two equations (3.9) and (3.10) can then be summarized into:

Bin

T1 −1
T2 −1

. . .

TN−1 −1
Bout





y1

y2

y3
...

yN−1

yN


= Su = 0. (3.12)

For this homogeneous system of linear equations to have non-zero solutions of u, it must
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satisfy:

det(S) = 0. (3.13)

Thus, the eigenvalues (oscillation frequencies) are the roots of the above equation. For

each eigenvalue, we solve the corresponding eigenvector (eigenfunction) u. This can be

achieved by LU decomposition or Singular Value Decomposition of matrix S.

In the adiabatic case, the coefficient matrix Ai is given by Unno et al. (1989):

Ai =


Vg − 3 l(l+1)

c1ω2 − Vg Vg 0

c1ω
2 − A∗ A∗ − U + 1 −A∗ 0
0 0 1− U 1

UA∗ UVg l(l + 1)− UVg −U

 (3.14)

where

V = −d ln p

d ln r

A∗ =
1

Γ1

d ln p

d ln r
− d ln ρ

d ln r

U =
d lnMr

d ln r

c1 =
r3

R3
∗

M∗
Mr

Vg =
V

Γ1

= − 1

Γ1

d ln p

d ln r
=
gr

c2

ω2 =
σ2

GM/R3
(dimensionless frequency)

(3.15)

The inner BC is:

Bin =

[
c1ω

2 −l 0 0
0 0 l −1

]
(3.16)
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The Dziembowski-type outer BC is

Bout =

[
(a) −1 (b) 0
0 0 l + 1 1

]
(3.17)

where

(a) = 1 +

[
l(l + 1)

ω2
− 4− ω2

]
1

V

(b) = 1 +

[
l(l + 1)

ω2
− l − 1

]
1

V
.

(3.18)

In the limit that the surface pressure vanishes, 1/V → 0, and we have the the ‘zero’ outer

BC

Bout =

[
1 −1 1 0
0 0 l + 1 1

]
(3.19)

The derivation of these boundary conditions are detailed in Unno et al. (1989) and

Townsend (1997), which involves some algebraic manipulation and physical intuition. Here,

we use a general representation derived by Joshua Burkart based on matrix diagonalization.

Utilizing the capability of symbolic computation of Mathematica, these derivations can be

simplified.

Using the denotation x = r/R, the linear oscillation equations in eq. (3.4) are ,

x
dy

dx
= Ay. (3.20)

At the stellar center (r → 0), U → 3, V → 0, and A∗ → 0. Then the equations become

x
dy

dx
= Ar→0y (3.21)

where the constant matrix Ar→0 is
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Ar→0 =


−3 l(l+1)

c1ω2 0 0

c1ω
2 −2 0 0

0 0 −2 1
0 0 l(l + 1) −3

 . (3.22)

We perform an eigendecomposition of Ar→0 = SDS−1, where S = (ξ1, ξ2, · · ·, ξn) is the

eigenvector matrix and D = (λ1, λ2, · · ·, λn) is the eigenvalue matrix which is diagonal. Then

the equations at x→ 0 are,

xy′ = SDS−1y

xS−1y′ = DS−1y

xz′ = Dz

(define S−1y = z)

(3.23)

Note that y′ denotes dy/dx. The solution for each eigenvalue λi is then

zi = Cix
λi . (3.24)

However, we need to reject certain λ on physical grounds, and the corresponding undeter-

mined constant Ci then needs to be zero since xλi diverges. If one of these is λm, then

zm = Cmx
λm = 0xλm = 0 and this yields the boundary condition

S−1
mnyn = 0. (3.25)

For the matrix Ax→0, a Mathematica symbolic calculation yields:

Eigenvalues[{−3, l ∗ (l + 1)/a, 0, 0}, {a,−2, 0, 0}, {0, 0,−2, 1}, {0, 0, l ∗ (l + 1),−3}]

= {l − 2, l − 2,−3− l,−3− l}
(3.26)
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which is the matrix D in the above equation 3.23 and we have used the notation a = c1ω
2. We

need to reject the eigenvalue l − 2 since xl−2 diverges with increasing x. The corresponding

inverse of eigenvector matrix of S is S−1, given by,

Inverse[Eigenvectors[{−3, l ∗ (l + 1)/a, 0, 0}, {a,−2, 0, 0}, {0, 0,−2, 1}, {0, 0, l ∗ (l + 1),−3}]]

(3.27)

=


0 s

g
0 − s

g

0 − (l+1)s
ag

0
1
a

(1+ l
l+1

)

g
1
a

(2l+1)

g
0

1
a

(2l+1)

−g 0
1

(l+1)a
(2l+1)

g
0

1
a

(2+ 1
l
)

g
0


T

(3.28)

where s = 1
l

+ 1
l+1

and g = 2
a

+ 1
al

+ 1
a(1+l)

+ 2l
a(1+l)

.

Thus one of the boundary condition from S−1y = 0 at x→ 0 is

s

g
y1 + (

− 1
a
(1 + l

l+1
)

g
)y2 + 0y3 + 0y4 = 0 (3.29)

which reduces to y1 = l
a
y2. The other inner BC from the same equation is ly3 = y4. These

are the same results as eq. 18.29 and 18.30 in Unno et al. (1989) and eq. 3.8 and 3.13 in

Townsend (1997).

In the non-adiabatic case (Unno et al. 1989),

y =


y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

 (3.30)
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where

y(1) =
ξr
r

y(2) =
1

gr
(
p′

ρ
+ Φ′)

y(3) =
1

gr
Φ′

y(4) =
1

g

dΦ′

dr

y(5) =
δS

cP

y(6) =
δLR
LR

.

(3.31)

where δS is entropy perturbation, and δLR is the perturbation of radiative luminosity. The

coefficient matrix Ai is:

Ai =


Vg − 3 l(l+1)

c1ω2 − Vg Vg 0 νt 0

c1ω
2 − A∗ A∗ − U + 1 −A∗ 0 νt 0
0 0 1− U 1 0 0

UA∗ UVg l(l + 1)− UVg −U −Uνt 0
V (c) V (d) V c2 V∇ad V∇(4− κs) −V∇
(e) (f) (g) 0 (h) −d lnLR

d ln r

 (3.32)

The inner BC is

Bin =

 c1ω
2 −l 0 0 0 0

0 0 l −1 0 0
0 0 0 0 1 0

 . (3.33)

The outer BC is

Bout =

 (a) −1 (b) 0 0 0
0 0 l + 1 1 0 0

2− 4∇adV 4∇adV −4∇adV 0 4 −1

 , (3.34)
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where (a) and (b) are given in eq. (3.18) and others are

(c) =
[
∇ad(U − c1ω

2)− 4(∇ad −∇) + ckap
]

(d) =

[
l(l + 1)

c1ω2
(∇ad −∇)− ckap

]
(e) =

[
l(l + 1)

∇ad −∇
∇ − εadc3V

]
(f) =

[
εadc3V + l(l + 1)(−∇ad

∇ +
c3

c1ω2
)

]
(g) =

[
l(l + 1)

∇ad

∇ − εadc3V

]
(h) =

[
εsc3 −

l(l + 1)

V∇ − iωc4

]
.

(3.35)

Please refer to Table 3.1 for the definitions of all variables.

3.1.2 Rotation with the Traditional Approximation

In the previous section, the oscillation equations are solved for each spherical degree l, and

the oscillations are degenerate with respect to the azimuthal number m in the non-rotating

case. The traditional approximation (TA), first applied in geophysics, can be used to study

the effects of rotation to low frequency g-modes. This approximation is valid for g-modes

for which ω � N and Ωs � N (where ω is mode frequency in rotating frame, N is the

Brunt-Väisälä frequency, and Ωs is rotational frequency). With treatment of rotation in TA,

the eigenfrequencies and eigenfunctions are now functions of spin parameter ν = 2Ωs/ω.

With rotation, we can think of a g-mode with (l) in the non-rotating case becomes (lj,m),
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given by:

lj = |m|+ 2(j − 1), for even modes

lj = |m|+ 2j − 1, for odd modes

(j = 1, 2, 3, ...,∞).

(3.36)

The radial Lagrangian displacement and Eulerian pressure perturbation are given by:

ξr(r) = ξr(r)Hlj ,m(θ)eimφ

p′(r) = p′(r)Hlj ,m(θ)eimφ
(3.37)

where Hlj ,m(θ) are Hough functions (Aerts et al. 2010; Townsend 2003). Note that we

still have the separation of variables for r, θ, and φ. The eigenfrequencies and then the

r dependent eigenfunctions (ξr(r), p
′(r), etc.) are solved in the following. We consider

the simplest case for adiabatic non-radial oscillations with the Cowling approximation, i.e.,

neglect of the variations in the gravitational potential. For each lj, the oscillation equations

in traditional approximation are

dyj1
dx

= (Vg − 3)yj1 + (
lj(lj + 1)

c1ω2
− Vg)yj2

dyj2
dx

= (c1ω
2 − A∗)yj1 + (1− U + A∗)yj2.

(3.38)

The inner BC is c1ω
2yj1 − ljyj2 = 0.

The outer BC is yj1 − yj2 = 0.

y1 and y2 are the same with those in eq. (3.31) but with Φ′ = 0. Comparing with eq.
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(3.14), (3.16), and (3.19), we can see that the differential equations and boundary conditions

are identical to the non-rotating case. Details of the derivation can be found in the PhD

thesis of Townsend (1997). Note that there is a typo in his eq. 6.72 on page 120 which

should read c1ω
2(Z1)j − lj(Z2) = 0. The equations for non-adiabatic case in TA are given

by Townsend (2005a).

The only difference is that we need to replace l with the effective lj =

√
1+4λmlj−1

2
, which

is the root of equation lj(lj + 1) = λmlj , where λmlj for each j is one of the eigenvalues of

matrix W . The elements of its inverse matrix W−1 are given in an explicit form (eq.

34.29 and eq. 34.30 in Unno et al. 1989). Note that the eigendecompositions have the

properties: W = BΛB−1 and W−1 = BΛ−1B−1, where Λ is the diagonal matrix whose

diagonal elements are the corresponding eigenvalues of W and B is the square matrix whose

columns are the eigenvectors of W . In practical calculations, we get the eigenvalues 1/λmlj

and corresponding eigenvectors from W−1.
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Figure 3.1 The eigenvalues λmlj for m = 2 g-modes. The lines from top to bottom represent

the eigenvalues for lj = 7 to lj = 2 modes.

In Figure 3.1, we show the variations of eigenvalues λmlj for m = 2 modes as ν increases. In

the oscillation code GYRE (Townsend & Teitler 2013), the eigenvalues λmlj are pre-calculated

and tabulated in grids of ν. For a given rotational frequency, they are interpolated and the

corresponding lmj is used for solving the oscillation equations. Note that lmj can be treated

as a function of radial coordinate r, thus we can assign different rotational velocities for

different r and analyze the effects of radial differential rotation.
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The aforementioned θ-dependent Hough functions Hlj ,m(θ) can be expressed as the sum

of associated Legendre polynomials,

Hlj ,m(θ) =
∞∑
j=1

γmlj (ν)P̃m
lj

(cos θ) (3.39)

The expansion coefficients γmlj (ν) for (j = 1, 2, 3, ...) form the eigenvector of W with respect

to index j (the jth column of matrixB), and P̃m
lj

(cos θ) is the normalized associated Legendre

function given by

P̃m
lj

(cos θ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
lj

(cos θ). (3.40)

Note that the spherical harmonics Y m
l (θ, φ) = P̃m

l (cos θ)eimφ. In the zero-rotation limit, for

j = 1, 2, 3, ..., γmlj (ν → 0) = (1, 0, 0, ...) so that Hlj ,m(θ)eimφ becomes Y m
l (θ, φ).
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Figure 3.2 Representation of Hlj ,m(θ)eimφ on the stellar surface of a (lj = 4,m = 2) mode.

Inclination angle of the star is 90 degrees (edge-on view). As the rotational frequency Ω

increases, the mode is compressed to the equator.

The angular dependence of ξr(r) is expressed as H(θ)eimφ which is associated with the

expansion matrix B (coefficients γmlj ). In Figure 3.2, we present these angular functions for

an lj = 4,m = 2 mode with different values of spin parameter ν on a sphere. The mode-

compression effect of rotation can be clearly seen that localizes the amplitude to the vicinity

of the equator.
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The expansion coefficients γmlj of Hough function H(θ) for a (l = 2,m = 2) mode are

shown in Figure 3.3, which are calculated with the astro hough subroutine of GYRE. In

the zero-rotation limit (ν = 0), the base coefficient γm=2
lj=2 = 1 and all other coefficients

γm=2
lj=4 , γ

m=2
lj=6 , ... are zero. This is just a non-rotating (l = 2,m = 2) mode. As rotational

frequency increases, the amplitude of base coefficient γm=2
lj=2 decreases, and other higher j

coefficients begin to gain importance. This illustrates the effect of rotation: high lj =

4, 6, 8, ... modes begin to couple with the base lj = 2 mode.
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Figure 3.3 The expansion coefficients γmlj of the Hough function H(θ) for a (l = 2,m = 2)

mode for three spin parameters ν = 0, 2, 5 (from top to bottom, respectively).

The horizontal and toroidal displacements ξh(r), ξt(r) need extra calculations, and their

associated expansion matrices Q and R are detailed in Townsend (1997, eq. 6.80 − 6.83).

Except for the rotationally-modified g-modes mentioned above, there are also Rossby modes

(r-modes) that do not have non-rotating counterparts and only m (instead of l,m) can be

assigned to these modes. The limitations of the traditional approximation are described in

Gerkema et al. (2008) in a geophysical and astrophysical prospective.
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3.2 Tidally Forced Oscillations

3.2.1 Directly Solving Tidal Oscillation Equations

Following Fuller & Lai (2012), we set up a spherical coordinate system with the origin on

the center of the primary star of mass M1. The companion (or secondary) is orbiting in

the plane θ = π/2, perpendicular to the rotation axis θ = 0, with the temporally varying

azimuthal angle φ = f(t).

The gravitational potential due to the secondary of mass M2, experienced by the primary

M1, is given by:

U(ri, t) =
−GM2

|D(t)− r| (3.41)

where ri = (r, θ, φi = φ+Ωst) is a position vector relative to the center of the primary star, the

azimuthal angle φ is measured in the rotating frame of the star, with the rotation frequency

Ωs and the rotation axis aligned with the orbital angular momentum. The azimuthal angle

φi is in the inertial frame (observer’s frame).

D(t) = [D(t), π/2, f(t)] specifies the position vector of the companion M2, which is

treated as a point mass. D(t) is binary separation, f(t) is true anomaly.

Following the treatment in Jackson (2006) (eq. 3.70) and with the help of the additional

theorem of spherical harmonics, this gravitational potential generated by M2 (also denoted

by M ′) experienced by M1 can be expanded as

U(ri, t) = −GM ′
∞∑
l=2

m=+l∑
m=−l

Wlm
rl

D(t)l+1
e−imf(t)Ylm(θ, φi) (3.42)

where Wlm = 4π
2l+1

Y ∗lm(π
2
, 0) = (−1)

l+m
2 [ 4π

2l+1
(l + m)!(l − m)!]

1
2 [2l( l+m

2
)!( l−m

2
)!]−1. For l = 2,
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W20 = −
√
π/5 and W2±2 =

√
3π/10.

The true anomaly f(t) represents the temporal dependence of an eccentric orbit with

orbital frequency Ωorb = 2π/Porb, and it can be decomposed as the sum of infinite number

(k = −∞, ...,+∞) of time-invariant circular orbits each with the frequency of an orbital

harmonic kΩorb. The Fourier decomposition (Burkart et al. 2012) is:

(
a

D(t)

)l+1

e−imf(t) =
+∞∑

k=−∞
Xk
lme
−ikΩorbt (3.43)

or equivalently,(
Dperi

D(t)

)l+1

exp[−imf(t)] =
+∞∑

k=−∞
Xk
lm(1− e)l+1 exp(−ikΩorbt). (3.44)

Note that Dperi = a(1− e) is the distance at periastron and e is the orbital eccentricity.

We use e··· or exp(· · · ) for exponential function and it should not be confused with the

orbital eccentricity e. The Hansen coefficients Xk
lm(e) are functions of e and (l,m, k), and

they satisfy:

+∞∑
k=−∞

Xk
lm(1− e)l+1 = 1 (3.45)

They can be calculated numerically as the following integral of the eccentric anomaly E

(Burkart et al. 2012):

Xk
lm =

1

π

∫ π

0

(1− e cosE)−l cos

[
k(E − e sinE)− 2m arctan

(√
1 + e

1− e tan(E/2)

)]
dE.

(3.46)
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Figure 3.4 The Hansen coefficients Xk
lm for e = 0.8 and e = 0.4. The black and red lines

correspond to (l = 2,m = 2) and (l = 2,m = 0), respectively.

The coefficients Xk
2m(e) of m = 0 and m = 2 are shown in Figure 3.4 for two eccentricities

e = 0.4 and e = 0.8. Note the Hansen coefficients are generally larger at higher k for higher

eccentricity. More examples can be found in Figure 3 of Willems (2003).

Inserting eq. (3.43) into eq. (3.42), we can find that the tidal potential U(ri, t) can be

written as the sum of terms with respect to (l,m, k), where (l,m) corresponds to spatial

decomposition and k is the index of temporal decomposition. By using the decomposition
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of tidal force and following the treatment of Valsecchi et al. (2013), for each set of (l,m, k),

the forced oscillation equations are just the free oscillation equations (their eq. 1− 5, or our

equations 3.31, 3.32, 3.33, 3.34) with an extra gravitational potential term (εTW ) added to

the momentum equation (their eq. 2). If we group the perturbation of the stars gravitational

potential (Φ′) and the tide-generating potential (εTW ) into the total perturbation of the

gravitational potential defined as Ψ = Φ′ + εTW , then the inhomogenous forced oscillation

equations can be reduced to the following homogenous equations in the same form of the

original free oscillation equations dy/dx = Ay.

In the adiabatic case, the dependent variable y is,

y =


y(1)

y(2)

y(3)

y(4)

y(7)

y(8)

 (3.47)

where

y(1) =
ξr
r

y(2) =
1

gr
(
p′

ρ
+ Ψ)

y(3) =
1

gr
Ψ

y(4) =
1

g

dΨ

dr

y(7) = const.

y(8) = const.

(3.48)

where y(7) and y(8) are two auxiliary constant dependent variables (added so that the bound-
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ary conditions also become homogeneous). The coefficient matrix Ai at the ith grid point

is,

Ai =


Vg − 3 l(l+1)

c1ω2 − Vg Vg 0 0 0

c1ω
2 − A∗ A∗ − U + 1 −A∗ 0 0 0
0 0 1− U 1 0 0

UA∗ UVg l(l + 1)− UVg −U 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (3.49)

The inner BC is:

Bin =

 c1ω
2 −l 0 0 0 0

0 0 l −1 0 0
0 0 0 0 1 −1

 (3.50)

The outer BC (eq. 18, 53, 20 in Valsecchi et al. 2013) is:

Bout =

 (a) −1 (b) 0 0 0
4πρ
g

0 l + 1 1 0 εT (2l+1)clmk
g

0 0 0 0 1 −1

 (3.51)

where (a) and (b) are given in the last section (eq. 3.18). The dimensionless parameter εT

is defined by εT = (R1

a
)3(M2

M1
). ρ and g are dimensionless density and surface gravity, defined

as ρcgs/(M1/R
3
1) and gcgs/(GM1/R

2
1), respectively.

Following Willems (2000), clmk is defined as:

clmk =
(l − |m|)!
(l + |m|)!P

|m|
l (0)

(
R1

a

)l−2

Xk
lm (3.52)

where P
|m|
l (0) is:

P
|m|
l (0) =

2|m|√
π

Γ[(l + |m|+ 1)/2]

Γ[(l − |m|+ 2)/2]
cos[

π

2
(l + |m|)]. (3.53)

Note that we use the notation in Burkart et al. (2012) the for Hansen coefficient Xk
lm, which

is the same as Willems’ X
−(l+1),−m
k .
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In the non-adiabatic case, the dependent variable y is,

y =



y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

y(7)

y(8)


(3.54)

where

y(1) =
ξr
r

y(2) =
1

gr
(
p′

ρ
+ Ψ)

y(3) =
1

gr
Ψ

y(4) =
1

g

dΨ

dr

y(5) =
δS

cP

y(6) =
δLR
LR

y(7) = const.

y(8) = const.

(3.55)

and the coefficient matrix A is

Ai =



Vg − 3 l(l+1)
c1ω2 − Vg Vg 0 νT 0 0 0

c1ω
2 − A∗ A∗ − U + 1 −A∗ 0 νT 0 0 0
0 0 1− U 1 0 0 0 0

UA∗ UVg l(l + 1)− UVg −U −UνT 0 0 0
V (c) V (d) V c2 V∇ad V∇(4− κs) −V∇ 0 0
(e) (f) (g) 0 (h) −d lnLR

d ln r
0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

(3.56)
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The inner BCs matrix is:

Bin =


c1ω

2 −l 0 0 0 0 0 0
0 0 L −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1

 (3.57)

The outer BCs matrix is:

Bout =


(a) −1 (b) 0 0 0 0 0
4πρ
g

0 l + 1 1 0 0 0 εT (2l+1)clmk
g

2− 4∇adV 4∇adV −4∇adV 0 4 −1 0 0
0 0 0 0 0 0 1 −1

 (3.58)

where (a),(b),(c),(d),(e),(f),(g),(h) are given in eq. (3.18) and eq. (3.35).

In the previous section, we see that the free oscillation equations finally reduce to a

homogenous algebraic equation Su = 0. The eigenfrequencies are the roots of det(S) = 0

and eigenfunctions are the non-zero solutions u. For the tidally forced oscillation equations

discussed above, the final form is also Su = 0. The difference is that the eigenfrequencies

are just driven frequencies and we naturally have det(S) = 0. Thus we only need to solve

for the eigenfunctions on a grid of given driven frequencies.

Here we show the tidal eigenfunctions of a star with mass of M1 = 5M� and radius of

R1 = 2.62R� in a binary system. The companion is treated as a point mass with M2 = 5M�.

The orbit has an eccentricity e = 0.4 and orbital period P . This is the same example

presented by Valsecchi et al. (2013). By solving the free oscillation equations, we find the

star has a n = 9 g-mode with period of Png=9 = 44448.89 seconds. We vary the orbital

period of the binary so that the tidal forcing frequency becomes comparable to this natural

frequency. For (l = 2,m = 0, k = 1), we solve the forced oscillation equations (3.48, 3.49,

3.50, 3.51) for the adiabatic eigenfunctions (y1, y2, y3, y4) with LU decomposition for 4 orbital
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periods P1 = 44448.00s, P2 = 44448.67s, P3 = 44449.33s, and P4 = 44450.00s. These tidal

eigenfunctions are shown in Figure 3.5, 3.6, 3.7, and 3.8. It can be seen that the mode

amplitude sensitively depends on the detuning parameter, which is the difference between

the driving frequency and natural frequency (or the driving period and the natural period).

It is apparent that P2 is closest to the natural period Png=9 = 44448.89 and thus has a very

large amplitude. A smaller detuning parameter suggests a larger mode amplitude, especially

at the stellar surface. The mode amplitudes (as a function of driving frequency) form a

Lorentzian-like profile, with the peak at the natural frequency (Figure 5 in Valsecchi et al.

2013).
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Figure 3.5 The adiabatic tidal eigenfunction y1 = ξr(r)/r for four driving frequencies which

correspond to periods of P1, P2, P3, P4 labeled in the figure.
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Figure 3.6 The adiabatic tidal eigenfunction y2 = 1
gr

(p
′

ρ
+ Φ′) for four driving frequencies

which correspond to the labeled periods of P1, P2, P3, P4.
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Figure 3.7 The adiabatic tidal eigenfunction y3 = 1
gr

Φ′ for four driving frequencies which

correspond to the labeled periods P1, P2, P3, P4
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Figure 3.8 The adiabatic tidal eigenfunction y4 = 1
g
dΦ′
dr

for four driving frequencies which

correspond to the labeled periods P1, P2, P3, P4.
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Figure 3.9 Changes made to subroutines of GYRE to calculate tidal eigenfunctions.

For the non-adiabatic calculations, we find that the previous method based on LU de-

composition does not work. It is probably due to difficult numerical properties of matrix

S. We resort to the GYRE oscillation code, which uses a better algorithm (Wright 1994)

for solving the free oscillation equations Su = 0. To extend GYRE’s capability to solve the

tidal oscillation equation, we need to change the matrix S, which means we need to change

the coefficient matrix Ai at each layer and the two boundary conditions Bin and Bout. We

also need to skip the root-finding step in solving det(S) = 0 as it is not needed for solving

tidal oscillation frequencies (they are equal to the driving frequencies). The changes made

to the subroutines in GYRE are briefly summarized in Figure 3.9.

In Figure 3.10, 3.11, 3.12, and 3.13, we show the non-adiabatic eigenfunctions for the same

example above calculated with GYRE and the CAFein code (Valsecchi et al. 2013). Our

eigenfunctions calculated with GYRE are generally in agreement with those from CAFein.

The differences seem to be significant for y3,R, y4,R and y6,R. For all the eigenfunctions, there
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seems to be a scaling factor difference, which is probably due to some scaling mistakes in

evaluating the coefficients of differential equations. We are still in the process of analyzing

this issue. Nevertheless, this work is very promising. The CAFein code is much slower than

GYRE, and it usually needs ∼ 10 minutes to calculate eigenfunctions for one oscillation

mode, whereas, GYRE can calculate eigenfunctions for tens of modes in several seconds.

Figure 3.10 Real part of the non-adiabatic tidal eigenfunctions y1 = ξr
r
, y2 = 1

gr
(p
′

ρ
+ Ψ), y3 =

1
gr

Ψ. The left and right panels are results from the CAFein and GYRE codes, respectively.
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Figure 3.11 Real part of the non-adiabatic tidal eigenfunctions y4 = 1
g
dΨ
dr
, y5 = δS

cP
, y6 =

δLR
LR

.The left and right panels are results from the CAFein and GYRE codes, respectively.
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Figure 3.12 Imaginary part of the non-adiabatic tidal eigenfunctions y1 = ξr
r
, y2 = 1

gr
(p
′

ρ
+

Ψ), y3 = 1
gr

Ψ. The left and right panels are results from the CAFein and GYRE codes,

respectively.
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Figure 3.13 Imaginary part of the non-adiabatic tidal eigenfunctions y4 = 1
g
dΨ
dr
, y5 = δS

cP
, y6 =

δLR
LR

. The left and right panels are results from the CAFein and GYRE codes, respectively.
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The discussions above are all for cases without rotation. The forced oscillation equations

with rotation in the Cowling and traditional approximation are given in the Appendix of

Burkart et al. (2012). These inhomogenous equations can also be solved by the aforemen-

tioned algorithm, and the equations are reduced to the final form of Ax = b. Thus the

solution is just the sum of general solution to the homogenous equation Ax = 0 and the

particular solution A−1b. In practice, if we know the modes are tidally excited, we can

just use the particular solution A−1b for comparison with observations. The matrix inver-

sion A−1 can be derived with various decomposition algorithms, including the method used

in GYRE (Wright 1994). It is interesting to note that the free oscillation equations when

considering the lowest order non-linear term (the quadratic term) can also take the form of

Ax = b (eq. 6 in Kurtz et al. 2015). Thus the study of solving the forced oscillation equa-

tions can improve our understanding of the non-linear oscillation equations, which generate

combination frequencies.

3.2.2 Expansions as Summation of Free Oscillations

Instead of directly solving the tidal oscillation equations, we can study the tidal responses

by just using the eigenfunctions from the free oscillation equations.

Let us define the spherical harmonics as

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ. (3.59)

Using this definition, the normalization and orthogonality conditions are:∫ 2π

0

dφ

∫ π

0

sin θdθ Y ∗l′,m′(θ, φ)Yl,m(θ, φ) = δl′,lδm′,m (3.60)
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where δi,j represents the Kronecker delta function which is unity if i = j or zero if i 6= j.

The spherical harmonics also satisfy the following identity:

∫ 2π

0

dφ

∫ π

0

sin θdθ [r∇⊥Y ∗l′,m′(θ, φ)][r∇⊥Yl,m(θ, φ)] = l(l + 1)δl′,lδm′,m. (3.61)

Note that the integral covers all solid angle
∫
dΩ =

∫ 2π

0
dφ
∫ π

0
sin θdθ and ∇⊥ is defined

below. Spherical harmonics form an orthonormal basis of functions on the unit sphere. Any

(square-integrable) function on the unit sphere can be expanded as a linear combination of

spherical harmonics, and this is shown graphically in Appendix A.

In non-rotating case, the Lagrangian displacement ξα(r) of a particular free normal mode

with mode indices α = (n, l,m) can be written as the sum of radial and poloidal parts:

ξα(r, θ, φ) = ξα(r) = ξnlm(r) = [ξRnl(r)er + ξSnl(r)r∇⊥]Ylm(θ, φ) (3.62)

where er is the unit vector in radial direction. It is convenient to write the operator ∇

as the sum of a radial and a horizontal part ∇ = ∇r + ∇⊥, where ∇r = er
∂
∂r

and ∇⊥ =

(eθ
1
r
∂
∂θ

+eφ
1

r sin θ
∂
∂φ

). We assume the temporal dependence is ∝ e−iωαt, so that the Lagrangian

displacement is ξα(r, t) = ξα(r)e−iωαt. ωα is the angular frequency of a mode with indices

α = (n, l,m) in the co-rotating frame, and in inertial frame the mode frequency is σα =

ωα + mΩs, where Ωs is the angular frequency of rotation. The Lagrangian displacement of

a free oscillation mode ξα(r, t) satisfies the equation of motion in the co-rotating frame:

∂2ξα(r, t)

∂t2
+ 2Ωs ×

∂ξα(r, t)

∂t
+Cξα(r, t) = 0, (3.63)

where the operator C includes the perturbation of density and pressure and its expression
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can be found at eq. 22, 23, 25, 26, 30 in Lynden-Bell & Ostriker (1967) and eq. 2.9, 2.11,

2.13, 2.14 in Schenk et al. (2002).

We take the derivatives with respect to time ∂
∂t

= −iωα, and the equation becomes:

−ω2
αξα(r)− 2iωαΩs × ξα(r) +Cξα(r) = 0. (3.64)

Following Lai (1997), Lai & Wu (2006), and Fuller & Lai (2012), if we take the tidal force

of the companion into account, the linear tidal response of the star M1 (forced oscillation)

is specified by the Lagrangian displacement ξ(r, t), and it satisfies the equation of motion

∂2ξ(r, t)

∂t
+ 2Ωs ×

∂ξ(r, t)

∂t
+Cξ(r, t) = −∇U. (3.65)

Note that the tidal response ξ(r, t) can be written as the sum of the free mode displace-

ments ξ(r, t) =
∑

α cα(t)ξα(r), and each has an amplitude of cα(t). To be more exact, the

following is the phase space mode expansion from Schenk et al. (2002): ξ(r, t)

∂ξ(r, t)

∂t

 =
∑
α

cα(t)

 ξα(r)

−iωαξα(r)

 . (3.66)

Thus we also have

∂ξ(r, t)

∂t
=
∑
α

c′α(t)ξα(r) =
∑
α

(−iωαcα(t))ξα(r). (3.67)

We define the inner product as 〈A,B〉 =
∫
d3xρA∗ ·B =

∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ R
0
r2drρ(r)A∗ ·

B.
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Then the mode normalization becomes

〈ξα(r), ξα(r)〉 =

∫
d3xρ(r)ξ∗α(r) · ξα(r)

=

∫
d3xρ(r)[ξRnl(r)er + ξSnl(r)r∇⊥]Y ∗lm(θ, φ) · [ξRnl(r)er + ξSnl(r)r∇⊥]Ylm(θ, φ)

=

∫
d3xρ(r)

{
[ξRnl(r)

2Y ∗lmYlm] + [ξSnl(r)
2(r∇⊥Y ∗lm)(r∇⊥Ylm)]

}
=

∫ R

0

r2drρ(r)ξSnl(r)
2

∫
dΩY ∗lmYlm +

∫ R

0

r2drρ(r)ξRnl(r)
2

∫
dΩ(r∇⊥Y ∗lm)(r∇⊥Ylm)

=

∫ R

0

r2drρ(r)ξRnl(r)
2 · 1 +

∫ R

0

r2drρ(r)ξSnl(r)
2 · l(l + 1)

=

∫ R

0

r2drρ(r)
{
ξRnl(r)

2 + l(l + 1)ξSnl(r)
2
}

= MR2

(3.68)

That is, the mode has unit inertia in the natural units of the star M1 (using M , R,
√
R3/GM

as the unit for mass, length, and time, respectively) as in Press & Teukolsky (1977) and

Valsecchi et al. (2013).

From eq. (3.63), (3.64), (3.65) and utilizing the property of inner product 〈ξα, 2iΩs ×

ξα′〉+(ωα+ωα′)〈ξα, ξα′〉 = 0, we can find that the mode amplitude cα(t) satisfies the following

equation (Schenk et al. 2002; Fuller & Lai 2012; Fuller et al. 2013):

dcα(t)

dt
+ (iωα + γα)cα(t) =

i

2εα
〈ξα(r),−∇U〉

=
iGM ′WlmQα

2εαD(t)l+1
eimΩst−imf(t)

(3.69)

where Qα is defined below in eq. (3.73). We have written ωα as ωα − iγα, where γα is the

mode damping rate, and it is the (negative) imaginary part of mode frequencies in the non-
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adiabatic calculation. εα is the unperturbed frequency for a non-rotating star, defined by

εα ≡ ωα + 〈ξα, iΩs × ξα〉. It is often convenient to adopt the perturbative approximation

for rotation, which is valid when Ωs < ω0
α. Then 〈ξα, iΩs × ξα〉 =

∫
d3xρξ∗α · (iΩs × ξα) =

mCnlΩs. Cnl is the Ledoux constant (Aerts et al. 2010, eq. 3.361). Assume the mode

eigenfunctions are unchanged by stellar rotation, but the mode frequencies are modified as

ωα = ω0
α − mCnlΩs in the co-rotating frame, and σα = ω0

α − m(1 − Cnl)Ωs in the inertial

frame. In this approximation, ε = ω0
α, which is the mode frequency in the zero-rotation

limit.

Using the Fourier decomposition of e−imf(t) in the last section (eq. 3.43) which relates

the time varying distance D(t) to the semi-major axis a, the above equation can be written

as:

dcα(t)

dt
+ (iωα + γα)cα(t) =

[
iGM ′WlmQα

2εαal+1

] +∞∑
k=−∞

Xk
lme

i(mΩs−kΩorb)t. (3.70)

To solve for the mode amplitude cα(t), just assume the time dependence:

cα(t) ∝ ei(mΩs−kΩorb)t (3.71)

since the solution has the same time dependence as the driving force on the right side of the

equation. So the solution for the mode amplitude cα is:

cα(t) =

[
GM ′WlmQα

2εαal+1

] +∞∑
k=−∞

Xk
lme

i(mΩs−kΩorb)t

(σα − kΩorb)− iγα
. (3.72)
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The key term here in the expression is the overlap integral:

Qα =
〈
ξα(r),∇(rlYlm)

〉
=

∫
d3xρ(r)ξα(r) · ∇(rlY ∗lm)

(3.73)

Note that :

ξα(r) · ∇(rlY ∗lm)

= [ξRnl(r)er + ξSnl(r)r∇⊥]Ylm · [∇r(r
lY ∗lm) +∇⊥(rlY ∗lm)]

= [ξRnl(r)er + ξSnl(r)r∇⊥]Ylm · [lrl−1Y ∗lmer + rl∇⊥(Y ∗lm)]

= lrl−1ξRnlYlmY
∗
lm + 0 + 0 + ξSnl(r)r

l−1(r∇⊥Ylm)(r∇⊥Y ∗lm)

(3.74)

so that:

Qα =

∫
d3xρ(r)ξα(r) · ∇(rY ∗lm)

=

∫
d3xρ(r)[lrl−1ξRnlYlmY

∗
lm + ξSnl(r)r

l−1(r∇⊥Ylm)(r∇⊥Y ∗lm)]

=

∫ R

0

r2drρ(r)ξRnl(r)lr
l−1

∫
dΩYlmY

∗
lm +

∫ R

0

r2drρ(r)ξRnl(r)r
l−1

∫
dΩ(r∇⊥Ylm)(r∇⊥Y ∗lm)

=

∫ R

0

r2drρ(r)ξRnl(r)lr
l−1 +

∫ R

0

r2drρ(r)ξRnl(r)r
l−1l(l + 1)

=

∫ R

0

r2drρ(r)lrl−1[ξRnl(r) + (l + 1)ξSnl(r)].

(3.75)

It can also be shown that there are equivalent expressions for Qα (Burkart et al. 2012):
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Qα =

∫ R

0

r2drρ(r)lrl−1[ξRα (r) + (l + 1)ξSα(r)]

=

∫ R

0

δραr
l+2dr

= −2l + 1

4π
δφα(R)/ω2

α.

(3.76)

To show the units more explicitly, the expressions for the dimensionless Qα are:

Qα =
1

MRl

∫ R

0

drρ(r)lrl+1[ξRnl(r) + (l + 1)ξSnl(r)]

=
1

MRl

∫ R

0

δραr
l+2dr

= − R

GM

2l + 1

4π
δφα(R)/ω2

α

(3.77)

where δρα is the Lagrangian displacement of density of the mode with indices α = (n, l,m).

δφα(R) is the Eulerian perturbation of gravitational potential of the mode at the stellar

surface (r = R) which needs to be calculated without the Cowling approximation. In

practice, the third expression has better numerical performance especially for high order

g-modes for which Qα is very small and hard to calculate accurately from the first two

expressions.

After we get the mode amplitude for each mode α, the total tidal response is just the

sum of each mode ξ(r, t) =
∑

α cα(t)ξα(r). To compare directly with observations, we need

to write the expression of tidal response in the inertial frame ri = (r, θ, φi), so just use

φi = φ+mΩst.
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ξ(r, t) =
∑
α

cα(t)ξα(r)

=
∑
α

{[
GM ′WlmQα

2εαal+1

] +∞∑
k=−∞

Xk
lme

i(mΩs−kΩorb)t

(σα − kΩorb)− iγα

}
ξα(r)

=
∑
α

{[
GM ′WlmQα

2εαal+1

] +∞∑
k=−∞

Xk
lme

i(mΩs−kΩorb)t

(σα − kΩorb)− iγα

}
ξα(ri)e

−imΩst

=
∑
α

{[
GM ′WlmQα

2εαal+1

] +∞∑
k=−∞

Xk
lme
−ikΩorbt

(σα − kΩorb)− iγα

}
ξα(ri)

=
∑
α

+∞∑
k=−∞

Bα,kξα(ri).

(3.78)

where Bα,k is the amplitude of each contribution and is equivalent to the Anlmk discussed

below.

It is convenient to write the expression for each orbital harmonic k by switching the order

of the two summations:

=
+∞∑

k=−∞

∑
α

{[
GM ′WlmQα

2εαal+1

]
Xk
lme
−ikΩorbt

(σα − kΩorb)− iγα

}
ξα(ri)

=
−1∑

k=−∞

∑
α

{[
GM ′WlmQα

2εαal+1

]
Xk
lme
−ikΩorbt

(σα − kΩorb)− iγα

}
ξα(ri)

+
+∞∑
k=1

∑
α

{[
GM ′WlmQα

2εαal+1

]
Xk
lme
−ikΩorbt

(σα − kΩorb)− iγα

}
ξα(ri)

=
+∞∑
k=1

∑
α

{[
GM ′WlmQα

2εαal+1

] [
X−klm e

+ikΩorbt

(σα + kΩorb)− iγα
+

Xk
lme
−ikΩorbt

(σα − kΩorb)− iγα

]}
ξα(ri).

(3.79)
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3.2.3 Flux variations of Tidally Forced Oscillations

We need to translate the displacement field on the stellar surface to a corresponding disk-

averaged observed flux perturbation δJ in the observed passband. Here we present two

methods from Dziembowski (1977) and from Buta & Smith (1979), respectively. Both treat-

ments have approximations.

Method (1), the Dziembowski method:

Following Dziembowski (1977), Pfahl et al. (2008), and Burkart et al. (2012), if there is

a radial displacement field ξr and a Lagrangian perturbation to the emitted flux ∆F on the

stellar surface due to a mode α, then the fractional observed flux variation δJ/J to the first

order is given by:

δJ

J
= [(2bl − cl)

ξr,α(R)

R
+ β(T )bl

∆Fα(R)

F (R)
]Ylm(θ0, φ0)

=

[
(2bl − cl)

ξr(R)

R

]
Ylm(θ0, φ0) +

[
β(T )bl

∆Fα(R)

F (R)

]
Ylm(θ0, φ0)

= (
δJ

J
)G + (

δJ

J
)T

(3.80)

The subscripts G and T refer to flux variations due to geometry effects and temperature

changes, respectively. In terms of magnitude variations, a small fractional flux variation

yields

δmag = − 2.5

ln 10

δJ

J
= −1.0857

δJ

J
. (3.81)

The bolometric Lagrangian flux perturbation ∆F/F can be computed from ∆F/F =

∆L/Lr − 2ξr/r, so that when evaluated at the surface ∆F (R)/F (R) = ∆L(R)/Lr(R) −
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2ξr(R)/R. ∆L/Lr is relative radiative Lagrangian luminosity perturbation and ξr/r is rel-

ative Lagrangian radial displacement, and they are both the outputs of GYRE. The disk-

integral factors are:

bl =

∫ 1

0

µPl(µ)h(µ)dµ (3.82)

and

cl =

∫ 1

0

[
2µ2dPl

dµ
− (µ− µ3)

d2Pl
dµ2

]
h(µ)dµ (3.83)

where h(µ) is the limb darkening function, which is normalized as
∫ 1

0
µh(µ)dµ = 1. Pl(µ)

is the Legendre polynomial. β(T ) is the correction factor for the observed passband (e.g.,

Kepler), so that the bandpass-corrected flux perturbation (∆F/F )corrected = β(T )(∆F/F )bol,

and (∆F/F )bol is the bolometric Lagrangian flux perturbation from GYRE calculations.

This method is further developed on the basis of the original treatment by Dziembowski

and described in series of papers (Cugier et al. 1994; Cugier & Daszyńska 2001; Stamford &

Watson 1981; Watson 1988; Daszyńska-Daszkiewicz et al. (2002). The asteroseismic software

FAMIAS (Zima 2008) used the expressions in Daszyńska-Daszkiewicz et al. (2002) for the

mode identification from multicolor photometry. The calculation was extended to include

rotation in the traditional approximation by Townsend (2003).

Method(2), the BS79 method:

Following Buta & Smith (1979), see also Fuller & Lai (2012), the total magnitude varia-

tion is the sum of variation due to temperature changes and due to geometric changes:

∆mag = (∆mag)T + (∆mag)G (3.84)
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The magnitude variation due to temperature change has the following expression assuming

the pulsations are adiabatic and using the blackbody radiation approximation:

(∆mag)T = −1.0857εFλγl Ylm(is, φ0)eiσt

= −1.0857
δR

R

[
xex

ex − 1

Γ2 − 1

Γ2

(
l(l + 1)

ω2
− 4− ω2)

]
γl

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos is)e

imφ0eiσt

(3.85)

Note ε = δR
R

is the amplitude of fractional displacement, is is the orbital inclination, Γ2 ≈

5/3 is adiabatic index and ω is dimensionless mode frequency given by ω = ωα/
√
GM/R3.

Note the term Fλ is related to the relative temperature perturbations, relative pressure

perturbations, and relative radius perturbations as (Buta & Smith 1979) :

Fλ(l, ω
2, T ) =

xex

ex − 1
[FT (l, ω2, T )]

=
xex

ex − 1

[
Γ2 − 1

Γ2

(Fp(l, ω
2))

]
=

xex

ex − 1

[
Γ2 − 1

Γ2

(
l(l + 1)

ω2
− 4− ω2

)] (3.86)

and,

δP

P
= Fp(l, ω

2)
δR

R
,

δT

T
=

(
Γ2 − 1

Γ2

)
δP

P

=

(
Γ2 − 1

Γ2

)
Fp(l, ω

2)
δR

R

=

(
Γ2 − 1

Γ2

)(
l(l + 1)

ω2
− 4− ω2

)
δR

R

(3.87)

where Fp(l, ω
2) refers to the ratio of relative pressure perturbation and relative radius per-
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turbation. δR is the same as the radial displacement evaluated at the stellar surface ξr(R).

We consider the pulsation semi-amplitude from maximum to mid-point, so set eimφ0eiσt = 1.

For an l = 2,m = 0 mode,

(∆mag)m=0
T

= −1.0857
δR

R

[
xex

ex − 1

Γ2 − 1

Γ2

(
l(l + 1)

ω2
− 4− ω2)

]
γl

√
5

4π
(0.5)(3 cos2 is − 1)

= −1.0857γl

[√
5

4π
(0.5)

]
xex

ex − 1

[
Γ2 − 1

Γ2

(
l(l + 1)

ω2
− 4− ω2)

]
(3 cos2 is − 1)

δR

R

= −1.0857 · 0.32 · 3.44γl

[
Γ2 − 1

Γ2

(
l(l + 1)

ω2
− 4− ω2)

]
(3 cos2 is − 1)

δR

R

= −1.2γl

[
Γ2 − 1

Γ2

(
l(l + 1)

ω2
− 4− ω2)

]
(3 cos2 is − 1)

δR

R
.

(3.88)

where γl is the bolometric limb darkening coefficient defined below, is is the stellar inclination

angle. x is hc/λkTeff , with Boltzmann constant k, Planck constant h, passband wavelength

λ, speed of light c, and effective temperature of the star Teff . This is the expression for the

amplitude of magnitude variation due to effect of temperature changes.

Similarly, for l = 2, m = 2 modes:

(∆mag)m=2
T

= −1.0857
δR

R

[
xex

ex − 1

Γ2 − 1

Γ2

(
l(l + 1)

ω2
α

− 4− ω2
α)

]
γl

√
5

4π

1

24
(3 sin2 is)

= −1.0857γl

[√
5

4π

1

24
(3)

]
xex

ex − 1

[
Γ2 − 1

Γ2

(
l(l + 1)

ω2
α

− 4− ω2
α)

]
(sin2 is)

δR

R

= −1.0857 · 0.39 · 3.44γl

[
Γ2 − 1

Γ2

(
l(l + 1)

ω2
α

− 4− ω2
α)

]
(sin2 is)

δR

R

= −1.5γl

[
Γ2 − 1

Γ2

(
l(l + 1)

ω2
α

− 4− ω2
α)

]
(sin2 is)

δR

R
.

(3.89)
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The magnitude variation due to geometric effects (cross section changes, surface norm

changes) satisfies:

(∆mag)G = −1.0857ε(αl + βl) Ylm(is, φ0)eiσt

= −1.0857
δR

R
(αl + βl)

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos is) · eimφ0eiσt.

(3.90)

For l = 2, m = 0 modes,

(∆mag)m=0
G

= −1.0857
δR

R
(αl + βl)

√
5

4π
0.5(3 cos2 is − 1) · 1

=

[
−1.0857 ·

√
5

4π
0.5

]
(αl + βl)(3 cos2 is − 1)

δR

R

= [−0.34](αl + βl)(3 cos2 is − 1)
ξr,α(R)

R
.

(3.91)

For l = 2,m = 2 modes,

(∆mag)m=2
G

=

[
−1.0857 ·

√
5

4π

1

24
· 3
]

(αl + βl) sin2 is
δR

R

= [−0.42](αl + βl) sin2 is
ξr,α(R)

R

(3.92)

where αl, βl and γl are bolometric limb darkening coefficients defined in eq. (37, 38, 39) of

Buta & Smith (1979). They are equivalent to the bl and cl used in Dziembowski (1977) and
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Burkart et al. (2012) by the following relations:

αl + βl = 2bl − cl

γl = bl.

(3.93)

For A stars and the Kepler passband, αl + βl ≈ −1.2 and γl ≈ 0.3. Burkart et al. (2012)

listed values of bl and cl for l = 0− 5 modes in the Kepler passband in their Table 3.

Here we show that the two expressions for magnitude variations due to geometry effect

(cross section changes) from Burkart et al. (2012) (δmag)G and from Fuller & Lai (2012)

(∆mag)G are identical.

For l = 2,m = 0 modes,

(δmag)m=0
G = −1.0857

(
δJ

J

)
G

= −1.0857

[
(2bl − cl)

ξr(R)

R

]
Ylm(θ0, φ0)

= −1.0857

[
(−1.3)

ξr(R)

R

]
Y20(is, φ0)

= −1.0857

[
(−1.3)

ξr(R)

R

][
0.5

√
5

4π
(3 cos2 is − 1)

]

= (−1.3)(−1.0857 · 0.5
√

5

4π
)(3 cos2 is − 1)

ξr(R)

R

= (−1.3)(−0.34)(3 cos2 is − 1)
ξr(R)

R

= −0.34(αl + βl)(3 cos2 is − 1)
ξr,α(R)

R

= (∆mag)m=0
G .

(3.94)
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Similarly, for l = 2,m = 2 modes,

(δmag)m=2
G = −1.0857

[
(−1.3)

ξr(R)

R

]
Y22(is, φ0)

= −1.0857

[
(−1.3)

ξr(R)

R

][√
5

4π

1

24
(3 sin2 is)

]

= (−1.3)(−1.0857 · 3
√

5

4π

1

24
)(sin2 is)

ξr(R)

R

= (−1.3)(−0.42)(sin2 is)
ξr(R)

R

= −0.42(αl + βl) sin2 is
ξr,α(R)

R

= (∆mag)m=2
G .

(3.95)

After we get the magnitude variation for one normal mode, the total magnitude variation

due to the tidal response for each orbital harmonic k can be calculated.

For magnitude variations of the kth orbital harmonic due to the temperature perturbation

:

(∆mag)k,T

= −1.0857
∑
α

{[
GM ′WlmQα

2εαal+1

] [
X−klm e

+ikΩorbt

(σα + kΩorb)− iγα
+

Xk
lme
−ikΩorbt

(σα − kΩorb)− iγα

]}
δR

R
Fλγl Ylm(is, φ0)

= −1.0857
∑
α

{[
GM ′WlmQα

2εαal+1

] [
X−klm e

+ikΩorbt

(σα + kΩorb)− iγα
+

Xk
lme
−ikΩorbt

(σα − kΩorb)− iγα

]}

× δR

R

[
xex

ex − 1

Γ2 − 1

Γ2

(
l(l + 1)

ω2
− 4− ω2)

]
γl

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos is).

(3.96)

For variations due to the geometry perturbation:
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(∆mag)k,G

= −1.0857
∑
α

{[
GM ′WlmQα

2εαal+1

] [
X−klm e

+ikΩorbt

(σα + kΩorb)− iγα
+

Xk
lme
−ikΩorbt

(σα − kΩorb)− iγα

]}

× δR

R
(αl + βl) Ylm(is, φ0)

= −1.0857
∑
α

{[
GM ′WlmQα

2εαal+1

] [
X−klm e

+ikΩorbt

(σα + kΩorb)− iγα
+

Xk
lme
−ikΩorbt

(σα − kΩorb)− iγα

]}

× δR

R
(αl + βl)

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos is).

(3.97)

Burkart et al. (2012) gave an equivalent expression for the tidal response. For any per-

turbation variable denoted as δX such as the Lagrangian density perturbation ∆ρ, the radial

Lagrangian displacement ξr, etc., the tidal response is a sum over mode indices α = (n, l,m)

and temporal Fourier expansion indices k:

δX(r, θ, φ, t) =
∑
α

+∞∑
k=−∞

Aα,kδXα(r)e−ikΩorbtYlm(θ, φ) (3.98)

where the sum of α includes the sum of |n| < +∞, 2 ≤ l < +∞, and −l ≤ m ≤ l. Ωorb is

angular frequency of the orbit. The amplitude for each contribution is:

Aα,k = Anlmk =
2εlQnlX

k
lm(1− e)l+1Wlm∆nlmk

Enl
. (3.99)

The terms are defined previously, except for the tidal parameter εl

εl =

(
M ′

M

)(
R

a(1− e)

)l+1

, (3.100)
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and the Lorentzian factor ∆nlmk

∆nlmk =
ω2
nl

(ω2
nl − σ2

km)− 2iγnlσkm
(3.101)

where σkm = kΩorb −mΩs is the driving frequency in the co-rotating frame, and Ωs is the

spin frequency. The Lorentzian factor (as well as Qnl) has a slightly different form with eq.

(25) since Burkart et al. (2012) set the mode energy equal to 1, while Fuller & Lai (2012)

use unit mode inertia as normalization (eq. 68). The mode normalization by mode energy

Enl is,

Enl = 2

(
ω2
nlR

GM2

)∫ R

0

(ξ2
r,nl + l(l + 1)ξ2

h,nl)ρ(r)r2dr = 1. (3.102)

Note that since the modes are normalized to have unit energy instead of inertia, the mode

amplitude expression Anlmk in Burkart et al. (2012) has a slightly different form with that

in Fuller & Lai (2012).

Following O’Leary & Burkart (2014), the observed phase of the tidally induced pulsations

with frequency of kth orbital harmonics is

δphase = arg(δJk/Jk) = arg(Anlmk) + arg(Ylm(θ0, φ0)) = ψnlmk +mφ0 (3.103)

and if assuming the mode eigenfunctions have phases close to zero (for adiabatic normal

modes the eigenfunctions are purely real, so the phases are zero; a fully non-adiabatic cal-

culation will introduce local phases, but they are usually very small). Then we can evaluate

ψnlmk by
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ψnlmk = arg(Anlmk)

= arg(Qnl∆nlmk)

≈ arg(∆nlmk)

= arg(
1

(ω2
nl − σ2

km)− 2iγnlσkm
) = arg((ω2

nl − σ2
km) + 2iγnlσkm)

= π/2− arctan

(
(ωnl − σkm)(ωnl + σkm)

2γnlσkm

)
= π/2− arctan

(
δω(ωnl + σkm)

2γnlσkm

)
≈ π/2− arctan

(
δω

γnl

)

(3.104)

where δω = ωnl − σkm and we have used the assumption ωnl ≈ σkm. These equations are

only valid for standing waves (the imaginary part of the flux perturbation is small relative

to the real part). The observed time dependence is

cos[kΩorbt− (ψnlmk +mφ0)]. (3.105)

.

In asteroseismology, the observed pulsations are often described as the sum of sine func-

tions, so in the form of a sine function,

cos[kΩorbt− (ψnlmk +mφ0)]

= sin[π/2− (kΩorbt− (ψnlmk +mφ0))]

= sin[−kΩorbt+ (π/2 + ψnlmk +mφ0)].

(3.106)
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The sign of k is unknown and t = 0 corresponds to the time of periastron passage. Note if

the phases are in units of 2π, the dependence becomes sin[−kΩorbt+ (1/4 + ψnlmk +mφ0)].

Thus the observed phase in units of 2π is then :

δphase =

(
1

4
+ ψnlmk +mφ0

)
mod

1

2
(3.107)

and

φ0 =
1

4
− ωp

2π
(3.108)

where ωp is argument of periastron. In the limit of poor tuning, i.e., the detuning parameter

is much larger than mode damping rate, |δω| � γnl,

ψnlmk ≈
[
π/2− arctan

(
δω

γnl

)]
/(2π) = [π/2− π/2] /(2π) = 0 (3.109)

and the observed phase is then

δphase =

(
1

4
+mφ0

)
mod

1

2
(3.110)

Note that if using a magnitude variation, the phase will be off by π (or by 1/2 if in units

of 2π), since δmag ∝ −δJ/J . As pointed out by Burkart et al. (2012), we only observe |k|

in observations and thus the sign of k cannot be determined. We cannot tell whether the

mode is prograde (m > 0) or retrograde (m < 0) (when the time dependence is e−iωt+mφ).

In Chapter 6, we apply the linear tidal theory in this section to several Kepler binaries

with tidally induced oscillations.
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CHAPTER 4

Light Curve Modeling of Binary Stars

This chapter contains the descriptions of modeling tools for binary stars and star-planet

systems. It is related directly to Chapter 5 and Chapter 6, in which we apply these tools

to Kepler filed of view binary stars. A review of these tools is presented in Section 4.1. For

most of the packages, I have shown explicitly the input parameters and the code flow. A

detailed binary modeling with the ELC code is given in Section 4.2, where I show the light

curves, radial velocity curves, and the synthetic spectra of the binary. For usage of the ELC,

please refer to the appendix.

4.1 Introduction to Modeling Tools

Space missions like Kepler (Borucki et al. 2010), CoRoT (Baglin et al. 2006), and BRITE

(Weiss et al. 2014) have produced more than 105 light curves of various kinds of stars. As

most stars are within binary or multiple systems, it is important to model their time series to

learn about their dimensions and physical properties. Here we briefly summarize the current

tools of modeling light curves of binary stars and star-planet systems.
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Figure 4.1 a) The top panel shows the specific intensity of stellar disks for three values of

linear limb darkening coefficients indicated in the center. b) The lower panel is a contour

plot of linear limb darkening coefficients for Kepler passband based on models with solar

metallicity over a grid of effective temperature and gravity. These coefficients are interpolated

from the grids in PHOEBE package (Prsa & Zwitter 2005). The evolutionary tracks for

1.0M�, 1.8M�, 2.5M� stellar models from the Dartmouth models (Dotter et al. 2008) are

over-plotted from right to left, respectively. The pre-main-sequence part of the tracks are

shown as a dotted line, while main sequence (MS) and post-MS stages are shown as a solid

line.
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Light curve modeling tools of binary stars or star-planet systems can be classified into

two kinds: two-dimensional (2-D) models and three-dimensional (3-D) models.

(1): 2-D models: Stars (or planets) are treated as limb-darkened circular disks. The

simplest description of the surface brightness is to use the linear limb darkening law for the

specific intensity I:

I(cos θ) = I0(1− ε+ ε cos θ) (4.1)

where θ is the angle between the surface normal and the line of sight. The specific intensity

varies from I0 at disk center to I0(1− ε) at the extreme limb. The variations of linear limb

darkening coefficient ε as a function of atmospheric parameters are shown in Figure 4.1. It

shows that ε is primarily a function of Teff , with smaller value for hotter stars and vice versa.

Better limb darkening functions like logarithm, quadratic, or non-linear law can be adopted

(Claret & Bloemen 2011). The 2-D disk is the projected image of the three-dimensional star

onto the sky plane. Analytical expressions exist for the fractional loss of fluxes in eclipses

for these circular disk cases.

(1a) Transits by a dark exoplanet: The treatment of Mandel & Agol

The most popular analytical method for exoplanet transit light curve modeling is pre-

sented in Mandel & Agol (2002), where the star is a limb-darkened disk and the planet is

treated as an opaque circular disk. The model has the following eight parameters:

p: Radius ratio between planet and star.

a: Semi-major axis of planetary orbit [in units of stellar radii].

i: Inclination of orbit in degrees (90 deg is edge-on view).
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linLib: Linear limb-darkening coefficient.

quadLimb: Quadratic limb-darkening coefficient.

T0: Time of transit center.

per: Period of planetary orbit.

b: Describes the flux ratio between a stellar companion and the main star (default is 0).

The final analytical expressions involve Beta functions and hypergeometric functions.

This model has been widely used in modeling transit light curves.

(1b) Mutual eclipses of stars: The treatment of Kopal and Gimenez

A more general treatment of the flux loss is given by Gimenez (2006a, b). Their ex-

pressions apply to both binary stars and star-planet systems. An analytical formula for the

Rossiter-McLaughlin (RM) effect in radial velocities is also presented.

This method is based on the original formulation in Kopal (1979) who considered the

problem of evaluating the fractional loss of light in a binary or star-planet system in the

Fourier domain and linked the fractional loss of light to the diffraction patterns of the

two apertures as described in physical optics. The final expressions take advantage of the

mathematical tools such as diffraction integrals and involve Bessel functions of the first kind

and Jacobi polynomials.

The five model parameters are:

rs: The relative radius of the companion star (radius divided by semimajor axis);

k = rp/rs: The ratio of radii;

i: The orbital inclination;
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ua and ub: The limb-darkening coefficients (quadratic law).

This model is implemented in the ELC code (see below) as the ‘Fast Analytic Mode’.

Figure 4.2 Treatment of light curve calculation in Pál (2012) for multiple objects (left panel)

and JKTEBOP for binaries (right panel).

(1c) Multiple transiting exoplanets: The treatment of Pál and Carter

The analytical expressions for more complicated cases involving three or more bodies

(all treated as circular disks) were studied in Pál (2012) and were applied to circumbinary

exoplanet systems in a series of papers (Carter et al. 2011; Welsh et al. 2012; etc.).
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In the so-called photometric-dynamic modeling, the orbit has to be determined from an

N-body numerical integration. Once the positions of multiple objects are calculated in each

time step, the intensities on the visible part of the disks are integrated. The observed flux is

just an integral of the surface brightness (the limb-darkening law for each object, treated as a

vector field F ) over the visible part of the disks. By using the Stoke’s theorem, the problem

can be cast as an integral of another vector field f along the boundary of the visible surface

(a series of arcs on multiple disks, see left panel in Figure 4.2). This clever idea thus replaces

the original complicated surface integral
∫
F ·dS by a much easier curvilinear integral

∫
f ·dl

along the arcs. The key step is to find f from F so that it satisfies ∇ × f = F , and this

can be achieved by solving a simple differential equation.

The model parameters for the photometric modeling include the mass, radius, flux and

limb-darkening coefficient for each object. For the orbit determination from N-body integra-

tion, the model parameters are the N − 1 Jacobian Keplerian elements.

(1d) Numerical integrations: The method of surface discretization

In this straightforward method, each circular disk is treated as a series of concentric

rings and a numerical integration of the visible part of the rings is performed (Fig. 4.2,

right panel). This is the method used in the EBOP code (Etzel 1993) with the further

development in JKTEBOP code1 (Southworth et al. 2005).

For example, in the JKTEBOP code, there are about 19 model parameters:

Integration ring size;

Sum of the radii; Ratio of the radii;

1http://www.astro.keele.ac.uk/jkt/codes/jktebop.html
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Orbital inclination; Mass ratio;

Orbital eccentricity: e; Periastron longitude: ω;

Gravity darkening coefficient (star A and star B);

Surface brightness ratio; Amount of third light;

Linear limb-darkening coefficient (star A and star B);

Nonlinear limb-darkening coefficient (star A and star B);

Reflection effect star A; Reflection effect star B;

Phase shift of primary minimum; Light scale factor (mag);

Orbital period of eclipsing binary system;

Reference time of primary minimum.
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Figure 4.3 The call tree of the JKTEBOP code. TASK2 in JKTEBOP is for calculating the

light curve. Other tasks are mainly for parameter optimization and are not shown.

In Figure 4.3, we show the call tree of this code, which is produced by the static analyzer

for Fortran programs ftnchek2. JKTEBOP has been widely used for detached eclipsing

binaries as well as exoplanet transit light curve modeling. Although the ellipsoidal and

reflection effects in close binaries can be partially and approximately accounted for using

biaxial spheroids in JKTEBOP, a more realistic treatment is to use the three-dimensional

2http://www.dsm.fordham.edu/ftnchek/
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Roche model (see next section).

Figure 4.4 3-D model of the contact binary EE Ceti (left panel); Model of M33-X7, an

eclipsing binary with a black hole (right panel).

(2): 3-D models: The 3-D codes model the surface of the star as the equipotential

surface of a Roche potential, taking into account both rotation and orbital motion. The

surface is discretized into grid elements each with its coordinates (ri, θi and φi). Accretion

disks can be included, usually using a simple geometry such as a cylinder. The eclipse horizon

is calculated and intensities of the visible part of the surface are integrated. This step is
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then repeated for each new orbital phase. Figure 4.4 shows two examples of such models:

the contact binary EE Ceti (taken from Phoebe 2 webpage3) and an eclipsing binary with

an accretion disk around a black hole (Orosz et al. 2007).

(2a) Wilson-Devinney code 4(WD) and PHOEBE5 (Prša, Degroote and others)

One of the widely used packages is the Wilson-Devinney code (Wilson & Devinney 1971;

Wilson 1979, 1990; Wilson & Liou 1993). This package models the shapes of stars by

using the Roche geometry and fully takes the gravitational darkening, limb-darkening and

reflection effects into account. Both the light curve and radial velocity curve can be simulated

with the LC part of the code. The model parameters can be optimized with a differential

corrections algorithm (the DC part) by comparing with observations.

3http://phoebe-project.org/docs/2.0b/
4http://www.astro.ufl.edu/∼kallrath/WD2007.html
5http://phoebe-project.org
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Figure 4.5 Call tree of the LC (Light Curve) part of the WD code (version 2003). The DC

part (differential corrections for parameter optimization) is not shown.

The call tree of WD2003 is shown in the above diagram (Figure 4.5). The top subroutine

is the Basic Block (BBL), which includes three subroutines KEPLER, LCR and LIGHT.

Detailed descriptions of other subroutines can be found in the Appendix of Kallrath &

Milone (2009).

Prša & Zwitter (2005) wrote a graphical user interface PHOEBE for the WD code with

a few innovations including a new optimizer based on the global downhill simplex algorithm.
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The PHOEBE team led by Pieter Degroote has developed a new version of light curve

synthesis code PHOEBE2 in python. With the help of external optimizers/samplers, the

parameter optimization process is much easier and robust. Several new functionalities, such

as Doppler boosting and multi-sinusoidal modeling of pulsations, were included to deal with

the precise photometric data from space missions.

A detailed description of binary modeling process using Roche geometry can be found in

the Phoebe scientific reference by A. Prša6.

(2b) Eclipsing Light Curve (ELC) code by Jerome Orosz

Based on the original code by Yorham Avni which was used to model ellipsoidal light

curve of X-ray binaries, Jerome Orosz rewrote and developed the near completely new code

ELC (Orosz & Hauschildt 2000). This code can model the light curve and radial velocity

curve of circular and eccentric binaries, except for over-contact binaries.

With the advent of space missions like Kepler, further development of the code now

includes the subtle effects like Doppler boosting (van Kerkwijk et al. 2010), more accurate

integration during eclipses/transit, integration with specific intensities of Phoenix7 (Husser

et al. 2013), Kurucz8, Lanz-Hubeny9 (Lanz & Hubeny 2007) atmosphere models, N-body

numerical integration and mutual eclipses of multiple objects (using the previous mentioned

algorithm by A. Pál), multi-sinusoidal modeling of pulsations (so called ELCsinus), etc.

Many optimization algorithms are implemented including Levenberg-Marquardt, amoeba,

6phoebe-project.org/1.0/docs/phoebe science.pdf
7http://phoenix.astro.physik.uni-goettingen.de/
8http://kurucz.harvard.edu/grids.html
9http://nova.astro.umd.edu/
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genetic algorithm, Markov Chain Monte Carlo (MCMC), differential-Monte Carlo (de-MC),

etc. The most recent development of the code includes parallel computing using GPUs.

The applications of ELC to X-ray and eclipsing binaries can be found in Orosz et al.

(2007), Bass et al. (2012), and Rawls et al. (2016), to exoplanet transits in Wittenmyer et al.

(2005), Welsh et al. (2010), to circum-binary planet transits in Orosz et al. (2012), Welsh et

al. (2012), and Kostov et al. (2014), to pulsations in heartbeat stars in Welsh et al. (2011),

etc. A detailed description of its usage can be found in the Appendix .

Note that the WD code cannot be used to model exoplanet transit light curves (or

other systems with extreme ratios of radii). For heartbeat stars (binaries with large orbital

eccentricity), the subtle effects such as tidal distortion and reflection on the light curve also

require high integration accuracy. The advancement in the accuracy of intensity integration

of ELC is described in the appendix of Orosz & Hauschildt (2000). There is also an option in

ELC to account for fractional surface elements in eclipse with the Monte Carlo method using

the Sobol sequence (Sobol 1967) (better than the ordinary random numbers). These advances

enable its application in exoplanet systems and heartbeat stars. From direct comparison,

we found that ELC shows advantages over the WD or PHOEBE code in modeling these

systems, especially for modeling the low-amplitude ellipsoidal variations and reflections.
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Figure 4.6 The call tree of ELC.

We show the code flow of ELC in Figure 4.6. The call tree of the main subroutine

LIGHTCURVE is quite long (243 lines), and can be found in the Appendix.

4.2 An Example of the ELC model

As an example, we show the ELC model of a simulated eclipsing binary system with pa-

rameters of KIC 9851944. The binary has a circular orbit with period of 2.189 days. The

mass, radius and effective temperature of the primary and secondary star are (1.76, 1.79M�),



110

(2.27, 3.19R�) and (7026, 6950K), respectively. We have changed the orbital inclination to

90◦ so that the Rossiter-McLaughlin effect can be shown more clearly in the RV curves. The

rotation rate is assumed to be synchronous with orbital motion.

We show the light curve and flux-weighted radial velocity curve of this simulated binary

system in Figure 4.7. Note that we adopt the progression of orbital phase in degrees, and

the primary and secondary eclipses correspond to phases of 180 and 0 degrees, respectively.

Note that the larger, cooler star is the secondary, and its RV curve is marked with several

diamonds. The RV curve of the smaller, hotter primary is marked with crosses.

For a series of selected phases, marked as diamonds and crosses, we show the positions

of the two components on the sky (normalized by semi-major axis) in Figures 4.8 and 4.9.

In the same figures, we also show the synthetic composite spectrum from a simple spectral

synthesis. We assume that the primary and secondary star contribute to 70% and 30% of

flux in the spectra, respectively. The intrinsic line profile for each surface element is assumed

to be a pure Gaussian shape with σ = 1 pixel and is independent of Teff and log g. We then

calculate the radial velocity of each surface element on the visible part of each star and

Doppler shift these intrinsic profiles accordingly (assuming 1 pixel ≈ 16 km s−1). Finally,

we sum up all these profiles to generate the observed composite spectra.

The Rossiter-McLaughlin effect is clearly seen in Figure 4.7, and this can be understood

with the help of Figure 4.8 and Figure 4.9. At phases 0◦ − 30◦, the larger secondary is in

eclipse. From 4◦−30◦, mainly the right hemisphere, which is rotating away from the observer

(positive RVs), is blocked by the primary, thus the observed RVs of the secondary (crosses)
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are smaller (more negative) than the Keplerian values. Similarly, from 150◦ − 172◦, the left

hemisphere of smaller primary star is in eclipse, and since this hemisphere is approaching

the observer (negative RV), the measured RVs of the primary (diamonds) are larger. This

can also be seen in the synthetic spectra, e.g., the spectra of the primary at phase 170◦ is

narrower (less rotational broadening) and its centroid is more to the right (negative RV).
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Figure 4.7 The model RV curve (upper panel) and light curve (lower panel) of an eclipsing

binary star from ELC (See text for details). The diamonds and crosses mark the phases

at which we show detailed sky positions and synthetic spectra in the following two figures.

Note that we use degrees (0 to 360) instead of orbital phases (0 to 1).
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Figure 4.8 The synthetic spectra and stellar positions on the sky for seven different phases

(0, 4, 8, 12, 20, 30, 60 in degrees). One pixel step in the left panel corresponds to a Doppler

shift of ∼ 16 km s−1.
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Figure 4.9 The same as Figure 8, but for phases at 92, 120, 150, 160, 170, 172, 179 degrees.

The main model parameters of ELC are listed in Table 4.1. The results from fitting

the light curves of KIC 9851944, KIC 8262223, KIC 3230227 are also presented. Details of

modeling these binaries can be found in later sections (Chapters 5 and 6). A light curve

gallery of heartbeat stars is presented in Chapter 6.
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Other light curve modeling packages of binary stars are described by Kallrath & Milone

(2009). Light curve modeling of more complicated objects such as asteroids requires better

discretization schemes (e.g., spherical t-design) of surfaces and descriptions of shapes with

spherical harmonic expansions (Kaasalainen & Torppa 2001).

Table 4.1: Main Model Parameters of ELC

Parameters Primary Secondary

Tuning Parameters

inclination (deg) orbital inclination [0− 90]
mass ratio (q) M2/M1 dimensionless
f1 filling factor1(star1) [0.0− 1.0], counterpart of Ω1

f2 filling factor1(star2) [0.0− 1.0], counterpart of Ω2

o1 Ωrot/Ωorb (star1) 1 for synchronous rotation
o2 Ωrot/Ωorb (star2) 1 for synchronous rotation
T1 (K) Teff (star1)
T2 (K) Teff (star2)
separation (R�) a
eccentricity e [0− 1]
argper (deg) argument of periastron (star1), ω [0− 360]
pshift phase shift for convenience
period (day) orbital period -
T0 (day) time of inferior conjunction of star1 secondary minimum in LC
- time of periastron passage (eccentric orbits) -
l1 bolometric albedo (star1) usually [0− 1]
l2 bolometric albedo (star2) usually [0− 1]
gamma (km s−1) systemic velocity
oc e cosω estimated from LC
os e sinω estimated from LC
contam Kepler contamination2 from KIC
e1 beaming factor (star1) van Kerkwijk et al. 2010
e2 beaming factor (star2) van Kerkwijk et al. 2010
tconj time of primary eclipse alternative to T0
density density can constrain q and f
ai the inclination of rotational axis star 1 axis I
ab the angle of rotation axis w.r.t orbit axis beta
temprat temperature ratio, Teff2/Teff1

pm (M�) primary mass
pr (R�) primary radius
pk (km s−1) primary semi-amplitude from RV
ratrad radius ratio, R1/R2
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q1 frac1, R1/a fractional radii (star1)
q2 frac2, R2/a fractional radii (star2)

Fixed Parameters

Nalpha1, Nbet1 No. of grid elements star1
Nalpha2, Nbet2 No. of grid elements star2
dphase (deg) step size used in LC calculation computation time
Tgrav1,Tgrav2 gravity darkening exponent 0.25 (radiative),0.08(convective)
ilaw limb darkening law,1:linear,2:log 3:sqrt,4:quadratic

Disk parameters not listed here
Spot parameters not listed here

KIC 9851944 (tuning parameters) Comments

f1 0.432 e ≡ 0.0, P ≡ 2.16390189 d
f2 0.627 Tgrav1≡ 0.08,Tgrav2≡ 0.08
temprat 0.982 l1≡ 0.5, l2≡ 0.5,T1≡ 7026K
inclination 74.52◦ K1 ≡ 121.95 km s−1 (from RV)
T0 55341.03987 q ≡ 1.014 (from RV)

KIC 8262223 (tuning parameters) Comments

f1 0.314 e ≡ 0.0, P ≡ 1.61301476 d
f2 0.672 Tgrav1≡ 0.25,Tgrav2≡ 0.08
temprat 0.78 K1 ≡ 21.4 km s−1 (from RV)
inclination 75.203◦ q ≡ 0.104 (from RV)
T0 55431.716337 beaming effect included
l2 0.22 Teff1 =T1 is fixed (9128K)

KIC 3230227 (tuning parameters) Comments

T0 54958.7916213 P ≡ 7.047106 d
q1 0.085 Tgrav1≡ 0.25,Tgrav2≡ 0.25
q2 0.071 K1 ≡ 98.5 km s−1 (from RV)
temprat 1.022 q ≡ 0.95 (from RV)
inclination 73.42◦ l1≡ 1.0, l2≡ 1.0
eccentricity 0.60 Teff1 =T1 is fixed (8000K)
argper 293◦ -

1The Roche lobe filling factor (f1, f2) is defined as the ratio of the radius of the star toward the inner
Lagrangian point (L1) to the distance to L1 from the center of the star, f = xpoint/xL1

2Keper contamination factor is defined as the fraction of flux from other sources



116

CHAPTER 5

δ Scuti/γ Doradus Stars in Eclipsing Binaries

5.1 Introduction

The analysis of eclipsing binaries (EBs) with the simple geometric effect and Kepler’s 3rd Law

offers us a means to determine accurate stellar masses and radii. Asteroseismology, the study of

stars through their oscillation frequencies, also provides us with accurate stellar parameters. The

pulsating eclipsing binaries are thus the best laboratories to test and refine our knowledge of stellar

structure and evolution.

δ Scuti stars are radial and non-radial p-mode pulsators with frequencies from 4 to 60 d−1. γ

Doradus variables are main sequence high order g-mode pulsators with pulsation periods from 0.3

to 3 days. There are δ Scuti/γ Dor hybrids, where both p and g-modes are present (Grigahcène et

al. 2010; Uytterhoeven et al. 2011). Recent space observations suggest that the hybrid behavior

is normal in most of these stars and essentially all δ Scuti stars are found to show low frequency

pulsations (Balona 2010).

The early studies of pulsating eclipsing binaries found many pulsating Algol (oEA) systems

(Mkrtichian 2002, 2003), most of which are δ Scuti pulsators. Soydugan (2006) made a list of 25

confirmed such systems. Christiansen et al. (2007) discovered the first high amplitude δ Scuti star

in an EB. These early studies are nearly all observational, with the detections of a few oscillation

frequencies. Thanks to the space missions like CoRoT and Kepler, the number of known pulsating

EBs increased greatly. The Kepler Eclipsing Binary Catalog1 has more than 2600 entries, and

many of them show signals of pulsations. Recent studies of pulsating EBs with δ Scuti/γ Doradus

1http://keplerebs.villanova.edu/
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components include CoRoT 102918586 (Maceroni et al. 2013), KIC 11285625 (Debosscher et al.

2013), KIC 10661783 (Southworth et al. 2011; Lehmann et al. 2013), KIC 4844587 (Hambleton

et al. 2013), DY Aqr (Alfonso-Garzon et al. 2014), KIC 3858884 (Maceroni et al. 2014), CoRoT

105906206 (da Silva et al. 2014), and KIC 8569819 (Kurtz et al. 2015a). These works mostly focus

on the binary properties, with mass and radius determination to a few percent and detections of

tens of pulsational frequencies. For a general review of pulsating EBs with other type of pulsators,

please refer to Huber (2015) and Southworth (2015).

The asteroseismic modeling and mode identification of δ Scuti stars are notoriously difficult.

The fast rotation generally requires 2-D structure models. There are efforts of seismic modeling

of single δ Scuti stars using 1-D stellar models such as Suárez et al. (2005) on Altair, where

rotation is treated as a perturbation to the second order. δ Scuti stars in eclipsing binaries are

rarely modeled. The exception is the work by Maceroni et al. (2014) on KIC 3858884, in which the

authors identified the g-modes with the Frequency Ratio Method (Moya et al. 2005) and identified a

possible fundamental radial p-mode with the help of the frequency regularity. The seismic modeling

using 2-D models is still the frontier of asteroseismology and mostly adiabatic (Reese et al. 2008;

Deupree 2011; Ouazzani et al. 2012).

5.2 KIC 3858884

This section is based on my work published in Maceroni et al. (2014), A&A, 563, 59.



118

Figure 5.1 The detrended and normalized light curve of KIC 3858884 from Kepler, taken

from Maceroni et al. (2014).
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Table 5.1: Fundamental Parameters of KIC 3858884

Parameters Primary Secondary
Mass (M�) 1.88± 0.03 1.86± 0.04
Radius (R�) 3.45± 0.01 3.05± 0.04
Teff (K) 6800± 70 6606± 70
log g (cgs) 3.63± 0.01 3.74± 0.01

Oscillation Oscillation
Frequency(d−1) Amplitude (10−3)

f1 7.2306± 0.0001 10.15± 0.21
f2 7.4734± 0.0001 9.10± 0.15
f3 9.8376± 0.0001 1.96± 0.07
f4 7.5125± 0.0002 1.75± 0.06
f5 6.7358± 0.0002 1.55± 0.05
f6 9.5191± 0.0002 1.24± 0.04
f7 14.7041± 0.0002 1.15± 0.04
f8 11.7257± 0.0002 1.02± 0.04

KIC 3858884 is an eclipsing binary with an eccentric orbit (e ≈ 0.46) and an orbital

period of 25.952 days. This system was observed by Kepler satellite and was studied in

depth by Maceroni et al. (2014). The fundamental parameters they derive are listed in

Table 1. The binary components have very similar masses (1.88 and 1.86 M�) and effective

temperatures (6800 and 6600 K), but different radii (3.45 and 3.05 R�). The de-trended

light curve is shown in Figure 5.1. Obvious δ Scuti type pulsations can be seen, and the

Fourier amplitude spectrum is presented in Figure 5.2.
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Figure 5.2 The oscillation spectrum of KIC 3858884, taken from Maceroni et al. (2014). The

inset is a blow up of the region from 5 to 16 d−1 with two the strongest peaks pre-whitened.

The frequencies seem to form about 4 clusters. The frequency spacing can be found in the

next figure, showing the frequency difference histogram.
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Figure 5.3 The histogram of frequency differences (every frequency was subtracted from all

the others and the plot is restricted to the positive values). For easier comparison each

histogram is normalized to the local maximum around 7 d−1. The black line refers to the

whole set of 403 frequencies, the gray line to those with amplitude larger than 10−4. The

histograms show that there is a preferred spacing around 2.3 d−1 which is clearly visible

in both distributions. According to (Breger et al. 2009) the spacing corresponds to that

between radial modes. The multiples of the spacing are also indicated by dotted lines.
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As shown in Figure 5.2, the observed pulsational frequencies seem to form clusters. As

Breger et al. (2009) pointed out, the numerous observed frequencies of δ Sct stars often appear

in groups which cluster around the frequencies of radial modes and show some regularity in

spacing. The grouping is probably related to mode trapping in the envelope which increases

the probability of detection (Dziembowski & Krolikowska 1990). These modes are the non-

radial counterparts of the acoustic radial modes and, for low l degree, have frequencies close

to those of radial modes. In the case of δ Sct pulsators, theory predicts a much higher

efficiency of mode trapping for l = 1 modes, see also Breger et al. (2009).
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Figure 5.4 The s−f (frequency spacing vs. lowest unstable radial mode frequency) diagram

from Breger et al. (2009). The position of KIC 3858884 is marked by the red diamond. The

grid shows the predicted lowest radial mode frequency and frequency spacing as functions

of gravity (log g) and harmonic overtone (top).

Breger et al. (2009) introduced a theoretical diagram displaying the average separation of

the radial frequencies versus the frequency of the lowest-frequency unstable radial mode (Fig.
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5.4, the s−f diagram). The values are arranged on a grid with the different radial modes and

surface gravity as parameters. The location of a pulsator in that diagram allows, therefore,

to estimate its surface gravity (if the radial mode is assumed or known). The histogram

of the frequency difference is shown in Figure 5.3 both for the whole set of frequencies and

for those with an amplitude A > 10−4 (∼ 100 frequencies). There is an evident pattern,

indicating a separation of the radial modes of s ≈ 2.3 − 2.4 d−1. This frequency regularity

can be interpreted as the large frequency separation, i.e., the spacing between consecutive

radial orders. One sees in fact a first peak at 2.3 − 2.4 d−1 and others at approximately

two and three times the value (the separation of radial modes is not exactly constant with

increasing order). As we already have a precise estimate of the gravity, we can use the value

of s to derive the frequency of the fundamental radial mode of the secondary, which is ∼ 7.5

d−1, i.e., very close to the value of f2 (Table 5.1). We know that both f1 and f2 belong to the

secondary component; if - as plausible - we assume that f2 is its fundamental radial mode,

then f1 should be a non-radial one. The lower frequencies in the same domain could be either

non-radial modes of the secondary or radial/non-radial modes of the primary component.

We see that the eclipsing binary nature of KIC 3858884 enables the identification of f2

as the fundamental radial mode. The asteroseismic modeling of KIC 3858884 in Maceroni

et al. (2014) did not take advantage of the observed frequency spacing at 2.3− 2.4 d−1, and

this should be performed in future studies of this system. This regularity is in fact a proxy

for the mean stellar density as will be elaborated in later sections.
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5.3 KIC 9851944

This section is partially based on my work published in Guo et al. (2016), ApJ, 826, 69.

5.3.1 Introduction

KIC 9851944 (Kp=11.249, α2000=19:56:09.732, δ2000=+46:39:40.19) was first discovered to be

an eclipsing binary with an Algol type light curve in the All Sky Automated Survey (Pigulski

et al. 2009) with an orbital period of 2.1639 days. It was later included in the Kepler Eclipsing

Binary Catalog of Prša et al. (2011) and Slawson et al. (2011) as a detached eclipsing binary.

Gies et al. (2012) calculated the eclipse times by using the long cadence Kepler light curve

data from quarter 0 through quarter 9. They also noted that this system displays near

harmonic pulsational variability, possibly on both stars, as evident in their grey scale residual

images. Recently, Gies et al. (2015) updated their calculations by using all Kepler quarters.

The O − C curve is essentially flat around zero and shows no evidence of a third body or

apsidal motion. They determined the orbital period as 2.16390177 ±0.00000005 days from

the primary eclipses and 2.16390178±0.00000004 days from the secondary eclipses. Conroy

et al. (2014) reported the eclipse times of 1279 Kepler eclipsing binaries with short periods

including KIC 9851944. Armstrong et al. (2014) used a model of the binary Spectral Energy

Distribution (SED) to fit the photometry from Everett, Howell, & Kinemuchi (2012), Greiss

et al. (2012a,b), and 2MASS (Skrutskie et al. 2006). They derived the effective temperature

of the primary and the secondary as Tpri = 6549± 409K and Tsec = 6256± 638K.
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5.3.2 Observations: Kepler Photometry and Ground-based Spectroscopy

KIC 9851944 was observed by the Kepler satellite from 2009 to 2013. Short cadence data

(sampling rate of 58.8488 seconds) were obtained during Quarter (Q) 0, Q12 through 14 and

Q16−17. In long cadence mode (29.4244 minutes sampling), there are data in every quarter

from 0 to 17 except for Q7, Q11, and Q152.

2The Kepler Data Release (DR) 23 was used here. Note the short cadence data in the DR24 cannot be
used in projects requiring high photometric precision. There is another issue related to the smear corrections
of the short cadence light curves in all data releases announced on 2016 Feb 5. We evaluated this effect by
comparing the target pixel files of the long cadence data (which are not affected) with those of short cadence
data and found that this effect is negligible in the case of KIC 9851944.



127

Figure 5.5 The de-trended light curve of KIC 9851944 during Q13 from short cadence mea-

surements. The lower panel shows the pulsations after subtracting the best binary light

curve model.

A preliminary examination of the Kepler light curves (Figure 5.5) shows that this eclipsing

binary has evident ellipsoidal variations and pulsations with periods ≈ 2 hours. The Simple

Aperture Photometry (SAP) light curves were used for analysis. The outliers were removed

by a 5 sigma criterion. Median differences in quarters were normalized to the same flux. In

order to remove the long term trend, a spline curve was used to fit the binned light curve of

the out-of-eclipse envelope of the original light curve. This was the method used in Gies et
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al. (2012) and was similar to the de-trending process in Hambleton et al. (2013) who used

a polynomial fit to the out-of-eclipse envelope of the light curve. We de-trended the raw

light curve of each month and chose the best bin size as the one that minimizes standard

deviation of the out-of-eclipse part of the folded light curve. If the dataset contains gaps, we

treat each segment separately. We also checked the Fourier transform of the spline trend to

make sure we did not remove any intrinsic variations of this system.

As part of the program of spectroscopic follow up studies to the 41 Kepler eclipsing

binaries in Gies et al. (2012), we obtained 10 moderate resolution spectra with the R-C

Spectrograph on the Kitt Peak National Observatory (KPNO) 4-meter Mayall telescope and

3 spectra from the DeVeny Spectrograph on the 1.8-meter Perkins telescope at Anderson

Mesa of Lowell Observatory between 2010 and 2011. We used the BL380 grating (1200

grooves mm−1) on the R-C Spectrograph at KPNO and this provided wavelength coverage of

3930−4610Å. For the DeVeny Spectrograph at Lowell, a 2160 grooves mm−1 grating was used

and the wavelength range was 4000 − 4530Å. Both instrument setups provided a resolving

power of R = λ/δλ ∼ 6000. The calibration exposures at KPNO used HeNeAr lamps and

those at Lowell used HgNeSrCd Pen-Ray lamps. Flat-field and bias spectra were obtained

nightly. Standard IRAF3 routines were used to reduce, extract, and calibrate each spectrum.

However, wavelength calibrations for spectra from Lowell Observatory were performed using

late-giant stars with known velocities as described in Matson et al. (2016) since the available

Pen-Ray lamps provide insufficient emission lines for a dispersion solution. Finally, all spectra

3IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Associa-
tion of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National
Science Foundation
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were normalized to the local continuum and put onto a common heliocentric wavelength

grid with uniform log λ spacing. At the observed wavelength range, the mean signal-to-noise

ratios (S/N) of the KPNO spectra were about 70 − 120 and the Lowell spectra have lower

S/N of about 30− 40.
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Figure 5.6 The observed composite spectra in the region between Hδ and Hγ lines. The two

components are resolved in the cores of these Balmer lines at times of the velocity extrema.

The orbital phases (φ) are labeled for each spectrum. For better visibility, the spectra at

φ = 0.26 and φ = 0.32 have been shifted upwards by 0.5 and 1.0, repectively.
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The reduced spectra showed that the two components have similar flux contribution

and spectral type. As shown in Figure 5.6, the clear double lines in the composite spectra

indicated that the two components are resolved near the Doppler shift extrema.

5.3.3 Data Analysis

5.3.3.1 Orbital Elements and Tomographic Reconstruction

The observed composite spectra were cross-correlated with two templates for the primary

and secondary star to get radial velocities (RVs) and their uncertainties (Zucker 2003) which

are listed in Table 5.2. The templates were constructed from the UVBLUE spectral grid

(Rodŕıguez-Merino et al. 2005) using preliminary parameters based on the Kepler Eclipsing

Binary Catalog of Slawson et al. (2011). UVBLUE is a library of theoretical stellar spectra

computed with the ATLAS9 and SYNTHE codes developed by R. L. Kurucz, with a spectral

resolving power λ/∆λ = 50, 000. It covers the short wavelength range (850−4700Å) which is

ideal for our studies. The RVs derived from KPNO and Lowell spectra have similar statistical

uncertainties. However, the Lowell RVs show larger systematic uncertainties which is likely

due to the imprecise wavelength calibration.

Table 5.2: Radial Velocities

Time Phase Vr(pri) Vr(sec) Observation
(BJD-2400000) (km s−1) (km s−1) Source
55367.6938 0.32 −113.5 ± 3.2 105.2 ± 4.7 KPNO
55368.6869 0.78 117.4 ± 3.0 −117.8 ± 4.7 KPNO
55368.7235 0.79 115.9 ± 3.2 −109.6 ± 4.8 KPNO
55368.7705 0.82 108.5 ± 3.2 −105.1 ± 4.9 KPNO
55368.8208 0.84 95.7 ± 3.0 −99.5 ± 4.3 KPNO
55369.6816 0.24 −128.9 ± 3.2 114.9 ± 4.8 KPNO
55369.7259 0.26 −126.8 ± 3.4 118.7 ± 5.5 KPNO
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55369.7869 0.29 −120.9 ± 3.2 117.2 ± 4.6 KPNO
55369.8234 0.30 −120.3 ± 3.1 111.5 ± 4.3 KPNO
55434.8181 0.34 −106.6 ± 2.7 99.1 ± 4.1 KPNO
55449.9141 0.31 −101.3 ± 3.1 136.4 ± 4.7 Lowell
55463.8100 0.74 129.4 ± 3.2 −104.3 ± 5.1 Lowell
55755.9599 0.75 106.6 ± 3.2 −127.9 ± 4.9 Lowell
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At first we used templates with atmospheric parameters and projected rotational velocity

of Teff , log g, v sin i =[6200K, 4.4, 23 km s−1] for the primary, and [6000K, 4.4, 23 km s −1]

for the secondary, with a flux ratio of F2/F1=0.72 and solar metallicity. The templates were

later updated to [7026K, 4.0, 52 km s −1] and [6950K, 3.7, 70 km s −1] for the primary

and secondary, respectively, and with a flux ratio of 1.3 after we performed the preliminary

analysis of the separated component spectra (see below).

We derived the orbital elements by fitting the radial velocities with the non-linear, least

squares fitting program of Morbey & Brosterhus (1974). The orbital period was fixed to

the value in Gies et al. (2012) as P = 2.16390189 ± 0.00000008 days, which was the same

within uncertainties as from later eclipse time measurements (Gies et al. 2015). The fitting

parameters included T0 (time of maximum velocity), K1 (semi-amplitude velocity of the

primary), γ (system velocity) for the primary star and K2, T0 and γ for the secondary. The

eccentricity was fixed to 0.0. We search for a circular orbital solution since the Kepler light

curve suggests that the eccentricity is essentially zero. The system is probably old enough

to have completed the circularization.



133

KIC9851944
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Figure 5.7 The radial velocities (Vr) derived from the cross correlation technique and the

best fitting model from ELC. The primary and secondary are indicated by the filled dots

and open diamonds, respectively. The bottom panel shows the residuals.
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Figure 5.8 The reconstructed component spectra of the two components (primary : lower

part; secondary : upper part) (black) and the corresponding best synthetic spectra from

UVBLUE (red). The effective temperature (Teff), projected rotational velocity (v sin i),

surface gravity (log g) and metallicity ([Fe/H]) are labeled above the synthetic models.

The best fitting orbital solutions based on all RVs are shown in Figure 5.7. These

solutions were used to determine the pixel shifts for each spectrum. We then applied the

Doppler tomography program (Bagnuolo et al. 1994) to get the individual spectrum of each

component (Fig. 5.8). In the reconstruction process, we treated the mean flux ratio of
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the two components in the observed spectral range as a free parameter (F2/F1), and the

reconstructed spectra were subsequently compared with synthetic spectra from the UVBLUE

library. The best mean monochromatic flux ratio was determined as the one that gives the

minimum chi square from the spectra residuals of both the primary and the secondary,

which was F2/F1 = 1.34± 0.03. The spectra from UVBLUE were normalized and convolved

with the instrumental broadening and rotational kernel (Gray 2008) before comparing with

observational spectra.

Our goal is to determine the stellar properties of each star from the reconstructed spectra.

It is helpful to set the gravity log g in the analysis from the masses and radii determined

from a combined spectroscopic and light curve fit (see section 5.3).

Table 5.3: Fundamental Parameters of KIC 9851944

Parameters Primary2 Secondary2 Primary3 Secondary3

Teff (K) . . . . . . . 7026± 50 6950± 50 7018± 76 6881± 70
log g (cgs) . . . . 3.961 3.691 3.961 3.691

v sin i (km s−1) 53± 7 59± 3 56± 10 71± 10
[Fe/H] . . . . . . . . 0.0a 0.0a −0.06± 0.05 −0.04± 0.05

1Fixed.
2From genetic algorithm.
3From Levenberg-Marquardt algorithm.
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An initial light curve fitting was performed with ELC (see next section for details) and

the primary velocity semi-amplitude K1, systemic velocity γ, and mass ratio were fixed to

the values from the radial velocity curve fitting mentioned above. Teff of the primary was

initially fixed to the value from Armstrong et al. (2014) and adjusted later. We found that

in the light curve fitting process, when we changed the primary temperature to 6200K and

7200K, the best fitted inclination only changed by less than 0.4%, and the log g only changes

by 0.9%. Thus, the log g values from the light curve and radial velocity curve modeling were

more accurate and so were adopted in fitting the spectra by atmosphere models. A well

known problem in spectroscopic analysis is the parameter degeneracy. While the effective

temperature and projected rotational velocity v sin i are usually well constrained, the param-

eters log g and metallicity are more difficult to pinpoint and both correlate with Teff . Thus,

setting log g from the combined analysis will greatly reduce the parameter degeneracy. This

procedure was also adopted by Maceroni et al. (2014).
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Figure 5.9 The χ2 of stellar atmosphere parameters, Teff and v sin i from the genetic algo-

rithm. The gravity log g is fixed to ELC values of 3.96 and 3.69, and the metallicity is fixed

to the solar value. The χ2 have been scaled so that χ2
min ≈ ν (the degree of freedom).

The two red lines indicate the level of χ2
min + 1.0 and χ2

min + 4.0. The upper (lower) panels

correspond to fits of the reconstructed primary (secondary) spectra.
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To get the atmospheric parameters of both components, we adopted two different tech-

niques. First, the genetic algorithm pikaia (Charbonneau 1995) was used. This optimizer is

able to explore a broad parameter space and is good at finding the global minimum. The

fitting parameters were Teff and v sin i, while the logarithmic metallicity referenced to the

Sun [Fe/H] was fixed to 0.0. The parameters were allowed to vary in broad ranges. The Teff

boundaries for the primary and the secondary star were 6500 − 7500K and 6200 − 7200K,

respectively. The v sin i values of both stars were allowed to very from 10 to 100 km s−1.

In Figure 5.9 we show the χ2 as a function of atmospheric parameters (Teff , v sin i) of both

stars. The χ2 has been scaled so that χ2
min ≈ ν, where ν is the degree of freedom. We use

the intersections of the lower envelope of χ2 samples and the level of χ2
min + 1 as the ±1σ

parameter bounds, the derived uncertainties are shown in Table 5.3. Note this approach

probably underestimates the uncertainties due to parameter correlations as the residuals are

not independent Gaussian distributions. The 1σ errors of effective temperatures are quite

small (25K and 15K for the primary and secondary, respectively), and we conservatively

adopt one tenth of the UVBLUE grid step size (∆Teff = 50K) as the final uncertainties.

A comparison of the reconstructed component spectra with synthetic spectra is shown in

Figure 5.8.

In the second approach, we determine the atmospheric parameters successively (except

for the log g, which is always fixed to the value determined from the combined fit). First,

a preliminary tomographic reconstruction was performed with the effective temperatures

of the two components fixed to [7026K, 6900K] and an estimated mean flux ratio of 1.3.
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Since the hydrogen lines are dominated by Stark (pressure) broadening and less sensitive to

rotation, we selected six different spectral ranges with least blended metallic lines (4010 −

4040, 4041 − 4080, 4130 − 4210, 4220 − 4250, 4260 − 4290 Å) and determined the best

v sin i by comparing the reconstructed component spectra with a grid of synthetic template

spectra of different rotational broadening. The optimal values of v sin i are found to be

[55.8 km s−1, 70.5 km s−1], which are not sensitive to the initial fixed value of effective

temperature and flux ratio. Then the v sin i estimates are fixed to the best values and

the spectral separations are performed again over a grid of mean flux ratios, and for each

flux ratio we determine the [Fe/H] and effective temperature by minimizing the χ2 with a

Levenberg-Marquardt algorithm implemented in the package MPFIT (provided by Craig B.

Markwardt, NASA/GSFC). The error estimates from MPFIT are formal errors based on the

covariance matrix which are probably underestimated. The final results are summarized in

Table 5.3.

The flux ratio and atmospheric parameters from the above two techniques agree very

well. We adopted the projected rotational velocities from the second method which are very

close to the expected synchronized values. Please note the ELC synchronous rates are given

in Table 5.4. According to Zahn’s (1977) theory of radiative damping of dynamic tides for

early-type close binaries, the orbital circularization timescale tcir follows the relation (Khal-

iullin & Khaliullina 2010): 1/tcir = 1/tcir1 + 1/tcir2, where tcir,i = 10.5(GMi/R
3
i )

0.5q(1 +

q)11/6E2,i(Ri/a)10.5 with i = 1, 2. If we adopt the averaged tidal torque constant E2 of a

1.8M� star on the main sequence ≈ 10−8.37(Claret 2004), then the calculated circularization
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timescale for a binary system like KIC 9851944 is about 6 × 108 years. The synchroniza-

tion timescale is an order of magnitude shorter than the circularization timescale and both

timescales are shorter than the age of this system (see the isochrone fitting in Section 5.4).

This system is expected to have synchronized rotation. Our derived v sin i values, especially

those from the metal lines using the Levenberg-Marquardt algorithm, are very close to the

synchronized value within uncertainties of about 0.8σ and 0.3σ. In the later binary modeling

process, we adopt this synchronization assumption. The observed projected rotational ve-

locities are lower than the average v sin i in single δ Scuti stars which is around 120 km s−1.

It is plausible that diffusion can take place more easily for δ Scuti stars within close binaries

and this may explain the observed non-solar metallicity in some close binaries. However, for

KIC 9851944 the derived metallicity is essentially within the 1σ error box of solar.

5.3.3.2 Binary Modeling

We use the Kepler short cadence data to perform the light curve modeling. There are

15 months of SC data, one month in Q0, three months each in Q12, Q13, Q14, Q16 and

two months in Q17. We fit the light curve of each month separately as this will account

for the possible systematic uncertainties from imperfect de-trending and differences in the

photometric aperture definition. The Eclipsing Light Curve (ELC) code (Orosz & Hauschildt

2000) is used to find orbital and astrophysical parameters for KIC 9851944. ELC utilizes

the Roche model and NextGen model atmospheres to synthesize the binary light curve with

the effects of gravity darkening and reflection included. This code4 has been used to analyze

4This proprietary Fortran code is maintained by Jerome Orosz. Detailed documentation is available on
request.
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Kepler eclipsing binaries (Bass et al. 2012; Sandquist et al. 2013; Rawls et al. 2016), heartbeat

stars (Welsh et al. 2011), transiting exoplanets (Wittenmyer et al. 2005), and circumbinary

planets (Orosz et al. 2012), etc. The version revised especially for Kepler data integrates

the stellar Spectral Energy Distribution in the Kepler passband and also incorporates subtle

effects such as contamination, relativistic beaming, and finite integration. ELC can fit the

radial velocities (RVs) and the light curves (LC) simultaneously, as done in Williams (2009).

Due to the sharp difference between the quality of Kepler photometry and our spectro-

scopic data, we decide to fit the RVs and LC separately. The RVs were fit first as mentioned

in the last section and the corresponding parameters K1 (velocity semi-amplitude), q (mass

ratio), and γ (system radial velocity) were used to fit the LC data in ELC as these parame-

ters have no affect on the light curves (only very weakly on q). After fitting the light curve,

the output RV curves from ELC are compared with observed RVs to make sure we have a

consistent model.
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Figure 5.10 A fit to the eclipsing binary light curve of KIC9851944 before (above) and

after (below) the pre-whitening of pulsations from the dataset of quarter Q12b. The model

light curves are indicated by the green and red solid lines. The lower two panels show the

corresponding residuals.

The original de-trended Kepler light curve is fit first and the residuals still show strong

signals of pulsations (Fig. 5.10). To pre-whiten the pulsational signal in the light curve, we

use the SigSpec package (Reegen 2007) to find significant frequencies in the Fourier spectrum

of the residuals down to a signal to noise ratio ≈ 4 (spectral significance in SigSpec ≈ 5).
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We compare the Fourier spectrum of the residuals in consecutive months, and the peaks

that appear in both datasets within the frequency resolution were selected. This can prevent

us from selecting frequencies that are due to imperfect de-trending and binary light curve

modeling. We only choose the frequencies that have amplitudes larger than about 40 ppm,

because there are many lower peaks below this level that may be unrelated to pulsation.

The pulsation signal is then represented by a sum of sinusoids of these selected frequencies

and is subtracted from the original Kepler light curves.

This pre-whitened light curve is fit with ELC again. We use both the genetic algorithm

based on pikaia (Charbonneau 1995) and the Monte Carlo Markov Chain (MCMC) (Tegmark

et al. 2004) to find the global minimum in parameter space. The parameters for the light

curve fitting are i (orbital inclination), f1 (filling factor of the primary), f2 (filling factor of

the secondary), T0 (time of the secondary minimum) 5 , and Teff2/Teff1 (effective temperature

ratio). The Roche lobe filling factor (f1, f2) is defined as the ratio of the radius of the star

toward the inner Lagrangian point (L1) to the distance to L1 from the center of the star,

f = xpoint/xL1 . The filling factors determine the stellar radii, and they are the functional

counterpart of the surface effective potential (Ω1,Ω2) in W-D program (Wilson & Devinney

1971) and PHOEBE (Prša & Zwitter 2005). The orbital period is also adjusted at first

and fixed later on since the converged value is almost identical to the values given by Gies

et al. (2012). The primary effective temperature is fixed to the value from spectroscopy as

Teff1 = 7026K. The Kepler contamination factor k is the percent of contamination light from

5Throughout the paper, the epoch we adopted is the time of primary minimum T0. The only exception
is during the light curve fitting process where ELC uses T0 as the time of secondary minimum.
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other stars in the photometric aperture. In ELC, this effect is accounted for by subtracting

an offset determined by multiplying the median value of the light curve by k/(1 − k). For

KIC 9851944, this k factor, taken from the Kepler Input Catalog, varies from 0.005 to 0.01

in different quarters and has only negligible effect on the light curve modeling. More than

105 models are calculated and the corresponding parameters and their corresponding χ2

are recorded. The Markov chains generally converge after about a few 104 iterations. The

histogram for each fitting parameter and the correlation of each parameter pair is shown in

Figure 5.11.
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Figure 5.11 The parameter correlations from the MCMC analysis of dataset Q14. The fitting

parameters are incl (inclination), f1, f2 (filling factor), temprat (Teff,2/Teff,1) and T0 (time

of secondary minimum). The histograms have been normalized to have a maximum peak

of unity. There is a clear correlation between inclination and filling factor, as larger filling

factor can be accounted for by a smaller inclination.

We adopt the final fitting parameters as the average value of all MCMC solutions in
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different quarters, and their standard deviations as the final systematic error bar. Note the

statistical error bars from the light curve fitting in each quarter are much smaller than the

systematic error bars we adopted from the quarter-to-quarter differences.

Our final result shows that a circular orbit with two synchronized rotating components

can fit both the light curve and radial velocity curve very well.

We define the distortion to the shape of the star as D = (Re − Rp)/Re, where Rp and

Re are polar radius and the radius pointing to L1, respectively. The secondary star fills the

Roche lobe more and D is much larger (8.5%) compared with that of the primary (2.7%).

The circular orbit solution is sufficient, as our final residuals of light curve fit still show

pulsations at 10−3 magnitude level. The circular orbit solution will be undistinguishable

with a plausible better fit with very small eccentricity. We explore the possibility of smaller

eccentricity of this system by examining the published eclipse timings in Gies et al. (2015)

and Conroy et al. (2014). For a circular orbit, the phase difference between the secondary

and primary eclipse times (δφ) is exactly 0.5, and a deviation from this value can be shown

to be equal to 1
π
(1 + 1

sin i
)e cosω (Kallrath & Milone 2009) where i is the orbital inclination.

This can give us a lower limit on the eccentricity. For KIC 9851944, the median 0.5− δφ of

all cycles is 0.000057 and this suggests e ≥ |e cosω| ≈ 0.0001. Strictly speaking, the time

difference between the secondary and primary eclipse times is also affected by the light travel

time effect, which is primarily a function of semi-velocity amplitude and mass ratio (see eq.

3 in Bass et al. 2012). Since the mass ratio of KIC 9851944 is very close to 1.0, this light

travel effect is very small (0.3 seconds) and can be neglected.
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Figure 5.12 The radius ratio from spectroscopy and binary modeling. The contours show

the 1σ, 2σ, and 3σ credible regions of the radius R1/a and R2/a from the light curve

modeling. The final adopted value is indicated as the diamond. The dark dotted line which

crosses the contours corresponds to R1/a + R2/a = 0.51. It indicates the valley of possible

solutions for partial eclipsing systems from the light curve modeling. The radius ratio from

spectroscopy is R2/R1 = 1.22 ± 0.05, shown as the red solid line, and the gray shaded

area is the corresonding 2σ credible region. The blue dashed line shows the ratio of v sin i

measurements, (v sin i2)/(v sin i1) = 71/56 = R2/R1 = 1.27.
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To check if the results from spectroscopy and the binary light curve modeling are con-

sistent (Rozyczka et al. 2014), we show the radius ratio of two stars in Figure 5.12. We

obtain a mean flux ratio F2/F1 = 1.34 ± 0.03 from the blue spectra (at ≈ 4275Å) in

the spectral tomography analysis. Thus, we can calculate the observed flux ratio from

the projected areas and surface flux ratio per unit area (f2/f1) assuming the stars are

spherical: F2/F1 = (f2/f1)(R2/R1)2, where f2/f1 = 0.92 is from the Kurucz models us-

ing the atmosphere parameters of the two stars. The radius ratio derived this way is

R2/R1 = 1.22 ± 0.05, and this is shown as the red solid line and the corresponding 2σ

credible region is indicated as the gray shaded region. Another way to estimate the radius

ratio is directly from the v sin i measurements since the system is probably synchronized, so

that R2/R1 = (v sin i2)/(v sin i1) = 71/56 = 1.27 ± 0.29, and this ratio is indicated as the

blue dashed line. The radius ratio from the binary modeling (corresponding to the filling

factor ratio) is indicated by the red diamond and the contours. The result R2/R1 = 1.40 is

larger than that from spectroscopy (R2/R1 = 1.22 and 1.27) indicating a discrepancy. For

partial eclipsing binaries, there exists a family of comparable solutions to the light curve

modeling. These solutions fall in a valley which satisfies R1/a + R2/a = constant, and this

is represented as the black dotted line. We tentatively adopt the radii associated with the

best fit of the light curve (Table 5.4) as it is less model dependent, but we discuss below the

implications of solutions with a smaller ratio of R2/R1.
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Table 5.4: Model Parameters

Parameters Primary Secondary System
Period (days) 2.163901891± 0.0000008
Time of primary minimum (HJD-2400000) 55341.03987± 0.00004
Mass ratio q=M2/M1 1.01± 0.03
Orbital eccentricity, e 0.01

γ velocity (km s−1) −1.3± 0.7
Orbital inclination (degree), i 74.52± 0.02
Semi-major axis (R�), a 10.74± 0.14
Mass (M�) 1.76± 0.07 1.79± 0.07
Radius (R�) 2.27± 0.03 3.19± 0.04
Filling factor, f 0.432± 0.003 0.627± 0.001
Gravity brightening, β 0.081 0.081

Bolometric albedo 0.51 0.51

Teff (K) 70261± 100 6902± 100
log g (cgs) 3.96± 0.03 3.69± 0.03
Synchronous v sin i (km s−1) 51.4± 0.7 72.1± 0.9
Velocity semiamplitude K (km s−1) 121.9± 1.3 120.2± 1.7
rms of Vr residuals (km s−1) 6.2 9.7

1Fixed.
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5.3.4 Comparision with Evolutionary Models

This part is described in Chapter 2 in the context of stellar evolutionary models.

5.3.5 Interpretation of Pulsations

There has been significant advancement in the field of asteroseismology. However, most

of these achievements focus on solar-like oscillators (Bedding et al. 2011; Beck et al. 2011;

Mosser et al. 2012). The A-F type pulsators, mostly δ Scuti and γ Dor stars still require a

better theory to explain observations. Even the first step of asteroseismology, that is mode

identification, is notoriously difficult due to our lack of knowledge of crucial stellar physics

such as mode excitation, nonlinear effects, and the treatment of rotation.

We analyzed the residuals of the binary light curve to investigate the pulsational proper-

ties. We found that masking the eclipses generates strong aliases in the Fourier spectrum and

thus the whole residual lightcurves were used in the analysis. A standard pre-whitening pro-

cedure was performed with the Period 04 package (Lenz & Breger 2005) to all long cadence

data as well as short cadence data with the fitting formula Z+
∑

iAi sin(2π(Ωit+Φi)), where

Z,Ai,Ωi,Φi are the zero-point shift of the residuals, pulsational amplitudes, frequencies and

phases, respectively, and time t = BJD − 2, 400, 000. The calculation was performed to the

long and short cadence Nyquist frequencies (24.47 d−1 and 734 d−1, respectively). No peaks

were found beyond the frequency ≈ 25 d−1 in the short cadence spectrum. The envelope

of the pre-whitened amplitude spectrum was adopted as a conservative noise level. We ex-

tracted the final frequencies from the long cadence data as they have a longer timespan and
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better frequency resolution. These frequencies have signal to noise ratios (S/N) larger than

4.0 and are reported in Table 5.5. We estimated the uncertainties of frequencies, amplitudes,

and phases following Kallinger et al. (2008). We show the Fourier amplitude spectrum with

the window function, the noise spectrum after pre-whitening 89 significant peaks and the

extracted frequency peaks in the upper, middle and lower panels of Figure 5.13, respectively.

A remarkable feature in extracted frequencies was that many of them are related to the

orbital frequency forb = 0.46213 d−1 in the form of fi ± kforb (k = 1, 2, 3, ...). We list these

frequencies and other combination frequencies in the form of mfi ± nfj (we restricted to

m,n = 1 or 2) in the second half of Table 5.5, while the independent frequencies are listed

in the first half.
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Figure 5.13 Upper panel: The amplitude spectrum of the residual light curve of long

cadence data (Q0− 10, 12, 13, 14, 16, 17) without masking the eclipses. The spectral window

is shown in the upper right inset. Middle panel: The spectrum after subtracting 89

frequencies. The solid red curve represents the adopted noise level. Bottom panel: The

extracted significant frequencies with S/N > 4.0 as listed in Table 5.5 (black: independent

frequencies; red: combination frequencies).
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Table 5.5: Significant oscillation frequencies

Frequency (d−1) Amplitude (10−3) Phase (rad/2π) S/N Comment
f1 10.399692± 0.000002 0.653± 0.008 0.343± 0.006 132.5
f2 10.176019± 0.000002 0.548± 0.008 0.764± 0.007 114.1
f3 11.890476± 0.000002 0.454± 0.008 0.249± 0.008 100.6
f4 5.097099± 0.000007 0.404± 0.019 0.002± 0.022 35.6
f5 11.018543± 0.000005 0.229± 0.008 0.124± 0.016 49.0
f6 12.814916± 0.000005 0.223± 0.008 0.259± 0.016 50.2
f7 14.315078± 0.000004 0.216± 0.006 0.493± 0.013 60.3
f8 2.23970± 0.00001 0.210± 0.013 0.373± 0.029 27.9
f10 11.52231± 0.00001 0.202± 0.008 0.998± 0.018 45.0
f12 11.41981± 0.00001 0.153± 0.008 0.565± 0.023 34.0
f13 14.44808± 0.00001 0.137± 0.006 0.852± 0.020 39.4
f14 1.29699± 0.00002 0.127± 0.018 0.190± 0.064 12.4
f16 2.31972± 0.00002 0.112± 0.013 0.091± 0.052 15.2
f18 19.12671± 0.00001 0.098± 0.004 0.104± 0.021 38.4
f21 1.26807± 0.00003 0.084± 0.018 0.350± 0.099 8.0
f23 7.22672± 0.00003 0.079± 0.020 0.242± 0.118 6.8
f25 5.09657± 0.00004 0.066± 0.019 0.573± 0.137 5.8
f26 6.93255± 0.00004 0.063± 0.020 0.173± 0.150 5.3
f28 6.59001± 0.00005 0.059± 0.021 0.992± 0.167 4.8
f29 19.42781± 0.00001 0.058± 0.004 0.124± 0.035 22.5
f31 3.69704± 0.00002 0.056± 0.010 0.196± 0.082 9.7 8forb
f32 2.20292± 0.00003 0.053± 0.013 0.573± 0.113 7.0
f33 2.13439± 0.00003 0.052± 0.013 0.151± 0.120 6.7
f34 5.09768± 0.00005 0.051± 0.019 0.259± 0.176 4.5
f35 1.13657± 0.00005 0.051± 0.019 0.712± 0.179 4.5
f37 11.00534± 0.00002 0.047± 0.008 0.270± 0.079 10.1
f40 4.78514± 0.00005 0.044± 0.016 0.139± 0.171 4.7
f41 14.01095± 0.00002 0.043± 0.007 0.760± 0.071 11.2
f44 14.39802± 0.00002 0.043± 0.006 0.690± 0.066 12.1
f46 8.55119± 0.00003 0.040± 0.010 0.875± 0.112 7.1
f47 11.27238± 0.00003 0.040± 0.008 0.638± 0.090 8.8
f50 10.16680± 0.00003 0.033± 0.008 0.981± 0.115 7.0 22forb
f52 14.21085± 0.00003 0.032± 0.006 0.909± 0.090 8.8
f56 17.27820± 0.00002 0.029± 0.005 0.286± 0.075 10.7
f58 11.78608± 0.00004 0.028± 0.008 0.447± 0.129 6.2
f59 14.49315± 0.00003 0.027± 0.006 0.124± 0.101 7.9
f60 11.43813± 0.00004 0.027± 0.008 0.212± 0.134 5.9
f61 12.35236± 0.00004 0.027± 0.008 0.847± 0.138 5.8
f63 10.50479± 0.00004 0.026± 0.008 0.536± 0.150 5.3
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f65 11.42880± 0.00004 0.025± 0.008 0.108± 0.145 5.5
f67 20.82350± 0.00003 0.023± 0.005 0.910± 0.097 8.2
f70 10.40016± 0.00005 0.023± 0.008 0.109± 0.172 4.6
f72 9.59225± 0.00005 0.022± 0.008 0.934± 0.174 4.6
f73 11.36517± 0.00005 0.021± 0.008 0.461± 0.168 4.8
f77 23.10643± 0.00003 0.019± 0.005 0.636± 0.113 7.1 50forb
f79 13.61003± 0.00005 0.019± 0.007 0.636± 0.171 4.7
f81 14.20153± 0.00005 0.018± 0.006 0.645± 0.168 4.8
f82 14.83255± 0.00005 0.015± 0.006 0.387± 0.170 4.7
f84 14.69435± 0.00005 0.015± 0.006 0.090± 0.175 4.5
f86 21.25792± 0.00004 0.015± 0.005 0.208± 0.147 5.4 46forb
f88 21.52354± 0.00005 0.012± 0.005 0.640± 0.183 4.4
f89 21.24588± 0.00005 0.012± 0.005 0.918± 0.183 4.4

f24 9.93762± 0.00001 0.073± 0.008 0.004± 0.051 15.6 f1 − forb
f49 9.47544± 0.00003 0.035± 0.008 0.468± 0.111 7.2 f1 − 2forb
f64 11.32396± 0.00004 0.026± 0.008 0.087± 0.139 5.7 f1 + forb

f39 9.71393± 0.00002 0.045± 0.008 0.774± 0.084 9.5 f2 − forb
f42 10.63815± 0.00003 0.043± 0.008 0.692± 0.091 8.8 f2 + forb
f54 9.25177± 0.00004 0.030± 0.008 0.736± 0.129 6.2 f2 − 2forb
f55 11.10030± 0.00004 0.030± 0.008 0.172± 0.125 6.4 f2 + 2forb
f68 11.56241± 0.00004 0.023± 0.008 0.048± 0.153 5.2 f2 + 3forb
f83 22.06649± 0.00004 0.015± 0.005 0.694± 0.144 5.6 f2 + f3

f9 5.55917± 0.00002 0.205± 0.023 0.987± 0.052 15.3 f4 + forb
f15 4.63503± 0.00002 0.118± 0.015 0.526± 0.057 13.9 f4 − forb
f22 6.02135± 0.00004 0.083± 0.023 0.547± 0.129 6.2 f4 + 2forb
f53 4.17286± 0.00005 0.031± 0.012 0.043± 0.173 4.6 f4 − 2forb

f11 11.94281± 0.00001 0.169± 0.008 0.732± 0.021 37.3 f5 + 2forb
f20 10.09429± 0.00001 0.093± 0.008 0.443± 0.041 19.5 f5 − forb

f66 15.23934± 0.00003 0.025± 0.005 0.148± 0.099 8.0 f7 + 2forb
f75 13.39085± 0.00005 0.019± 0.007 0.472± 0.170 4.7 f7 − 2forb
f78 13.85292± 0.00005 0.019± 0.007 0.462± 0.168 4.7 f7 − forb
f80 14.77724± 0.00004 0.019± 0.006 0.639± 0.141 5.7 f7 + forb

f19 1.31541± 0.00002 0.095± 0.017 0.551± 0.085 9.4 f8 − 2forb
f27 1.77756± 0.00003 0.061± 0.015 0.285± 0.112 7.1 f8 − forb

f17 10.59808± 0.00001 0.098± 0.008 0.794± 0.040 19.9 f10 − 2forb
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f51 11.06020± 0.00003 0.033± 0.008 0.900± 0.113 7.0 f10 − forb
f74 11.98450± 0.00005 0.021± 0.008 0.152± 0.170 4.7 f10 + forb

f30 13.52384± 0.00002 0.058± 0.007 0.278± 0.056 14.2 f13 − 2forb
f43 1.39544± 0.00005 0.043± 0.017 0.963± 0.180 4.4 f16 − 2forb

f38 20.35207± 0.00001 0.045± 0.005 0.444± 0.049 16.4 f29 + 2forb
f45 21.27632± 0.00002 0.041± 0.005 0.963± 0.053 15.0 f29 + 4forb

f36 2.77282± 0.00003 0.051± 0.011 0.450± 0.102 7.8 f31 − 2forb
f48 4.62129± 0.00005 0.040± 0.014 0.117± 0.169 4.7 f31 + 2forb
f62 8.78964± 0.00004 0.027± 0.009 0.296± 0.155 5.2 f31 − f45

f57 10.08109± 0.00004 0.029± 0.008 0.291± 0.131 6.1 f37 − 2forb
f71 14.93516± 0.00003 0.023± 0.005 0.626± 0.113 7.0 f41 + 2forb
f85 15.32227± 0.00005 0.015± 0.005 0.396± 0.164 4.9 f44 + 2forb
f76 13.28659± 0.00005 0.019± 0.007 0.966± 0.175 4.6 f52 − 2forb
f87 17.74031± 0.00005 0.013± 0.004 0.613± 0.163 4.9 f56 + forb
f69 12.35302± 0.00005 0.023± 0.008 0.872± 0.158 5.0 f65 + 2forb

In the low frequency region (f < 4 d−1), the peaks seem to cluster around 1.3 d−1 and

2.3 d−1. Almost all δ Scuti stars observed by Kepler show low frequency peaks, and this star

is no exception. The primary star is located inside the γ Doradus instability strip and the

secondary star is just hotter than the blue edge of this strip, so these low frequency peaks

are possibly g-mode pulsations.

In the frequency region (4 d−1 ≤ f ≤ 8 d−1), there is a quintuplet f9, f15, f22, f53 around

f4 = 5.097 d−1: f9 = f4 + forb, f15 = f4 − forb, f22 = f4 + 2forb, f53 = f4 − 2forb. In the

high frequency region (8 d−1 ≤ f ≤ 24 d−1), nearly all the strong peaks are within the

range 10 to 15 d−1, with several lower peaks near 20 d−1. These frequencies correspond to

p-mode pulsations of δ Scuti stars. We find splittings to many of these p-modes including
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f1 → (f24, f49, f64), f2 → (f39, f42, f54, f55, f68), f5 → (f11, f20), f7 → (f66, f75, f78, f80),

f8 → (f19, f27), f10 → (f17, f51, f74), f29 → (f38, f45) and f31 → (f36, f48) (see the second

half of Table 4). These splittings are all related forb = 0.46213 d−1 and are likely the result

of amplitude modulation from eclipses. Due to the different cancellation effects, modes of

different spherical degree l have different amplitude modulation. It is possible to identify the

modes from these amplitude modulations, the so called eclipse mapping method described by

Reed et al. (2005) and B́ıró & Nuspl (2011). KIC 9851944 has a circular orbit, and the tidal

effect is from the equilibrium tide which is confined to the first and second orbital harmonics.

It is surprising to find that f31 = 8forb, f50 = 22forb, f77 = 50forb and f86 = 46forb are large

multiple integer times of orbital frequency as such high orbital harmonics are usually found

in very eccentric systems such as heartbeat stars (Welsh et al. 2011; Hambleton et al. 2013).

Note that da Silva et al. (2014) also find a pulsation frequency at 19 times of orbital frequency

in the circular eclipsing binary CoRoT 105906206.

There are other combination frequencies like f23 = f2 + f3, and these can be explained

by nonlinear mode coupling as proposed by Weinberg et al. (2013). It is possible to extract

information on the mode identification from the combination frequencies (Balona 2012).

Recent study emphasizes the importance of combination frequencies as they provide a simple

interpretation of the complex spectra of many γ Dor and SPB stars (Kurtz et al. 2015b).

As a preliminary attempt to identify pulsation modes, we chose representative structure

models among the best coeval MESA models which fit the observed R, Teff and M . The

detailed modeling is presented separately in Chapter 2. Since the models favor a higher
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mass ratio, we choose 1.70M� and 1.77M� as the possible lower and upper mass limits of

the primary; for the secondary the limits of 1.79 and 1.86M� are adopted. We calculated the

non-rotating non-adiabatic frequencies for all models within a 1σ error box of the observed

radius with the GYRE code (Townsend & Teitler 2013).

The calculated frequencies need to be corrected for the effect of rotation. To the first

order, each l > 0 mode will split in to 2l+1 components with m = −l, · · · , l. The frequencies

of the split modes follow the relation: ωlm = ω0 + (1 − Cnl)mΩ̄ + O(Ω̄2), where Cnl is the

Ledoux constant (Ledoux 1951) which depends on the eigenfunction of the mode. Ω̄ is the

mean rotational frequency for the mode. For KIC 9851944, the Cnl are directly computed

in GYRE from mode eigenfunctions. The l = 1, 2 modes of the primary have Cnl about

0.1− 0.3. For the l = 1, 2 modes of the secondary star, the Cnl are about 0.4− 0.6 and 0.2,

respectively.

The relative amplitudes of rotational splitting components to the central m = 0 mode

depend on the inclination of the pulsation axis (Gizon & Solanki 2003). If the pulsation

axis is aligned with the orbital and rotation axis, then at an inclination of 75 degrees, the

l = 1,m = 0 mode has a very small amplitude and the l = 1 modes with m = ±1 are more

likely to be observed. Similarly, the l = 2,m = ±2 modes and l = 2,m = 0 modes are more

likely to be observed.

Both stars in KIC 9851944 rotate at an intermediate value, with v sin i ≈ 60 km s−1.

Even at this rotation rate, the rotational splitting may already start to deviate from the

above simple first order equation (Dziembowski & Goode 1992; Goupil et al. 2000; Suarez
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et al. 2006). Here we made an order of magnitude estimation of the second order effect by

interpolating the coefficients in Table 1 in Saio (1981) assuming a polytropic model with

n = 3 following Pérez Hernández et al. (1995). For the pure l = 1 p-mode in the observed

frequency range, this correction is ≈ 0.03 d−1. A similar estimation for the high order p-

modes can be made by using the equation 3.381 in Aerts et al. (2010). For the l = 1 and

l = 2 p-modes in the observed frequency range, we get similar results, changes of 0.02− 0.03

d−1 for the primary star. The distortion due to the centrifugal force also alters the oscillation

frequencies and it is also a second order effect. We neglect this effect in this analysis as well

as the similar effect from the tidal distortion of stars. Another effect of rotation is the mode

degenerate coupling (Goupil et al. 2000; Zwintz et al. 2014), e.g, between l = 0 and l = 2

modes if their frequencies are very close. For low radial orders, the effect is smaller than

≈ 1µ Hz = 0.086 d−1 at v ≤ 70 km s−1 (Goupil 2011). We also neglect this effect in the

analysis.

We plot the theoretical frequencies of unstable modes of l = 0, 1, 2 for the above men-

tioned representative models and the observed frequencies in Figure 5.14. Theoretical fre-

quencies of the primary star are from models of M1 = 1.70M� and M1 = 1.77M�. Similarly,

we show frequencies from models of M2 = 1.79M� and M2 = 1.86M� for the secondary star.

Radial, dipole and quadrupole modes are indicated by black, green and red dots, respectively.

Due to the extreme denseness of the theoretical frequencies, the rotational splittings are not

shown for the secondary star. The symbol size has been scaled to be proportional to the

expected mode visibility Snl according to the expressions given by Handberg & Campante
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(2011).
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Figure 5.14 A comparison of the observed independent frequencies (solid lines, extended as

dotted lines for comparison) with theoretical oscillation frequencies (symbols) from models.

Theoretical frequencies of the primary star are from models of 1.70 M� and 1.77 M� (lower

and upper mass limit) for two cases: (1) the frequencies corrected for the 1st order rotational

splitting (above the horizontal red line); (2) those without rotational splittings (below the

red line). The model frequencies of the secondary star are derived from models of 1.79 M�

and 1.86 M� (lower and upper mass limit). Note there are four or five models within the

1σ error box of radius with a fixed mass. Due to the extreme denseness of the modes of the

sub-giant secondary, only frequencies without rotational splitting are shown. Black dots are

radial modes. Green dots are l = 1 dipole modes, and l = 2 modes are indicated as red dots.

The symbol size is proportional to the theoretical predicted mode visibility (see text).
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The primary star is still on the main sequence, which shows a clear and sparse spectrum.

The fundamental to the 2nd or 3rd overtone radial modes are predicted to be unstable. The

frequencies above the horizontal red line have taken into account the 1st order rotational

splitting assuming that the mean rotational frequency Ω̄ is equal to the orbital frequency.

The secondary star has an instability range from the fundamental to the the 3rd overtone

radial mode. The highest two peaks f1 = 10.3997 d−1 and f2 = 10.1760 d−1 are likely to be

l = 1 or l = 2 modes of the secondary. Frequency peaks f18 = 19.1267 d−1, f29 = 19.4278 d−1

and f67 = 20.8235 d−1 are located only in the unstable range of the primary and probably

stem from the primary. f18 and f29 fall into possible range of the second overtone radial

mode. f12, f10 and f3 can be the fundamental radial mode of the primary or the second

overtone radial mode of the secondary. The high peak f4 at 5.0971 d−1 does not seem to

be explained by our unstable p-mode frequencies, and could be a g-mode. We assume the

observed frequencies are from l = 0, 1, 2, but it is possible that the l = 3 or even higher order

modes can also be observed. The range of unstable frequencies agrees roughly with the

observations. The theory predicts many more excited modes than the observations reveal,

but some observed modes are not predicted to be excited. We can see that even with the

constrained mass, radius and effective temperature, the mode identification is still difficult.

5.3.6 Conclusions

Thanks to the unprecedented light curves from the Kepler satellite, we are discovering more

eclipsing binaries with pulsating components. Eclipsing binaries and pulsating frequencies

are the only two sources where we can get accurate, model independent fundamental stellar
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parameters such as mass and radius. Pulsating eclipsing binaries with δ Scuti and γ Doradus

stars are the key to our improvement of understanding the mode excitation mechanisms in

these intermediate mass stars, and this advancement can only be made after we have a

statistically large sample of such systems. Here we add one more system to the list, KIC

9851944, two F stars in a circular orbit with a period of 2.1639 days. The two components

have similar masses and effective temperatures but very different radii. We try to match the

observations with models of different stellar physics and parameters. Both stars probably

show δ Scuti type p-mode pulsations as well as low frequencies pulsations. We made an

attempt to understand the general pulsational spectrum of δ Scuti stars within this mass

range. The observed pulsations can be explained by the low order p-modes of the primary

and the secondary or the g-mode and mixed modes of the secondary. This work is an effort

of preliminary seismic modeling of δ Scuti stars in eclipsing binaries using 1-D stellar models.

We note that even with the mass and radius constrained to 3.9% and 1.3%, respectively, the

mode identification for δ Scuti stars from single band photometry of Kepler is still inconclu-

sive. This is general problem for all δ Scuti stars. Accurate multicolor photometry and high

cadence data of line profile variations will help to overcome partially this difficulty. It is also

desirable to analyze the system with 2-D structure models taking into account the rotational

and tidal distortion. The real advancements call for better theoretical understanding of the

effects of convection, rotation, tidal interactions and non-linearity on pulsations, which are

still the frontiers of asteroseismology.
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5.4 KIC 8262223

5.4.1 Introduction

KIC 826223 (Kp=12.146, α2000=20:01:19.788, δ2000=+44:08:38.90) is included in the Kepler

Eclipsing Binary Catalog (Prša et al. 2011; Slawson et al. 2011). It is described as a semi-

detached eclipsing binary with an orbital period of 1.612 days, a near circular orbit, and a

high inclination (sin i = 0.97). The eclipse timing analysis of this system was performed by

Gies et al. (2012, 2015) and Conroy et al. (2014). The flat O − C diagram of the timings

indicates that this circular binary is not likely to have a nearby third companion. Gies et

al. (2012) also noticed a pulsation signal in near resonance with the orbit in the light curve.

Armstrong et al. (2014) estimated the effective temperatures of the primary and secondary

as Teff1 = 9325±428 K and Teff2 = 6791±642 K, respectively, based on their fit of the binary

spectral energy distribution (SED).
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5.4.2 Photometric and Spectroscopic Observations
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Figure 5.15 The de-trended short cadence light curve of KIC 8262223 during Quarter 4. The

lower panel shows the residuals after subtracting the best binary light curve model.

Simple Aperture Photometry (SAP) data (Data Release 23) from the Kepler satellite were

retrieved from the MAST Archive. There are 18 quarters (Q0-17) of long cadence data and

1 quarter (Q4) of short cadence data. The aperture contamination is lower than 0.7% in all

quarters except for Q12 (1.3%). The light curve shows deep eclipses, ellipsoidal variations
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and coherent pulsations at frequency about 65 d−1 as apparent in the short cadence data.

A sample of the short cadence light curve is shown in Figure 5.15. As the main pulsational

frequency is well above the Nyquist frequency (≈ 24 d−1) of long cadence data (30 minutes

sampling), these pulsations are essentially all cancelled out in the long cadence measure-

ments. Thus we used the long cadence data for binary light curve modeling and the light

curve residuals of short cadence data for pulsational analysis.

We also obtained ground-based spectra of moderate resolving power (R ≈ 6000) from

the R-C Spectrograph on Kitt Peak National Observatory (KPNO) 4-meter Mayall telescope

from 2010 to 2013 (Figure 5.16). More information about the instrument and spectra can

be found in Matson et al. (2016).

5.4.3 Spectroscopic Orbit and Atmospheric Parameters

The radial velocities (RVs) were determined following the same cross-correlation technique

described by Matson et al. (2016) and Guo et al. (2016). Two templates from atmospheric

model grids UVBLUE (Rodŕıguez-Merino et al. 2005) were cross-correlated with the observed

spectra to obtain the radial velocities presented in Table 5.6. The derived RVs were fitted to

get the orbital parameters (K1, K2, γ1, γ2, T0), where K1, K2 and γ1, γ2 are semi-amplitude

velocities and system velocities of the primary and secondary star, respectively; T0 is time

epoch of the primary minimum. We searched for a circular orbital solution (e = 0) and the

orbital period was fixed to the value from eclipse timing measurements in Gies et al. (2015)

as P = 1.61301476 days. We then used the tomography algorithm (Bagnuolo et al. 1994)

to reconstruct the individual component spectra of two stars. These spectra were compared
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with a grid of UVBLUE synthetic spectra and the best atmospheric parameters (Teff , log g,

[Fe/H] and v sin i) were determined from a grid search followed by a local optimization with

the Levenberg-Marquardt algorithm. To break the degeneracy in fitting five atmospheric

parameters, the v sin i values were initially estimated from the metal lines in five different

spectral sections and the log g value was fixed to the result from the binary modeling (see

next section). Note that the uncertainties were estimated from the covariance matrices, and

these can be somewhat underestimated. The procedures mentioned above are iterative, and

in each step the templates and RVs were updated from previous determinations. We adopted

the final values when the parameters converge.
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Table 5.6: Radial Velocities

Time Phase Vr(pri) O − C Vr(sec) O − C Observation
(BJD-2400000) (km s−1) (km s−1) (km s−1) (km s−1) Source
55369.9232 0.19 1.5 ± 1.7 -0.9 215.4 ± 4.3 0.4 KPNO
55732.8574 0.19 2.6 ± 1.7 0.4 213.5 ± 4.5 -3.3 KPNO
55815.8979 0.68 42.7 ± 1.9 0.2 -159.2 ± 5.9 -2.1 KPNO
56077.9534 0.14 6.2 ± 1.7 0.8 185.0 ± 4.7 4.2 KPNO
56078.7629 0.64 42.3 ± 2.4 2.0 -144.2 ± 7.0 -11.9 KPNO
56078.8440 0.79 42.0 ± 1.8 -1.2 -163.3 ± 5.7 1.9 KPNO
56078.9357 0.75 45.8 ± 1.9 1.6 -183.5 ± 5.6 -3.9 KPNO
56079.7925 0.28 9.3 ± 3.4 7.2 220.4 ± 10.7 -6.4 KPNO
56081.9642 0.63 34.8 ± 2.9 -4.2 -103.3 ± 6.4 15.5 KPNO
56082.8204 0.16 3.1 ± 1.8 -1.0 195.2 ± 4.7 0.9 KPNO
56082.8833 0.20 1.7 ± 1.7 -0.4 217.2 ± 4.7 -0.0 KPNO
56082.9468 0.23 0.6 ± 2.0 -0.8 227.5 ± 5.6 -1.2 KPNO
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Spectral disentangling (Hadrava1995) is another way to derive orbital parameters. For

spectroscopic binaries, we observe the linear combination of two component spectra with

different Doppler shifts. Given the radial velocities of the two stars and their mean flux

ratio, we can form a coefficient matrix A. Then we can separate the component spectra by

solving the linear inverse problem y = Ax, where y and x are vectors formed by concatenating

the observed composite spectra and the individual component spectra (see Hensberge at al.

2008). If the RVs used in the coefficient matrix are calculated from orbital parameters, we

can find the optimized orbital parameters by minimizing the χ2 differences of the observed

and synthetic composite spectra, |y−AX|2. We implemented this method with the FDBinary

code (Ilijic et al. 2004). Note that the code uses a downhill simplex optimizer and regrettably

does not provide uncertainty estimates.

The final orbital parameters are summarized in Table 5.7. The orbital parameters from

the two techniques agree very well (Figure 5.17). The results show that the system has a very

small mass ratio (q = 0.104), and the systemic velocities from fitting RVs of primary and

secondary (γ1, γ2) agree within uncertainties. Table 5.8 contains the optimal atmospheric

parameters. This binary consists of a hot A-type primary (Teff1 = 9128 K) and a much

cooler secondary (Teff2 = 7119 K). Both stars have metallicities slightly lower than solar.

The projected rotational velocity of the primary star (v sin i = 37 ± 13 km s−1) is a little

lower than the synchronized value at 50 km s−1 (see Table 5.9 in next section). The v sin i of

the secondary matches the synchronized value very well. Note that each pixel in our spectra

is equal to 26.25 km s−1 in velocity space, and we cannot reliably measure small rotational
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velocities (v sin i < 30 km s−1). In Figure 5.18, we show the reconstructed component spectra

of the two stars and the best matching model spectra. The mean flux ratio (F2/F1) in the

observed spectral range (≈ 4225 Å) is 0.21±0.02 which amounts to percentage contributions

of 82.6% and 17.4% for the primary and secondary, respectively.
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Table 5.7: Orbital Parameters

Parameters RVs Spectral Disentangling
T0(primary minimum) (HJD-2,400,000) 55690.5± 0.1 55690.605
K1 (km s−1) 21.4± 1.0 21.5
K2 (km s−1) 204.8± 3.2 201.4
γ1 (km s−1) 22.8± 0.6 ...
γ2 (km s−1) 25.1± 1.7 ...
e 0.0 0.0
rms1 (km s−1) . . . . . . . . . . . . . . . . . . . . . . . 2.6 ...
rms2 (km s−1) . . . . . . . . . . . . . . . . . . . . . . . 6.3 ...

Table 5.8: Atmospheric Parameters

Parameters Primary Secondary
Teff (K) . . . . . . . . . . 9128± 130 7119± 150
log g (cgs) . . . . . . . . 4.3a 3.5a

v sin i (km s−1) . . . 37± 13 35± 10
[Fe/H] . . . . . . . . . . . −0.05± 0.1 −0.05± 0.1
Flux Contribution 82.6% 17.4%
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Figure 5.16 The observed composite spectra of KIC 8262223. For clarity, the spectra at

orbital phases φ = 0.23 and 0.75 have been shifted upwards by 0.5 and 1.0, respectively.



172

     

-200

-100

0

100

200

300

V
r 
- 

γ

Phase

-20
-10

0

10

20

-0.5 0.0 0.5 1.0 1.5

Figure 5.17 Radial velocities (RVs) in km s−1 and circular orbital solutions of KIC 8262223.

The observed RVs of the primary and the secondary star from cross correlation are shown as

black crosses and red diamonds, respectively. The black and red solid lines are the best-fit

radial velocity curves for the primary and secondary, respectively. The lower panel shows

the corresponding residuals. The RV models from the spectral disentangling technique by

FDBinary are indicated as black and red dashed lines.
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Figure 5.18 The reconstructed individual spectra of the primary (upper) and secondary

(lower) of KIC 8262223. The best matching atmospheric models from UVBLUE are shown

as red spectra, and the corresponding parameters Teff(K), v sin i(km s−1), log g(cgs) and

[Fe/H] are labeled.

5.4.4 ELC Binary Models

We used the Kepler long cadence data to perform our light curve modeling. The preparation

of the raw data, which was detailed in Guo et al. (2016), includes de-trending and outlier
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removal. We divided the 18 quarters into eight sections (Q0−Q2, Q3− 4, Q5− 6, Q7− 8,

Q9− 10, Q11− 12, Q13− 14, Q15− 17) and fitted the light curve of each individually. The

standard deviations of the best fitting parameters from these eight datasets are adopted as

the final uncertainties.

We used the Eclipsing Light Curve (ELC) code by Jerome Orosz (Orosz & Hauschildt

2000) to model the binary light curve. The code implements the Roche model and synthesizes

the binary light curve and radial velocity curve by integrating the specific intensity and flux-

weighted RVs of each segment on the stellar surface.

We optimized the following fitting parameters: orbital inclination (i), temperature ra-

tio (temprat = Teff2/Teff1), filling factors (f1, f2) and time of primary minimum (T0) by

implementing the genetic algorithm PIKAIA (Charbonneau 1995). We set broad search

ranges for these parameters: i ∈ [50, 90](degrees), temprat ∈ [0.6, 0.9], f1, f2 ∈ [0.1, 0.8],

T0 ∈ [55431.7, 55433.3](HJD-2,400,000). The orbital period was fixed to 1.61301476 days

as found by Gies et al. (2015). The effective temperature of the primary was fixed to the

value from spectroscopy (9128 K) as it is well known that the light curve is only sensitive

to the temperature ratio. We assumed the binary has a circular orbit and the two com-

ponents have synchronized rotation as indicated from spectroscopy. The parameters mass

ratio (q = M2/M1), velocity semi-amplitude (K1) and systemic velocity (γ) were fixed to

values from spectroscopic orbital solutions as they have little affect on the light curve. The

gravity brightening coefficients (β) were fixed to the canonical values of 0.25 for radiative

atmospheres and 0.08 for convective atmospheres. Similarly, the surface bolometric albe-
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dos (l1, l2) were set to 1.0 and 0.5 for radiative and convective atmospheres, respectively.

However, the light curve residuals from the parameter settings above still show obvious vari-

ations. We found that by setting l2 as a free parameter the light curve fit is much better.

The optimal value of l2 is 0.22, which is much lower than the canonical value of 0.5. Note

Matson et al. (2016) also found a lower albedo (0.33) for the F stars in KIC 5738698. If we

let the albedo of the primary star (l1) vary, the best value is very close to 1.0, and the light

curve fit is not improved.
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Figure 5.19 Top panel: The phase-folded long cadence light curve of KIC 8262223 (dots)

in Quarter 4 and 5 and the best-fit model from ELC (red and green solid line) when the

bolometric albedo of the secondary star (l2) is allowed to vary. Middle and Lower panel:

The corresponding residuals without and with the Doppler beaming effect taken into account,

respectively.

Doppler boosting or beaming is a relativistic effect, in which the observer will receive a

higher photon rate from a star moving towards him or her, and vice versa. The fractional

change of photon rate is ∆nλ/nλ = fDBvλ/c, where vλ is radial velocity of the star and c is

speed of light. Thus, the key parameters are the mass and flux ratios. If the two stars have
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similar temperature, then the beaming effect will be canceled out if they have a mass ratio

of 1. For systems with a very small mass ratio, the Doppler beaming effect is expected to

play an important role. A measurement of the beaming amplitude from the light curve can

provide an independent estimation of the orbital parameters. This was performed in many

beaming binaries such as KOI-74, KOI-81 (van Kerkwijk et al. 2010) and KIC 11558725

(Telting et al. 2012). In the ELC code, the Doppler beaming effect is accounted for following

the treatment in van Kerkwijk et al. (2010). The beaming parameter fDB is estimated as

the wavelength average of xex/(ex − 1) in the Kepler passband, where x = hc/(λkT ). The

estimated values are 2.76 and 3.48 for the primary and secondary, respectively, and are fixed

in the fitting process. In Figure 5.19, we show the best light curve solution and corresponding

residuals with (Red) and without (Green) Doppler beaming. It can be seen in the bottom

panel that the residuals are more symmetric around the zero horizontal line if the beaming

effect is included.

In Table 5.9, we list the final model parameters of KIC 8262223. The parameters of

the primary are typical for a mid-A type ZAMS star (M1 = 1.94M�, R1 = 1.67R�, Teff1 =

9128K). The secondary has a very low mass (M2 = 0.20M�) and very discrepant radius

(R2 = 1.31R�) and effective temperature (Teff2 = 6849K). This suggests that this system

has gone through the binary evolution with mass transfer. The implications and possible

evolutionary scenarios are discussed in section 5.6.

The optimal effective temperature ratio (Teff2/Teff1) from fitting the light curve is 0.75, and

this gives Teff2 = 6849K which is≈ 300K cooler than that from spectroscopy (Teff2 = 7119K).
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This discrepancy can be explained by our adopted lower albedo l2 = 0.22. There is a

correlation between Teff2 and bolometric albedo l2. If we fixed l2 to the canonical value of

0.5 − 0.6, then the optimal Teff2/Teff1 value is much higher (0.78), which agrees well with

the spectroscopic result. As we cannot get a very good light curve fit with l2 fixed to 0.5,

we seem to have a dilemma. It is known that the bolometric albedo is difficult to pin point

and is usually treated as a free parameter. Sometimes even values as high as 2.46 are used

(e.g., star A in KIC 10661783; Lehmann et al. 2013). Note that the effective temperature of

KIC 3858884 star B from spectroscopy by Maceroni et al. (2014) is also ≈ 300K different

from that from the light curve solution. Thus, we think this minor discrepancy is not an

unexpected problem for our analysis.
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Table 5.9: Model Parameters

Parameters Solution
Period (days) 1.613014761

Time of primary minimum (HJD-2400000) 55432.522844± 0.000007
Mass ratio q = M2/M1 0.104± 0.002
Orbital eccentricity e 0.01

Orbital inclination i (degree) 75.203± 0.007
Semi-major axis a (R�) 7.45± 0.11
M1 (M�) 1.94± 0.06
M2 (M�) 0.20± 0.01
R1 (R�) 1.67± 0.03
R2 (R�) 1.31± 0.02
Filling factor f1 0.314± 0.003
Filling factor f2 0.672± 0.001
Gravity brightening, β1 0.251

Gravity brightening, β2 0.081

Bolometric albedo 1 1.01

Bolometric albedo 2 0.22
Beaming parameter 1 2.761

Beaming parameter 2 3.481

Teff1 (K) 91281

Teff2 (K) 6849± 15
log g1 (cgs) 4.28± 0.04
log g2 (cgs) 3.51± 0.06
Synchronous v sin i1 (km s−1) 50.6± 0.9
Synchronous v sin i2 (km s−1) 39.6± 0.6
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5.4.5 Pulsational Characteristics

Only the short cadence data can be used to study the pulsations of this system. We cal-

culated the Fourier spectrum of the light curve residuals with the Period 04 package (Lenz

& Breger 2005) with all eclipses truncated. The calculation was performed to the short

cadence Nyquist frequency (≈ 734 d−1). No significant peaks were found beyond 70 d−1. All

frequencies with S/N > 4 are reported in Table 5.10 and the Fourier spectrum is shown in

Figure 5.20. The uncertainties were calculated following Kallinger et al. (2008).

Almost all the pulsations are in the range of 50 − 65 d−1. There appears to be some

low amplitude peaks at 100 − 130 d−1 (not shown in Figure 5.20), which are exactly twice

the main pulsation range. We interpret these peaks as the harmonics of the main pulsations

rather than some high intrinsic pulsation frequencies. This indicates that the pulsations

are to some extent non-sinusoidal. The primary star contributes much more light (83%

in the wavelenth range of our spectra), and its fundamental parameters (M1 = 1.94M�,

R1 = 1.67R�, Teff1 = 9128K) also agree with those of a typical δ Scuti pulsator. It is, thus,

very likely that the pulsations stem from the primary. The pulsations at 50− 65 d−1 can be

well explained as high order (np ≈ 6, 7) radial and non-radial p-modes.

In the low frequency region, there are two peaks f20 = 1.2397 d−1 and f58 = 0.79928 d−1.

f20 is equal to twice of orbital frequency 2forb = 2× 0.61996 d−1 within uncertainties and is

likely the result of imperfect light curve fitting (e.g., ellipsoidal variations). f58 is probably

a g-mode.
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Figure 5.20 Top panel: The amplitude spectrum of the residual light curve of short cadence

data (Q4) with eclipses masked. Middle panel: The noise spectrum after subtracting 130

frequencies. The solid red curve represents the adopted noise level. Bottom panel: The 64

extracted significant frequencies with S/N > 4.0 as listed in Table 5.10 (black: independent

frequencies; red: combination frequencies).
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As the star is pulsating at relatively high radial orders, which are closer to the asymptotic

regime, we can expect to find some frequency regularities similar to those observed in solar-

like oscillators. Garćıa Hernández et al. (2015) found the signature of frequency regularities

in six δ Scuti stars in eclipsing binaries by analyzing the Fourier Transform (FT) of the p-

mode frequencies. These frequency patterns are close to the large frequency separation which

is related to the mean stellar density. We applied the same FT technique to the frequencies

in Table 5.10, and the Fourier spectrum is presented in Figure 5.21. The periodicity at

39.9µHZ= 0.5∆νobs is related to the large frequency separation. From the mean density of

the primary, we can deduce the expected large separation (∆ν) by using the linear relation

between log ∆ν and log ρ (Suárez et al. 2014; Garćıa Hernández et al. 2015). The expected

∆ν is 70.7 µHZ, which is similar to but smaller than the observed value ∆νobs = 2× 39.9 =

79.8 µHZ. Paparo et al. (2016a, b) found the signatures of the large frequency separation in 90

δ Scuti stars observed by CoRoT satellite, and except for showing regularities of ∆ν, some of

them show patterns which approximately agree with ∆ν±Ωrot or ∆ν±2Ωrot. If we adopt the

synchronous rotational frequency Ωrot = 5.2µHZ, the corresponding rotational splittings for

the high order p-modes are m(1−Cnl)Ωrot ≈ mΩrot, and m = ±1 and m = ±1,±2 for l = 1

and l = 2 modes, respectively. We thus conclude that the observed pattern ∆νobs agrees with

the theoretical large frequency separation with rotational effect taken into account. Indeed,

the highest peak in the Fourier spectrum in Figure 5.21 is at about 7.07µHZ which is only

slightly smaller than the orbital frequency forb = 7.176µHZ, and thus this regularity is likely

the result of rotational splitting.
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To check whether the pulsation range can be explained by the non-adiabatic theory, we

model the evolution of some single non-rotating stellar models with MESA (Paxton et al.

2011, 2013) and calculate their pulsation frequencies in the range of 20−70 d−1 with GYRE

(Townsend & Teitler 2013). We set the mixing length parameter αMLT to 1.8 and used

the OPAL opacity tables (Iglesias & Rogers 1996). Solar mixtures in Grevesse & Sauval

(1998) were adopted for the assumed solar composition. The results are presented in Figure

5.22. The pulsation modes (l = 0, 1, 2) from the equilibrium model with M = 1.94M�,

R = 1.67M�, Y = 0.28, and Z = 0.02 are all stable (η < 0). However, we note that the peak

of the instability parameter η (the normalized growth-rate defined in Stellingwerf 1978) is

at 60 − 65 d−1 which roughly agrees with the observed unstable range 50 − 65 d−1. Note

that modes from a similar but slightly less massive model with M = 1.79M�, R = 1.67R�,

Y = 0.28, and Z = 0.02 can produce unstable p-modes (positive η) in the range of 55− 60

d−1. We have to be cautious in interpreting the above analysis based on single star evolution,

because the real inner structure of the δ Scuti type primary may have different pulsation

properties due to past mass transfer in the binary.
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Figure 5.21 The Fourier spectrum of the reported oscillation frequencies in Table 4. The

black and red lines are the results of using 30 and 60 highest frequencies, respectively. The

highest peak at 7.067µHZ is likely the result of rotational splitting. The pattern at 39.89µHZ

is related to the large frequency separation ∆ν. Please see text for more details.
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Figure 5.22 The stability parameter η of p-modes (l = 0, 1, 2) of two models for the primary

star calculated with MESA and GYRE. The equilibrium models have the following param-

eters: (a) M1 = 1.79M�, R1 = 1.66R�; (b) M1 = 1.94M�, R1 = 1.67R�. Both models

have the same Z = 0.02 and Y = 0.28. Modes of Model (a) are unstable (positive stability

parameters) in the frequency range 53− 62 d−1 and all modes of model (b) are stable. The

observed frequencies of KIC 8262223 are overplotted and re-scaled for clarity.
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Table 5.10: Significant oscillation frequencies

Frequency (d−1) Amplitude (10−3) Phase (rad/2π) S/N Comment
f1 64.43390± 0.00010 1.319± 0.020 0.896± 0.007 114.5
f2 57.17794± 0.00016 0.918± 0.022 0.313± 0.011 72.3
f3 61.43616± 0.00018 0.782± 0.021 0.190± 0.012 64.4
f4 53.64792± 0.00024 0.620± 0.022 0.345± 0.016 49.0
f5 51.04548± 0.00026 0.565± 0.021 0.281± 0.017 46.0
f6 54.78183± 0.00028 0.540± 0.022 0.368± 0.019 42.5
f7 63.28439± 0.00028 0.497± 0.020 0.516± 0.019 42.2
f8 60.31265± 0.00040 0.366± 0.021 0.949± 0.027 29.7
f9 61.19863± 0.00040 0.363± 0.021 0.896± 0.027 29.8
f10 49.08047± 0.00039 0.357± 0.020 0.218± 0.027 30.1
f11 60.19302± 0.00052 0.284± 0.021 0.669± 0.035 22.9
f12 63.82187± 0.00049 0.281± 0.020 0.947± 0.033 24.1
f13 54.88585± 0.00059 0.255± 0.022 0.607± 0.040 20.0
f14 62.43309± 0.00063 0.226± 0.020 0.717± 0.042 18.9
f15 53.54042± 0.00071 0.212± 0.022 0.134± 0.048 16.7
f16 57.77610± 0.00071 0.210± 0.022 0.885± 0.048 16.6
f17 50.32422± 0.00071 0.201± 0.021 0.513± 0.048 16.6
f18 55.94001± 0.00078 0.193± 0.022 0.050± 0.053 15.2
f19 50.97786± 0.00079 0.185± 0.021 0.755± 0.053 15.1
f21 64.47378± 0.00079 0.172± 0.020 0.584± 0.053 14.9
f22 61.55406± 0.00086 0.167± 0.021 0.746± 0.058 13.7
f23 61.46043± 0.00087 0.165± 0.021 0.255± 0.059 13.6
f24 58.42108± 0.00097 0.153± 0.022 0.494± 0.066 12.2
f25 63.66929± 0.00096 0.144± 0.020 0.252± 0.065 12.3
f26 49.85027± 0.00100 0.143± 0.021 0.713± 0.067 11.9
f27 58.42454± 0.00108 0.138± 0.022 0.593± 0.073 10.9
f28 60.23810± 0.00108 0.135± 0.021 0.568± 0.073 10.9
f29 59.09553± 0.00117 0.127± 0.021 0.757± 0.079 10.1
f30 56.62486± 0.00120 0.126± 0.022 0.992± 0.081 9.9
f31 60.28838± 0.00126 0.116± 0.021 0.751± 0.085 9.4
f32 64.52926± 0.00119 0.114± 0.020 0.752± 0.080 9.9
f33 52.27648± 0.00130 0.114± 0.021 0.204± 0.088 9.1
f34 50.42825± 0.00130 0.111± 0.021 0.808± 0.088 9.1
f35 54.50442± 0.00142 0.105± 0.022 0.515± 0.096 8.3
f36 63.20290± 0.00146 0.096± 0.020 0.717± 0.099 8.1
f37 56.85719± 0.00165 0.091± 0.022 0.197± 0.111 7.2
f38 59.76651± 0.00174 0.084± 0.021 0.690± 0.118 6.8
f40 57.75009± 0.00199 0.075± 0.022 0.430± 0.134 5.9
f41 61.62167± 0.00207 0.069± 0.021 0.177± 0.139 5.7
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f42 60.36814± 0.00215 0.068± 0.021 0.742± 0.145 5.5
f43 51.07405± 0.00215 0.068± 0.021 0.854± 0.145 5.5
f44 64.40949± 0.00205 0.067± 0.020 0.325± 0.138 5.8
f45 61.36160± 0.00222 0.065± 0.021 0.574± 0.150 5.3
f46 65.66649± 0.00212 0.063± 0.019 0.513± 0.143 5.6
f47 66.96511± 0.00209 0.062± 0.019 0.258± 0.141 5.7
f48 54.37597± 0.00243 0.062± 0.022 0.028± 0.164 4.9
f49 51.11913± 0.00237 0.061± 0.021 0.195± 0.160 5.0
f50 60.16181± 0.00242 0.060± 0.021 0.567± 0.163 4.9
f51 60.34386± 0.00242 0.060± 0.021 0.157± 0.163 4.9
f52 58.97922± 0.00247 0.060± 0.021 0.686± 0.167 4.8
f54 55.81344± 0.00262 0.057± 0.022 0.227± 0.177 4.5
f55 58.14367± 0.00266 0.056± 0.022 0.960± 0.179 4.5
f56 59.80451± 0.00275 0.054± 0.021 0.532± 0.185 4.3
f58 0.79928± 0.00277 0.052± 0.021 0.658± 0.187 4.3
f59 54.28582± 0.00294 0.051± 0.022 0.767± 0.199 4.0
f60 48.03643± 0.00270 0.051± 0.020 0.140± 0.182 4.4
f61 59.63633± 0.00291 0.051± 0.021 0.109± 0.197 4.1
f62 62.25437± 0.00288 0.049± 0.021 0.425± 0.194 4.1
f63 64.90535± 0.00281 0.048± 0.020 0.340± 0.190 4.2
f64 65.72024± 0.00282 0.047± 0.019 0.585± 0.190 4.2
f20 1.23967± 0.00079 0.183± 0.021 0.027± 0.053 14.9 2forb
f39 58.09686± 0.00194 0.077± 0.022 0.993± 0.131 6.1 f37 + 2forb
f53 49.18796± 0.00242 0.058± 0.020 0.677± 0.163 4.9 f34 − 2forb
f57 62.58379± 0.00267 0.053± 0.020 0.528± 0.180 4.4 f36 − forb
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5.4.6 Evolution

The primary star of KIC 8262223 appears like a normal A-type dwarf near the zero age

main sequence (ZAMS) (slightly overluminous), while the low-mass secondary is noticeably

over-sized and over-luminous. The classical scenario for the formation of this type of cool

Algol system involves the mass transfer (probably case B) from the original massive primary

(donor) to the original less massive secondary, leading to a mass reversal (Paczynski 1971;

Nelson & Eggleton 2001; Eggleton & Kiseleva- Eggleton 2002).

KIC 8262223 is likely to evolve into a typical EL CVn system, which consists of a nor-

mal A- or F-type dwarf and a low mass (≈ 0.2M�) helium white dwarf precursor (pre-He

WD). Maxted et al. (2014) presented 17 EL CVn systems discovered by the WASP survey.

KIC 8262223 closely resembles the cool Algol system KIC 10661783 described by South-

worth et al. (2011) and Lehmann et al. (2013). The latter authors also discussed several

similar systems such as AS Eri (Mkrtichian et al. 2004) and V228 (Kaluzny et al. 2007).

Sarna et al. (2008) found that a system with similar initial masses and slightly longer pe-

riod (M10 = 0.88M�,M20 = 0.85M�, P = 1.35d) can evolve to the current state of V228

(M2 = 0.20M�,M1 = 1.51M�, P = 1.15d) through non-conservative case B mass transfer.

For better comparison, we list the parameters of four systems KIC8262223, KIC10661783,

AS Eri, and V228 in Table 5.11. All these binaries consist of a low mass secondary (≈ 0.2M�)

and may have similar evolutionary history as detailed below.
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Table 5.11: Fundamental

Name M1 M1 R1 R2 Teff1 Teff1 Period Pulsation Remark
(M�) (M�) (R�) (R�) (K) (K) (days) (d−1)

KIC8262223 1.94 0.20 1.67 1.31 9128 6849 1.61 50− 65 detached
KIC10661783 2.05 0.20 2.56 1.12 7760 5980 1.23 20− 30 detached
AS Eri 1.92 0.21 1.50 1.15 7290 4250 2.66 ≈ 60 semi-detached
V228 1.51 0.20 1.36 1.24 8070 5810 1.15 ... semi-detached
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Chen et al. (2016) found that EL CVn type binaries can result from non-conservative

binary evolution with long-term stable mass transfer between low-mass stars and that avoided

a rapid common-envelope evolution. They did thorough simulations with the MESA code to

analyze the evolution channel of EL CVn stars from low mass progenitors (M10 ∈ [0.9, 2.0]M�

and q0 = M10/M20 ∈ [1.1, 4.0]). The parameters of the secondary star of KIC 8262223

(R2/a = 0.176, Teff2 = 6849K) fit their R2/a − Teff2 relation for pre-He WD very well (see

their Fig. 9). They also found a tight correlation between orbital periods and WD masses

as shown in their Fig. 10. Our observed values (P = 1.6d, M2 = 0.20M�) also nicely match

their theoretical relations. According to their Figure 7, the pre-He WD in KIC 826223 with

a mass of 0.2M� has an envelope mass of 0.02M�.

To form EL CVn stars from two low mass progenitors, the initial orbital period has to

be slightly longer than ‘the bifurcation period’ (Pb) between the contact and non-contact

systems. The mass donor will evolve to the cooler, less luminous part of the H-R diagram

when mass transfer starts and eventually enter into a long-lived phase at nearly constant

luminosity (pre-He WD phase). The donor in systems with shorter periods (P < Pb) will

evolve to a state of very low luminosity, and the systems will experience a common envelope

evolution or merger.

Due to the uncertainties in the treatment of mass loss and angular momentum loss of bi-

nary evolution, we do not attempt to find a best matching evolution history for KIC 8262223.

Instead, we show that this binary as well as other binaries in Table 5.11 can be qualita-

tively explained by the aforementioned formation channel. We used the binary module of
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MESA (v7624) (Paxton et al. 2011, 2013) and evolved two systems: (1) M10 = 1.35M�,

M20 = 1.15M� and P0 = 2.89 d; (2) M10 = 1.0M�, M20 = 0.9M� and P0 = 3.0d. The

metallicities were set to the solar value (Z = 0.02) and initial helium abundances were fixed

to Y = 0.28. The evolutionary tracks were assumed to be non-conservative. Following the

assumptions in Chen et al. (2016), half of the mass lost from the vicinity of the donor is

accreted by the gainer while the other 50% leaves the system as a fast wind, carrying away

the same angular momentum of the donor.

The evolutionary paths are shown in the H-R diagram in Figure 5.23. The black and red

tracks are for the donor and gainer in model (1), respectively. In Figure 5.24 we show the

evolution of parameters of model (1). The system starts with an orbital period of 2.89 d,

and the two stars follow their single star evolutionary tracks and the orbit slightly shrinks.

The mass transfer begins when the primary evolves to the sub-giant stage and its radius

reaches its Roche lobe (at t = 3.32 Gyr, marked by the filled circles). During the mass

transfer, the radius of the donor is the same or slightly larger than the Roche lobe (to a few

percent). The orbital period gets shorter and the system shrinks until the two stars have

equal masses (t = 3.85 Gyr, marked by the filled triangles), after which the orbit begins

to expand. At an age of 4.18 Gyr as indicated by the filled stars, the mass transfer stops.

At the same time, the radius of the donor star reaches a maximum, and it then begins to

contract, cool, and evolve to a He WD precursor. The system ends up with parameter values

M1 = 0.218M�,M2 = 1.716M�, and P = 3.59d.

We also present the evolution of the initial primary and secondary star (gray and light
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red lines, respectively) of model (2) in Figure 5.23. The filled circles in gray and light

red indicate the onset of mass transfer. The final status of this system has parameters of

M1 = 0.20M�,M2 = 1.30M�, P = 1.06d.

We have over-plotted the observed positions of the four systems mentioned above in the

H-R diagram in Figure 5.23. The low mass secondary which was the previous mass donor is

indicated by black open symbols. The mass gainers evolve along the red tracks to the upper

left and arrive at the observed locations of the A- or F-type dwarfs (red open symbols). For

KIC 8262223, the secondary seems to be a star that has just finished its mass transfer and

is contracting (i.e., from filling its Roche lobe to under-filling its Roche lobe). It may evolve

to an EL CVn star after further contraction.



193

4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6
Log Teff

-0.5

0.0

0.5

1.0

1.5

L
o

g
 L

/L
s
u
n

KIC8262223

KIC10661783

AS Eri

V228

M10=1.35

M20=1.15

P=2.89d

M10=1.0

M20=0.9

P=3.0d

Figure 5.23 Evolution tracks for two binary models in the H-R diagram. Model (1): M10 =

1.35M�,M20 = 1.15M�, P = 2.89d. Model (2): M10 = 1.0M�,M20 = 0.9M�, P = 3.0d.

The evolutionary tracks for the initial primary and secondary of model (1) are shown as

red and dark solid lines, respectively. The corresponding tracks for models (2) are indicated

as gray and light red lines. The locations of four cool Algols in Table 5.11 are shown as

open symbols. Three moments in the evolution are marked for model (1): the onset of mass

transfer (filled circle), orbital period reaches minimum (filled triangle) and the end of mass

transfer (filled star). For model (2), only the onset of mass transfer is labeled.
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It is interesting to note that the dwarf stars in these systems are often pulsating (all but

V228, which has a mass too low to be a δ Scuti pulsator). As can be seen in Table 5.11,

these systems can pulsate at low (20− 30 d−1) as well as high frequencies (50− 60 d−1). It

is known that the unstable range of pulsations will vary as the star evolves off the ZAMS.

For example, for a δ Scuti star with M = 1.8M�, the p-modes np = 4− 7 (45− 60 d−1) are

unstable for young models close to ZAMS. The unstable range moves to 5−25 d−1 for models

near TAMS which are low order p-modes and g-modes (Dupret 2002). Asteroseismology has

the potential of determining the ages of the δ Scuti pulsators in these EL CVn binaries.

Not only the dwarfs, but the pre-He WD precursor can also show pulsations. And these

pulsations enabled the discovery of a thick hydrogen envelope on the pre-He WD J0247-25B

(Maxted et al. 2013). More information can be extracted from these pulsations, which may

lead to great advancements in our understanding of the evolution of low mass close binaries.
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Figure 5.24 The evolution of a close binary system with initial masses M10 = 1.35M�,

M20 = 1.15M� and initial period P = 2.89 days. The parameters mass (M), semi-major

axis (a), period (P ), effective Temperature (Teff), and radius (R) are shown as a function

of time (t). The initial more massive star (donor) is indicated as black solid line and the

mass gainer is shown in red. The vertical dashed lines label three important moments in the

evolution: the onset of mass transfer (filled circle), orbital period reaches minimum (filled

triangle), and the end of mass transfer (filled star). Please see text for more details.
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5.4.7 Conclusions and Prospects

Utilizing the accurate Kepler photometric data and our ground-based spectroscopic data, we

determined the fundamental parameters of KIC 8262223, an eclipsing binary system with

an orbital period of 1.6 days which contains an A-type dwarf and an oversized low mass

secondary star. The light curve shows high frequency pulsations at about 60 d−1. These δ

Scuti type pulsations are likely from the primary star and can be explained as radial and non-

radial p-modes. We discussed possible evolutionary scenarios and showed that this system

and several other very similar binaries can be explained by the non-conservative evolution

of close binaries with low mass progenitors as detailed in Chen et al. (2016). KIC 8262223

also poses some challenges to our non-adiabatic theory of stellar pulsations as the modes

calculated from the equilibrium model which match the observed modes of the primary are

stable. A future spectroscopic follow up covering the full orbit could help pin point accurate

masses and rotational alignment.

Asteroseismic modeling has not yet been applied to δ Scuti stars in pulsating Algols

(oEAs) due to the complex nature of these systems. As a prerequisite, it is possible to

identify the pulsation modes through high cadence and high resolution spectroscopy. The

eclipse mapping method (Reed et al. 2005; B́ıró & Nuspl 2011) is also promising but still

awaits application to a real object. Several hundreds of δ Scuti variables are already detected

by the Kepler satellite, and future missions like TESS will provide more systems. A complete

analysis of their pulsational properties will require a better understanding of close binary

tidal interactions and binary evolution.
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5.5 Other δ Scuti and γ Doradus EBs

The two systems KIC 9851944 and KIC 8262223 are among the 41 eclipsing binaries for which

we started the ground-based spectroscopic follow-up observations. Among these, we briefly

summarize the characteristics of 10 δ Sct or γ Dor pulsating eclipsing binaries in Table

5.12. The effective temperatures are taken from Armstrong et al. (2014). We then show

their light curves and oscillation spectra (Figure 5.25 − 5.34) calculated from the residuals

after subtracting a binned model light curve. The detailed analysis of their light curves

and spectra is still in process. Descriptions of each system are presented in the captions.

The spectroscopic orbits were derived for most of these systems and will be presented by R.

Matson (2016, in preparation).
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Figure 5.25 The light curve and oscillation spectrum of KIC 4851217 calculated by using

the short cadence data. The pulsation range is from 15 to 21 d−1 with the highest pulsation

frequency at 19.09 d−1.
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Figure 5.26 The light curve and oscillation spectrum of KIC 7368103. Only long cadence

data are available, but the super-Nyquist frequencies (> fNyquist ∼ 24 d−1) can be identified

following the method in Murphy et al. (2012). The arrows mark the real frequencies, and the

corresponding aliases are symmetric to the Nyquist frequency indicated by the red dashed

line. The highest pulsation frequency occurs at about 28.58 d−1.
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Figure 5.27 The light curve (short cadence) and oscillation spectrum of KIC 8553788. The

high frequency oscillations can only been seen the short cadence data. Most of the pulsations

occur over the frequency range of 40 − 60 d−1. The strongest pulsation has a frequency of

58.26 d−1. Both the binary light curve and pulsation spectrum resemble those of KIC 8262223

discussed in the last section. It is thus possible that KIC 8553788 is an oscillating Algol.
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Figure 5.28 The light curve (short cadence data) and oscillation spectrum of KIC 9159301.

The three strongest pulsations occur at frequencies of f1 = 27.36, f2 = 28.25, f3 = 26.87 d−1,

which are in the decreasing order of amplitude. A small mass ratio q = M2/M1 ≈ 0.25 is

derived from RVs. The secondary star has a low effective temperature (Teff ≈ 3000 − 4000

K).
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Figure 5.29 The light curve and oscillation spectrum of KIC 10610109. The two highest

pulsations are at 42.80 and 32.09 d−1. The two maxima at the quadrature phases have very

different amplitudes, which is probably due to the O’Connell effect, i.e., long-lived starspots

(see also Figure 1.36 in Gies et al. 2012).
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Figure 5.30 The light curve and oscillation spectrum of KIC 10686876. The three strongest

pulsations have frequencies of 23.08, 21.03, and 21.46 d−1. There are also a series of peaks

with equal spacings due to the imperfect subtraction of the binary light curve.
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Figure 5.31 The light curve and oscillation spectrum of KIC 12071006. The dominant pul-

sation has a frequency of 15.156 d−1.
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Figure 5.32 The light curve and oscillation spectrum of KIC 10736223. The frequency peaks

at ∼ 20 − 30 d−1 are due to pulsations. The arrows mark the real frequencies, and the

corresponding aliases are symmetric to the Nyquist frequency indicated by the red dashed

line. The equally spaced frequencies at ∼< 11 d−1 (and their reflections at about > 39 d−1)

are due to the imperfect removal of the binary light curve.
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Figure 5.33 The light curve and oscillation spectrum of KIC 9592855. Both γ Dor type

low-frequency peaks at around 2.23 d−1 and δ Scuti type high frequencies are present.
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rš
a
,
A

.,
W

el
sh

,
W

.
F

.,
et

a
l.

2
0
1
1
,
A

J
,
1
4
2
,
1
6
0

W
il
so

n
,
R

.
E

.
&

D
ev

in
n
ey

,
R

.
J
.
1
9
7
1
,
A

p
J
,
1
6
6
,
6
0
5

KI
C

10
48

64
25

35
2

35
4

35
6

35
8

36
0

36
2

BJ
D

-2
45

50
00

.0

5.
65

5.
60

5.
55

5.
50

5.
45

Relative Magnitude

Figure 5.34 The light curve and oscillation spectrum of KIC 10486425. The power spectrum is

taken from Aliçavuş & Soydugan (2014). The pulsation are of γ Dor type and the dominant

pulsation has a frequency of about 1.319 d−1. This binary is probably a triple system

suggested from spectroscopy.
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5.6 Frequency Regularities in δ Scuti Stars

Figure 5.35 Evolution of oscillation frequencies from ZAMS to post-MS for a 1.8M� star, with

Z = 0.018, Y = 0.28, fov = 0.005. The upper panel shows the radial (l = 0, diamond) and

dipole (l = 1, orange/red dots) modes, the lower panel shows the radial (l = 0, diamond) and

quadruple (l = 2, green/blue dots) modes. The corresponding radial orders (n) are labeled

for p-modes (pn), g-modes (gn) and f-modes (only for l = 2). The filled symbols, red dots,

and blue dots indicate unstable modes of l = 0, 1, 2, respectively. Due to the denseness of

high order g-modes, the calculated frequencies less than ≈ 2 d−1 are not reliable.
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Figure 5.36 The evolution of oscillation frequencies from near TAMS to post-MS for a 1.8M�

star. Note the extreme denseness of modes. The upper panel shows the radial (l = 0,

diamond) and dipole (l = 1, orange/red dots) modes, the lower panel shows the radial

(l = 0, diamond) and quadruple (l = 2, green/blue dots) modes. The filled symbols, red

dots and blue dots are unstable modes of l = 0, 1, 2, respectively. Due to the denseness of

high order g-modes, the calculated frequencies less than ≈ 5 d−1 are not reliable.

We show the evolution of pulsational frequencies of l = 0, 1, 2 modes of a 1.8M� star from

Zero Age Main Sequence (ZAMS) to post-MS phases in Figures 5.35 and 5.36. A similar

diagram can be found in Dupret (2002). These modes suffer from less cancellation effects

in broadband photometry like that from Kepler, and thus are most likely to be observed.
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The stellar structure models are calculated from MESA with solar metallicity, overshooting

parameter fov = 0.005, and helium fraction Y=0.28. The pulsating frequencies are calculated

with GYRE (Townsend & Teitler 2013) in the non-adiabatic mode.

In Figure 5.35, the star evolves upwards from the bottom of the plot at ZAMS (0.017

Gyr). The fundamental radial mode (p1) and 1st overtone radial mode (p2)(diamonds) have

frequencies around 21 d−1 and 27 d−1, with a frequency separation of 6 d−1 (this separation

is essentially constant as we move to higher frequency). As the star slowly expands, the

frequencies of radial modes decrease monotonically, forming the inclined diamond ridges. At

about 1.3 Gyr, hydrogen in the core is exhausted as the star reaches the Terminal Age Main

Sequence (TAMS). After TAMS, as mixed modes appear, the spectrum becomes extremely

dense (Fig. 5.36).

As the behaviors of radial modes are the simplest, we can compare the position of the

l = 1 and l = 2 modes with the radial ones to get some insight into the relative positions

of different modes. For most of the time on main sequence (upper panel in Fig. 5.35), the

positions of l = 1 dipole modes (orange p1 and p2 dots) are very close to radial modes (black

p1 and p2 diamonds) at low radial order. The exceptions due to avoided crossings happen

at advanced stages only for very short time intervals. As we move to higher frequency, the

l = 1 modes (orange p3 dots) move gradually to the middle of two consecutive l = 0 diamond

ridges (p3 and p4). Similarly, in the lower panel of Figure 5.35, we can often observe two

close l = 0 (diamonds) and l = 2 modes (green dots) at a wide range of frequencies.

All the above descriptions support the argument that we can often observe regular fre-
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quency separations in δ Scuti stars. The theoretical mode frequencies in Figure 5.35 and

5.36 are calculated from non-rotating stellar structure models and are very simplified. δ

Scuti stars usually have fast rotation and the rotational splitting and rotation generated

modes can greatly alter the spectrum. However, the regular patterns can be preserved even

with fast rotation (Reese et al. 2008). Breger et al. (2009) proposed a method to search

for regularities by observing the frequency difference histogram. Handler et al. (1997) and

Garćıa Hernández et al. (2009, hereafter GH09) searched for regularities by performing a

Fourier transform of the observed p-mode frequencies, and the latter authors also assumed

all frequencies have amplitudes of unity (hereafter, the FT method). Maceroni et al. (2014)

applied the method of Breger et al. (2009) to the pulsational frequencies of the eclipsing

binary KIC 3858884 and identified the position of the fundamental radial mode of the sec-

ondary component. Recently, Garćıa Hernández et al. (2015, hereafter GH15) applied the

FT method to δ Scuti stars in seven systems which have accurately determined masses and

radii (six eclipsing binaries and the angular resolved star Rasalhague), and they found reg-

ular frequency patterns in all of them (see Figure 5.37). The regular frequency spacings

are found to be related to the large frequency separation. They also confirmed that the

large frequency separation follows a linear relation with the logarithm of the mean density

as shown by Suárez et al. (2014), and this relation seems to be independent of rotational

velocity.
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Figure 5.37 Left column: The observed oscillation spectrum of three δ Scuti stars in eclipsing

binary system. Right column: The corresponding Fourier spectrum of p-mode frequencies.

The frequency regularities that agree with mean densities are labeled by the vertical red

lines.
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Figure 5.38 The lower right panel shows the oscillation spectrum of KIC 4851217. The upper

left panel presents the Fourier spectrum of the p-mode frequencies. A regularity of 2.8 d−1

is marked by the arrow.

We applied the FT method to the independent p-mode frequencies of KIC9851944, and
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although there seems to be a regularity of 2.3 d−1, which is close to the spacing of consecutive

radial modes of the secondary star (2.4 d−1). For KIC 4851217, a frequency spacing of about

2.8 d−1 was found from preliminary analysis.

Figure 5.39 The observed frequency spacing (labeled as ∆ν) and mean densities (ρ̄) of nine

δ Scuti stars. Diamonds indicate the seven δ Scuti stars in GH15, and the red line is the

linear fit from the same paper.

The observed frequency regularities in δ Scuti stars (7 systems from GH15, with KIC

9859144 and KIC 4851217) are shown in Figure 5.39 as a function of the mean density. Al-
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though the result of KIC 4851217 needs further refinement, the observed frequency spacings

seem to follow the relation ∆ν ∝ √ρ very well.

Paparo et al. (2016a, b) analyzed the Fourier spectrum of a large sample (∼ 90) of δ

Scuti stars, and found regular spacings in the majority of them (77). The observed frequency

regularities (∆νobs) scale with mean stellar densities but can be affected by rotation (Figure

5.40), so that ∆νobs can be close to ∆ν ±Ω or even ∆ν ± 2Ω. Castañeda & Deupree (2016)

calculated theoretical oscillation frequencies using their 2-D stellar models for a series of δ

Scuti stars with rotation, and found that the large separation scales approximately with the

root mean density regardless of rotation. They essentially confirmed the former discoveries

from more realistic calculations.
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Figure 5.40 The observed frequency spacing (labeled as ∆ν) and mean densities (ρ̄) of ∼ 90

δ Scuti stars observed by CoRoT. The figure is taken from Paparo et al. (2016b).
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CHAPTER 6

Heartbeat Stars

This chapter discusses the heartbeat stars, i.e., a class of eccentric binaries with tidally

induced oscillations. It is the direct application of the linear forced oscillation theory dis-

cussed in Chapter 3. After a review of their properties and light curves in section 6.1 and

6.2, the details of observations and modeling of two particular heartbeat stars, KOI-54 and

KIC 3230227 are contained in section 6.3 and 6.4. The preliminary results of another four

systems are presented in section 6.5.
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6.1 Overview of Heartbeat Stars

RV monitoring of Kepler HB stars 17
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Figure 6. Orbital eccentricity vs. orbital period. The 19 HB systems with orbits measured here are shown in red. In the top panel we
show in gray Kepler EBs where the eccentricity was derived through analysis of the eclipse light curves (from Prsa et al. in prep.). This
panel shows how the HB stars are typically positioned at the top envelope of the eccentricity-period distribution. In the bottom panel
we add all known HB stars with orbits measured using RVs and P < 200 d (see legend and Table 6). The dashed gray lines mark an

eccentricity-period relation of e =
√

1 − (P0/P )(2/3), which is the expected functional form assuming conservation of angular momentum.

The two curves use P0 of 4, 7, and 11 d, showing that it is difficult to use a single curve to match the upper envelope of the distribution
throughout the entire period range.
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Figure 6.1 The eccentricity and orbital period of Kepler eclipsing binaries (gray dots) and

19 heartbeat stars (red dots); taken from Shporer et al. (2016).

The heartbeat stars (HBs), named after the resemblance between their light curves and

electrocardiograms, are binary or multiple systems with very eccentric orbits. The HBs that

have been studied in detail include the late B stars in Maceroni et al. (2009), A or F stars in

Handler et al. (2002), Welsh et al. (2011), Hambleton et al. (2013), Smullen & Kobulnicky

(2015) and red giant stars in Beck et al. (2014). Recently, Shporer et al. (2016) presented

the spectroscopic orbits for 19 single-lined HBs. The Kepler eclipsing catalog1 includes over

1http://keplerebs.villanova.edu/
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150 of these stars with the flag ‘HB’. We show the distribution of eccentricity (e) and orbital

period (P ) for Kepler eclipsing binaries and the 19 HBs monitored in Shporer et al. (2016)

in Figure 6.1. Note that the HBs seem to outline the upper envelope of the e− P diagram.
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Figure 6.2 Distribution of orbital period (upper panel) and effective temperature (lower

panel) for 150 HBs in Kepler eclipsing binary catalog.

The distributions of period and Teff of 150 HBs are shown in Figure 6.2. The effective

temperatures are taken from Armstrong et al. (2014). The majority of HBs seem to have

orbital periods shorter than 30 days. Their range of effective temperatures (∼ 5000 − 7500

K) suggests that most of them are of spectral type earlier than G (mostly G, F, and A types).
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Figure 8: The panels show the Kepler phase-folded light curve (blue; left Y-axis) and the phase-folded RV curve model (red; right Y-axis)
with periastron at phase 0.5, for KID 4659476, KID 5017127, KID 5090937, KID 5790807, KID 58181706, KID 5877364, KID 5960989, and
KID 6370558. In each panel the title lists, from left to right, the KIC ID, Teff (K), log g, P (d), K (km s−1), and e. The RV measurements
are overplotted in black, including error bars although in some panels the markers are larger than the error bars. The Kepler light curves
shown here were derived by applying a running mean to the Kepler data, followed by binning with a bin size of 0.0002 in phase.

Figure 6.3 The Kepler light curves (red) and radial velocity curves (blue) of a sample of

heartbeat stars; taken from Shporer et al. (2016).
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Figure 6.3 displays the light curves and radial velocity (RV) curves of 8 single lined HBs,

taken from Shporer et al. (2016). The title of each panel lists, from left to right, the KIC ID,

Teff (K), log g, orbital period (d), semi-amplitude of RVs (K in km s−1), and eccentricity. The

light curves usually show a peak or ‘heartbeat’ at periastron passage (zero phase in RVs), and

sometimes eclipses are present (e.g., KIC 5790807). The brightness increase at periastron is

the result of tidal stellar deformation as well as the reflection effect from heating. The special

shape of HB light curves can provide us with valuable information on the orbital parameters

such as inclination, eccentricity and argument of periastron according to the theoretical work

by Kumar et al. (1995). The fractional flux variation is given by (see Kumar et al. eq. 44)

δF

F
= S

1− 3 sin2(i) sin2[f(t)− ω]

[r(t)/a]3
+ C (6.1)

where S is a free scale parameter, and C is a free offset parameter. Other parameters include:

orbital inclination (i), true anomaly (f), argument of periastron (ω), semi-major axis (a)

and distance between two stars (r). In practice, a grid of eccentric anomaly (E) is evaluated,

and the correspondence between f and r is calculated from:

f = 2 arctan

(√
1 + e

1− e tan(E/2)

)

r = a(1− e cosE).

(6.2)

Using this theoretical model for light curves (Kumar model hereafter), Thompson et al.

(2012) analyzed the light curves of 17 HBs, and some of their derived orbital parameters

were later refined from RV monitoring by Smullen & Kobulnicky (2015). It is important to
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note that the Kumar light curve model does not take into account the reflection effect and

eclipses. The orbital parameters derived by fitting the light curve with Kumar model can

be treated as good estimates, but can also be off by a large margin especially the orbital

inclination if the reflection effect is important and/or eclipses occur.

A better treatment of light curve modeling of HBs was performed for KOI-54 by Welsh

et al. (2011). This system is nearly face-on, with an orbital inclination of 5.5◦, and thus

no eclipses are present. The authors modeled the light curve and radial velocity curve

simultaneously, taking advantage of their binary modeling tool (ELC). Stellar distortions are

fully modeled with the Roche equipotential, and the reflection effect from mutual irradiation

heating is also included. Thompson et al. (2012) displayed various light curve shapes by

using the Kumar model. Here we present a gallery of heartbeat star light curves in section

2, modeled with the ELC code.

Sometimes pulsations can also be seen in the light curve, such as observed in the stars

KIC 4659476, KIC 5877364 and KIC 5960989 (Figure 5.3). The pulsations of HBs can be

attributed to intrinsic pulsations (mostly γ Dor/δ Scuti type), tidally induced pulsations,

or both. We will discuss the tidally induced oscillations shown in KOI-54 and KIC 3230227

in sections 6.3 and 6.4. In section 6.5, we will present four more HBs and illustrate that

heartbeat stars can also show intrinsic pulsations.
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6.2 Light Curve Gallery of Heartbeat Stars

We consider a binary system similar to KIC 3230227 as discussed in the next section. The

binary has an orbital period of 7 days, and the two components have same effective temper-

atures Teff = 8000K. We then simulate light curves of heartbeat stars for a grid of different

e, ω, and inclination values. The light curves are shown from Figures 6.4 to Figure 6.9, with

orbital phase on the horizontal axis, and magnitude on the vertical axis. The mean flux of

light curves has been normalized to 1.0.

At low inclinations (i = 10◦, 20◦, Figure 6.4 and 6.5), the light curves are more sym-

metric about the periastron, and the amplitudes of the light curves essentially increase with

increasing eccentricity. Light curves with high eccentricities are similar, with a dominant

brightening feature at periastron. Light curves of circular orbits show low amplitude ellip-

soidal variations.

At intermediate inclinations (i = 40◦, 60◦) as shown in Figures 6.6 and 6.7, the light

curves start to become asymmetric about periastron. The shape and amplitude of periastron

brightening essentially depend on ω and e, respectively. Light curves with ω = 180◦ ± δω

are mirror reflections of each other. At high eccentricities, eclipses begin to appear.

At high inclinations (i = 80◦), if e is not too small, the light curves are dominated by

eclipses (Figure 6.8). When orbits become very edge-on (i = 85◦), there are two deep eclipses

in one orbital period regardless of eccentricity (Figure 6.9).
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Figure 6.4 Simulated light curves of heartbeat stars for a grid of e and ω values labeled on

the top of each panel. The orbital inclination is fixed to 10◦.
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Figure 6.5 Simulated light curves of heartbeat stars for a grid of e and ω values labeled on

the top of each panel. The orbital inclination is fixed to 20◦.
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Figure 6.6 Simulated light curves of heartbeat stars for a grid of e and ω values labeled on

the top of each panel. The orbital inclination is fixed to 40◦.
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Figure 6.7 Simulated light curves of heartbeat stars for a grid of e and ω values labeled on

the top of each panel. The orbital inclination is fixed to 60◦.
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Figure 6.8 Simulated light curves of heartbeat stars for a grid of e and ω values labeled on

the top of each panel. The orbital inclination is fixed to 80◦.
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Figure 6.9 Simulated light curves of heartbeat stars for a grid of e and ω values labeled on

the top of each panel. The orbital inclination is fixed to 85◦.
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6.3 A Recap of KOI-54

The Astrophysical Journal Supplement Series, 197:4 (14pp), 2011 November Welsh et al.

Table 1
KOI-54 Radial Velocities

HJD−2400000 RV1 RV2 Exp. Time Facilitya

55308.9298 −10.58 −19.61 1080 TRES
55310.6587 −8.07 −21.30 900 FIES
55310.9353 −7.51 −22.83 360 TRES
55311.8277 −3.54 −26.81 577 MCD
55311.8353 −3.38 −26.77 547 MCD
55311.8427 −3.33 −26.82 529 MCD
55311.8775 −3.10 −27.24 1800 TRES
55311.9883 −2.07 −28.01 1800 TRES
55312.1251 −1.02 −28.79 72 HIRES
55312.1265 −1.03 −28.93 77 HIRES
55312.1278 −1.13 −28.90 70 HIRES
55312.1292 −0.99 −28.85 72 HIRES
55312.8216 −7.07 −24.23 553 MCD
55312.8300 −7.10 −23.91 672 MCD
55312.8899 −8.37 −22.69 1800 TRES
55312.9897 −9.42 −20.12 119 HIRES
55313.9043 −16.45 −13.73 1800 TRES
55313.9888 −17.13 −13.47 89 HIRES
55314.8513 −17.92 −12.81 543 MCD
55314.9021 −18.43 −12.43 900 TRES
55315.0767 −18.24 −12.32 272 HIRES
55315.9130 −18.75 −12.32 1200 TRES
55316.8788 −19.12 −11.90 900 TRES
55317.8700 −18.23 −12.06 900 TRES
55318.9274 −18.45 −11.91 1500 TRES
55319.0179 −18.32 −12.25 144 HIRES
55319.9909 −18.47 −12.04 1500 TRES
55320.9937 −18.44 −12.26 840 TRES
55321.0389 −18.00 −12.60 81 HIRES
55321.9376 −18.42 −12.23 1680 TRES
55342.9718 −14.41 −16.09 1260 TRES
55343.9095 −14.03 −16.30 1800 TRES
55344.8253 −13.87 −16.45 1260 TRES
55345.8418 −13.55 −17.12 1260 TRES
55346.7917 −13.32 −16.99 1260 TRES
55347.8754 −12.61 −17.79 1800 TRES
55348.7957 −12.73 −17.50 1800 TRES
55349.8360 −11.90 −18.97 1260 TRES
55352.7859 −7.26 −22.86 900 HET
55352.8244 −7.07 −22.86 900 LICK
55352.9850 −6.72 −23.70 900 LICK
55353.7790 −2.21 −27.67 900 HET
55353.7974 −1.92 −27.52 900 LICK
55353.9845 −0.90 −29.34 900 LICK
55366.9826 −17.77 −12.78 1200 TRES
55367.8032 −17.85 −12.72 1800 TRES
55368.7601 −17.46 −13.05 1800 TRES
55369.7711 −17.29 −13.36 1800 TRES
55370.7447 −17.40 −12.99 1800 TRES
55373.7590 −17.42 −13.17 1260 TRES
55376.9083 −16.44 −14.22 1800 TRES

Notes. Velocities reported in units of km s−1, and exposure times in seconds.
Uncertainties are estimated to be 0.31 km s−1.
a Facility Code: TRES: Tillinghast Reflection Echelle Spectrograph on the F. L.
Whipple Observatory 1.5 m telescope. FIES: FIbre-fed Echelle Spectrograph
on the Nordic Optical Telescope. MCD: Tull spectrograph on the McDonald
Observatory 2.7 m Harlan J. Smith Telescope. HIRES: HIRES spectrograph
on the W.M. Keck Observatory Keck I Telescope. LICK: Hamilton Echelle
Spectrograph on the Lick Observatory Shane 3 m Telescope. HET: HRS
spectrograph on the McDonald Observatory Hobby–Eberly Telescope.

listed in Table 1. To minimize any potential systematic offset
between the velocities acquired with different instruments, all

Figure 3. Top: observed radial velocities (RVs) and fits: the dashed line is the fit
to the RV data only, the solid line is the best-fit model that simultaneously fits the
RV and the light curve. The filled circles denote the RV curve of Star 1. Middle:
the residuals of the data minus the best fit. Bottom: the ELCsinus model light
curve showing the predicted fluxes at the time of the RV observations.
(A color version of this figure is available in the online journal.)

RV observations were calibrated using the same procedure and
all velocities measured using the TODCOR technique (Zucker
& Mazeh 1994). Every velocity measurement is referenced
to a common RV standard, HD 182488, that was observed
every night, following standard practice for Kepler follow-up
observations of targets of interest. Although not simultaneous
with the Kepler photometry presented in this paper, these
observations provided the key to understanding the nature of
KOI-54: the stars are on a highly eccentric orbit, e = 0.83, with
periastron passage at the times of the brightenings. Thus, the
mutual interaction of the stars when closest together produces
the brightening events seen in the Kepler photometry, and
this is discussed in detail in Sections 3 and 5.1. Figure 3
shows the radial velocities and Keplerian fits, and Table 2
includes the orbital elements from the RV-only fit. The ratio of
K-velocities gives a mass ratio of 1.034, again confirming the
similarity of the two stars. Note: the TODCOR methodology we
employed for measuring the radial velocities does not provide
uncertainty estimates on the radial velocities, so the mean of
the residuals from the RV fit to the observations was assigned
as the uncertainty to all the velocities—0.31 km s−1. Given the
relatively good fit to the RV data over most of the orbit, this
approximation is justifiable. Concerns over systematic errors,
as seen in the residuals of the fit, are discussed in Section 5.1.3.
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Table 2
KOI-54 System Parameters

Parameter Value Uncertainty Unit

Star 1 temperature: T1 8500 200 K
Star 2 temperature: T2 8800 200 K
log g1 3.8 0.2 (cgs)
log g2 4.1 0.2 (cgs)
Luminosity ratio: L2/L1 1.22 0.04
Star 1 Vrot sin i1 7.5 4.5 km s−1

Star 2 Vrot sin i2 7.5 4.5 km s−1

Star 1 [Fe/H]1 0.4 0.2
Star 2 [Fe/H]2 0.4 0.2

Fitting RV only:
K1 9.16 0.10 km s−1

K2 8.85 0.10 km s−1

Mass ratio, q = M2/M1 1.034 0.016
Systemic velocity, γ −15.257 0.035 km s−1

Orbital period, P 41.805 0.014 days
Epoch of Periastron, Tp 2455103.5973 0.0074 BJD
Orbital eccentricity, e 0.8315 0.0032
Arg. periastron, ω 39.46 0.51 deg

Fitting RV + light curve:
K1 9.04 0.07 km s−1

K2 8.82 0.09 km s−1

Mass ratio, q = M2/M1 1.024 0.013
Systemic velocity, γ −15.239 0.034 km s−1

Orbital period, P 41.8050 0.0003 days
Epoch of periastron, Tp 2455103.5490 0.0010 BJD
Orbital eccentricity, e 0.8335 0.0005
Arg. periastron, ω 36.70 0.90 deg
Orbital inclination, i 5.50 0.10 deg
Semimajor axis, a 0.3956 0.008 AU
Star 1: Ω1 3.5 2.3 · · ·
Star 2: Ω2 1.0 0.9 · · ·
Star 1 mass: M1 2.33 0.10 M"
Star 2 mass: M2 2.39 0.12 M"
Star 1 radius: R1 2.20 0.03 R"
Star 2 radius: R2 2.33 0.03 R"

Notes. Ω is defined as the ratio of rotation frequency to the pseudosynchronous
rotation frequency: Ω ≡ Ωrot/Ωps.

3. MODELING

We employ a modified version of the ELC modeling code
of Orosz (Orosz & Hauschildt 2000) to simultaneously fit both
the photometry and radial velocities. The non-spherical stars
are covered with a fine grid of tiles, and for each time the
intensity and velocity of the tiles are summed to produce the light
curve and radial velocities. Gravitational distortions are modeled
assuming a standard Roche potential, including the rotation
of the stars themselves; the potentials are recomputed at each
orbital phase because of the elliptical orbit—see the appendix
of Orosz & Hauschildt (2000) for a description of the potential
that is based on Avni & Bahcall (1975) and see Sepinksy
et al. (2007) for a thorough discussion of equipotential surfaces
in nonsynchronous eccentric binaries. Gravity darkening is
included, using an exponent β = 0.25 appropriate for early-type
radiative stars (von Zeipel 1924; Claret 2000). We used tabulated
spherical NextGen/PHOENIX model intensities (Hauschildt
et al. 1997). The model flux is then integrated over the Kepler
spectral response (approximately 4250–8950 Å, peaking at
5890 Å with a mean wavelength of 6400 Å —see Van Cleve
& Caldwell 2009 and Koch et al. 2010). Irradiation of the
stars is handled following the standard prescription of Wilson

(1990). The light from each star is the sum of (1) the intrinsic
intensities of each tile (modified for the local gravity and, if
blackbodies are used, the limb darkening) and (2) an irradiation
“reflection” component on the inward-facing hemispheres. The
irradiation modifies the local temperature in the following way:
T ′4 = T 4 × [1 +Abol

Firr
F

] where T and F are the temperature and
bolometric flux of the star, and Firr is the incident bolometric
flux from the companion star. Abol is the bolometric albedo
(not to be confused with the Bond albedo) and is the ratio
of re-radiated-to-incident energy. A radiative atmosphere has
Abol = 1 (implying local energy conservation), and we hold
Abol = 1 in our models. Kallrath & Milone (1999) give an
excellent description of Wilson’s method and we refer the reader
to that source for more details. At periastron, the maximum
change in temperature over the surface of the stars, including
gravity darkening and irradiation, is 88 K (=1%) for Star 1 and
61 K (0.7%) for Star 2. At apastron, the difference is only 0.5
and 0.4 K.

The free parameters in the model are the stellar masses M1
and M2, radii R1 and R2, temperatures T1 and T2, and six orbital
parameters: inclination i, orbital period P, epoch of periastron
Tp, argument of periastron ω, eccentricity e, and systemic
velocity γ (held the same for both stars). The temperature
is essentially unconstrained by the single-color broadband
photometry, but the temperature ratio is weakly constrained
by the ratios of radii and luminosities. While the models
had freedom to vary the temperatures, the solution remained
at the input spectroscopic temperatures. The individual RV
measurements are fit, not just the K1 and K2 RV amplitudes from
the RV-only fit (i.e., we do not adopt the RV-only solution). The
rotation of the stars, usually defined via the ratio Ω = Ωrot/Ωorb,
where Ωrot is the stellar rotation angular frequency and Ωorb is the
orbital angular frequency, were also treated as free parameters.
But for KOI-54 we defined these as Ω ≡ Ωrot/Ωps where Ωps is
the “pseudosynchronous” rotation frequency and depends only
on the eccentricity and orbital period as given by Equation (42)
in Hut (1981):

Ωps = (2π/P ) ×
1 + 15

2 e2 + 45
8 e4 + 5

16e6

(
1 + 3e2 + 3

8e4
)
(1 − e2)3/2

. (1)

For an elliptical orbit true synchronous rotation is impossible,
but there is a pseudosynchronous spin such that over the course
of an orbit there is no net torque on the star’s rotation, and so the
spin will not evolve: Ω̇ = 0 (Hut 1981). Note that Ωps is ∼20%
slower than the orbital frequency at periastron, i.e., the spin is
slower than what is necessary to keep the star tidally locked at
periastron passage.

In addition, other “observed parameters” are used to constrain
the model: Vrot sin i, log g, and the ratio of luminosities L2/L1.
These are not fixed in ELC; rather, the models are steered toward
them via a χ2 penalty. A genetic algorithm and Markov Chain
Monte Carlo are used to find the best-fit models (in a χ2 sense)
and confidence intervals. The best-fit model has a reduced χ2

less than 1, indicating that the uncertainties in the light curve
were overestimated in the data calibration; but we determined
the 1σ parameter intervals in the standard way by marginalizing
over all other parameters and determining the interval bounded
by χ2

min + 1; we did not decrease this interval to account for the
reduced χ2 being less than 1.

5
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KOIE54�

Figure 6.10 Radial velocity curve (upper left) and light curve (lower left) and the fundamental

parameters (right) of KOI-54. The figure is taken from Welsh et al. (2011).

KOI-54 is a binary system with an eccentric orbit (e = 0.83) and a low orbital inclination

(i = 5.5◦). It is composed of two similar A-type stars. The Kepler light curve shows a

remarkable feature, with a periodic brightness increase of about 0.7% every 41.8 days. At

first it was speculated to be a candidate of black hole, but later spectroscopic observations
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revealed its binary nature. Welsh et al. (2011) modeled the light curve and radial velocity

curve with the ELC code. The radial velocity and light curves are shown in Figure 6.10

along with the fundamental parameters. Figure 6.11 shows simulated light curves of KOI-54

at different inclination angles that were simulated with ELC.

0.0� 0.5� 1.0� 1.5� 2.0�

0.01'mag�

Phase�

Inclina2on'(deg):'
10�
40�
55�
70�
85�

Figure 6.11 Simulated light curves of KOI-54 as observed from different inclinations (with

e = 0.83 and ω = 36.7◦ from the combined light and radial velocity curve solution), calculated

from ELC. The light curves have been shifted vertically for clarity. The ‘pulsation-like’ signals

at phases away from 0 and 1 are not real, but are due to the limited numerical accuracy of

the flux integration.
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Figure 5. Power (amplitude) spectrum of the pulsation-only light curve, with the largest pulsations labeled. The bottom panel shows the power spectrum after
prewhitening by removing the two dominant pulsations F1 and F2.

curve—see Figure 5. We computed the power spectrum using
the Period04 software package (Lenz & Breger 2005), which
uses an iterative least-squares fit to all detected sinusoidal terms
simultaneously. Including the 2 dominant peaks in the power
spectrum, there are 13 clean peaks with amplitudes greater
than 12 µmag, corresponding to a signal-to-noise ratio !20.
We list the 30 strongest pulsations in Table 3. Frequencies
less than 2 µHz (longer than ∼6 days) are not included in
the table as these long timescales suffer contamination from
imperfect detrending, but we did include five low-frequency
terms when computing the power spectrum. The largest spike,
F1, is at a frequency of 2.15286 day−1 (24.9174 µHz) and the
next largest, F2, at 2.17680 day−1 (25.1944 µHz), or roughly
11.15 and 11.03 hr. These pulsations are perfectly sinusoidal;
there are no harmonics and no evidence of any modulation
in frequency (caused, for example, by Doppler shifts due to
orbital motion). We cannot tell which star is pulsating, or if
both are, and if so, which pulsations originate on which star.
The pulsation phases are equal very near (but not exactly at)
the time of periastron, thus the beating envelope amplitude is
largest near periastron and lowest at orbital phase 0.5. These
two pulsations are also the fastest in the light curve; there is
no significant power at frequencies above F2. More precisely,
between 3 day−1 (35 µHz) and the Nyquist frequency for the LC
data at 24.5 day−1 (283 µHz), there are no peaks above 3 µmag.
The one month of SC data was also examined, after simply
omitting the single brightening event during this month, and
its power spectrum also reveals no signal greater than 3 µmag

out to 720 day−1 (8.33 mHz), showing a complete absence of
any p-mode pulsations. Thus, neither star is a δ Sct star to
exquisitely high precision, which given their early A spectral
type is somewhat surprising.

The separation between the two largest peaks, in period, is
41.771 days, very close to the orbital period of 41.805 days.
Because the pulsations are not completely resolved in the power
spectrum, their frequency difference is consistent with being
identical to the orbital period. We assert that these are exactly
the 90th and 91st multiples of the orbital frequency. This claim is
confirmed by the other pulsations: 23 of the 30 largest pulsations
are also very nearly exact integer multiples of the orbital
frequency—see Table 3. Like the two dominant pulsations,
these other pulsations are also very “pure,” with no measurable
deviations from being perfectly sinusoidal. (The naming of the
pulsations roughly corresponds to the relative strengths of the
pulsations, so F5 is the 5th largest pulsation. However, this
is not an exact match because the amplitudes depend on the
specific tapering method used, and as additional quarters of
data were added, some spikes swapped relative heights.) We
searched for additional patterns in the power spectrum other
than harmonics of the orbital frequency. This led to numerous
detections of frequency spacings within multiplets at a value of
δf ∼ 0.132 day−1 (∼1.53 µHz), e.g., between F6 and F8, and
F8 and F9—see Table 3. Given this strong coupling of the orbital
frequency with the pulsation frequencies, it is very likely that
the pulsations are a result of a resonance between the dynamic
tides and one or more free low-frequency g-modes—see Aerts
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Figure 6.12 The Fourier spectrum of oscillations in KOI-54, taken from Welsh et al. (2011).

The two dominant pulsational frequencies (F1, F2) are exactly 90 and 91 times of orbital

frequency (forb).

As shown in Figure 6.10, the light curve shows obvious coherent pulsations. Figure

6.12 displays the oscillation spectrum. Two dominant pulsations (F1, F2) have frequencies

that are exact 90 and 91 times of orbital frequency. Other frequencies include F3, F4, F7,

F8, F10, F11, F12 that are also integer multiple times of the orbital frequency. This is

clearly evidence of tidally induced pulsations. Fuller & Lai (2012) and Burkart et al. (2012)
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presented theoretical analyses of such tidal oscillations. The predicted amplitude of tidal

oscillations were calculated from linear tidal theory, although they used two different methods

discussed in Chapter 3. Fuller & Lai (2012) suggested that the two dominant pulsations are

l = 2,m = 2 modes, since their frequencies seem to agree with the possible range for mode

resonance locking. However, Burkart et al. (2012) identified them as more likely l = 2,m = 0

modes. Subsequently, O’Leary & Burkart (2014) examined the phases of tidal oscillations

and confirmed that the two dominant frequencies (F1, F2) are really l = 2,m = 0 modes.

Here we calculate the theoretical amplitude of magnitude variation following the same

method in Fuller & Lai (2012). First, a stellar model with M = 2.35M� and solar metallicity

was evolved. The equilibrium stellar model was adopted when the radius of the star reached

R = 2.34R�. The eigenfrequencies and eigenfunctions of oscillations were calculated with

the GYRE code in the non-adiabatic mode. The mode damping rates are thus directly the

imaginary part of eigenfrequencies, and the approximation of using radiative diffusion can

be avoided as was done in Fuller & Lai (2012). We need to pay special attention to the mode

amplitude normalization. Different versions of GYRE adopt different normalization schemes.

The early versions (2.0, 2.3) use the formula (4π)2
∫

[(ξ2
r + l(l+ 1)ξ2

h)ρr
2dr] = MR2, and the

latest versions (4.0, 4.3) adopt the normalization as (4π)
∫

[(ξ2
r + l(l + 1)ξ2

h)ρr
2dr] = MR2.

Thus, in order to use directly the formulation of tidal oscillation amplitude in Schenk et

al. (2002) and Fuller & Lai (2012), the mode eigenfunctions need to be renormalized as∫
[(ξ2

r + l(l + 1)ξ2
h)ρr

2dr] = MR2. I appreciate the help from Jim Fuller in resolving this

issue.
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The results are presented in Figure 6.13. All the red crosses refer to the observed magni-

tude variations of tidal oscillations. Comparing with the original diagram (Figure 3 in Fuller

& Lai 2012), the amplitudes from our non-adiabatic calculations are lower, but seem to have

better overall agreement with observations.
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l=2,m=0 (Fuller&Lai 2012 Fig.3)
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Figure 6.13 The theoretical magnitude variations (due to temperature) of l = 2,m = 0 modes

for each orbital harmonics (Nforb) of KOI-54 from non-adiabatic calculations (diamonds).

The red crosses show the observed oscillation amplitude. The magnitude variation due to

geometric effects is orders of magnitudes smaller and not considered here.
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6.4 Tidal Oscillations in KIC 3230227

6.4.1 Introduction

KIC 3230227 (Kp=9.002, α2000=19:20:27.0253, δ2000=+38:23:59.459) is an eclipsing binary,

firstly included in the Kepler EB catalog in Slawson et al. (2011) and Prsa et al. (2011). The

original catalog listed the time of eclipse minimum and orbital period as T0 = 54958.702188

(BJD-2,400,000) and P = 14.094216 days, respectively. Later, the period was found to be

half of the original value (P = 7.0471062 days). Uytterhoeven et al. (2011) analyzed the

Kepler light curves of∼ 750 A- and F-type stars. Among them, KIC 3230227 was classified as

an eclipsing binary with γ Doradus pulsations. Thompson et al. (2012) studied light curves

of 17 heartbeat stars, including KIC 3230227. Thanks to the special light curves of HBs,

they derived orbital parameters including the orbital inclination (i), eccentricity (e), and

argument of periastron (ω). Armstrong et al. (2014) derived the effective temperatures of

9341±350K and 7484±606K for the primary and secondary, respectively, by fitting the SED

(Spectral Energy Distribution) to several observed magnitudes. Niemczura et al. (2015) made

a detailed analysis of their high resolution spectra of KIC 3230227. Atmospheric parameters

were inferred from Na D, H Balmer and metal lines. They found Teff = 8150± 220K (from

Na D lines and SED), Teff = 8200 ± 100K (from Balmer and metal lines), log g = 3.9 ± 0.1

and v sin i = 50 ± 4 km s−1. They also obtained abundances for many individual elements

(C, N, O, Ne, Na, Mg, etc), as listed in their Table 4. Most of these abundances are close

to solar value (Asplund et al. 2009; Lodders et al. 2009). We summarize the aforementioned

results in Table 6.1.
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6.4.2 Binary Modeling

The orbital parameters of KIC 3230227 were derived from radial velocity (RV) measurements

in Smullen & Kobulnicky (2015). This system was found to be composed of two A-type stars

with similar masses (mass ratio q = 0.95± 0.05), and a very eccentric orbit (e = 0.60± 0.04,

ω = 293± 4◦). These orbital elements are also listed in Table 6.1.

Four orbital elements (P , i, e, and ω) were derived from the light curve alone in Thompson

et al. (2012). It is important to note that the Kumar light curve model (Kumar et al. 1995)

adopted in Thompson et al.’s work does not take into account the effects of reflection and

eclipses.

A better treatment of the light curve modeling of HBs was performed for the face-on

system KOI-54 by Welsh et al. (2011). These authors modeled the light curve and radial

velocity curve simultaneously, taking advantage of their binary modeling tool (ELC; Orosz &

Hauschildt 2000). Stellar distortions were fully modeled with the Roche equipotential, and

the reflection effect from heating plus the limb and gravity darkening effect are included.

To synthesize the binary light curve, NextGen atmosphere models are used to integrate

numerically the flux on the stellar surface. Several techniques are adopted in ELC to improve

the integration accuracy, for example, Monte Carlo sampling on the fractional pixels at eclipse

horizon with Sobol sequences. Here, we use the same tool to model KIC 3230227.

The Kepler SAP light curves were retrieved from MAST. There are 18 quarters (Q) of

long cadence data (Q0-17). Short cadence light curves are only available in quarter 1, 2,

and 5. We de-trended the raw light curve in each quarter following the procedure detailed
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in Guo et al. (2016). In short, the procedures include spline fitting to the long term trends,

median difference corrections, outlier removal, and normalization. The de-trended light

curves were then divided into 6 sections and light curve modeling was performed for each

section individually.

Obvious oscillations stand out in the light curves, and they are still present in the phase-

folded light curves. Their amplitudes are low enough to be treated as perturbations to

the binary light curve. We adopted the period in the Kepler Eclipsing Binary Catalog

(P = 7.0471062±0.0000175 days), which is based on the analysis of light curve by using the

Lomb-Scargle periodogram and kephem software (Hambleton et al. 2013).

This system only shows a single, very narrow eclipse (∆φ ≈ 0.02 in phase) near periastron.

In order to model fully the profile of eclipses, we have to use a very small step size in

phase (δφ = 0.00055 = 0.2◦). This makes the light curve computation relatively expensive.

Aperture contamination parameters listed in Kepler Input Catalog (KIC) are very small,

ranging from 0.08% to 0.2%, and can be neglected. Based upon the effective temperatures

listed in Table 6.1, the two components are likely to have radiative envelopes, thus the

gravitational darkening coefficients β1 and β2 are set to 0.25, and bolometric albedos l1, l2

are fixed to 1.0.

We assume pseudo-synchronous rotation, which means the rotational frequency frot =√
(1+e)
(1−e)3forb (Hut 1981). We use the orbital eccentricity e = 0.60 and argument of periastron

ωp = 293◦ in Smullen & Kobulnicky (2015) as initial values. The mass ratio q and primary

semi-amplitude velocityK1, taken from the same paper, are initially fixed to 0.95 and 98.5 km
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s−1, respectively. It is well known that the light curves of eclipsing binaries are only sensitive

to the temperature ratio. Thus the effective temperature of the primary Teff1 is fixed to

8000K, in agreement with the spectroscopic results in Table 6.1. We fit the light curve by

optimizing the following parameters: e, ωp, i, relative radius r1 = R1/a and r2 = R2/a,

time of periastron passage T0, and effective temperature of the secondary Teff2. The search

for the χ2 minimum was performed with the genetic algorithm pikaia (Charbonneau 1995),

followed by a local search with the downhill simplex algorithm amoeba. Since ELC does not

model pulsations in the light curve, the standard way of estimating uncertainties by finding

the range of parameters that increases χ2 by 1.0 from χ2
min cannot be used. Instead, we

adopted the standard deviation of the best-fitting parameters in 6 data sets as the 1σ errors.

This is the method used by Guo et al. (2016), and it can account for possible systematic

uncertainties due to light curve de-trending.
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Figure 6.14 The phase-folded long cadence light curve of KIC 3230227 (dots) in Quarter 5

and 6 and the best model from ELC (green solid line). The right panel shows the light curve

around the eclipses, and the bottom panels show the corresponding residuals.

The final optimized solution has essentially the same e and ωp values as those in the RV

work of Smullen & Kobulnicky (2015). The orbital inclination (i = 73.42◦), however, is much

larger than the result in Thompson et al. (2012) (i = 43◦), and close to that in Smullen &
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Kobulnicky (2015) (i ∼ 66◦ − 71◦). As shown in Figure 6.14, our light curve model matches

the observations down to the level of 0.001 magnitude. The profile of the narrow eclipse is

also well modeled. The secondary has slightly higher effective temperature Teff2 = 8177K

and smaller mass and radii (M2 = 1.73M�, R2 = 1.68R�), compared to that of the primary

(Teff2 = 8000K, M1 = 1.84M�, R1 = 2.01R�). The main parameters of our ELC model are

listed in Table 6.2. The projected rotational velocities (v sin i1 = 56.4 km s−1, v sin i2 = 47.0

km s−1), under the assumption of pseudo-synchronous rotation, are in agreement with the

measured v sin i from spectra as listed in Table 6.1. We found that the best-fit light curve

solution from one data set or quarter can almost match the light curve of other quarters

equally well. In terms of argument of periastron ω, no discernable apsidal motion was found.
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The flux-weighted radial velocity curves from our ELC model are shown in Figure 6.15,

matching the original RV measurements in Smullen & Kobulnicky (2015) very well. In the

right two panels, we also show the Rossiter-McLaughlin effect during the eclipse. It can be

seen that in order to measure this effect, a RV precision better than 0.5 km s−1 is needed.
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Figure 6.15 The radial velocity models of the primary (black solid) and the secondary (red

solid) star from ELC. The corresponding observed radial velocities are indicated as red dia-

monds and black crosses. The upper right panels shows the RVs during the secondary eclipse

phases. The red curve represents a flux-weighted radial velocity model of the secondary and

blue curve is a simple Keplerian model. The RV residuals of the two models are shown in

the lower right panel.
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Figure 6.16 Upper panel: The short cadence light curve in quarter 5. Middle panel:

The long cadence light curve in quarter 16. Lower panel: The light curve residuals after

subtracting the best-fit binary light curve model in quarter 15. Eclipses have been masked.
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6.4.3 Pulsation Characteristics

6.4.3.1 Tidally Induced Pulsations

To study the pulsations, we obtained the residuals by subtracting the best binary light

curve model from the observations. Figure 6.16 illustrates the pulsational light curve in

Q14, together with the original binary light curve in Q14 and the short cadence light curve

in Q5. We then calculated the Fourier spectrum by using the Period04 package (Lenz &

Breger 2005). A standard pre-whitening procedure was performed for the spectrum in each

quarter. The fitting formula used is Z +
∑

iAi sin(2π(Ωit+ Φi)), where Z,Ai,Ωi,Φi are the

zero-point shift, amplitudes of pulsations, frequencies and phases, respectively. The time

t is with respect to the periastron passage: t = BJD −2, 454, 958.791621. The calculation

was performed to the long cadence Nyquist frequency (24.47 d−1). A similar calculation

was performed on the short cadence residuals as well, but no peaks were found beyond the

frequency ≈ 10 d−1 in the spectrum. The pulsational frequencies are actually all below 5

d−1.

The amplitude spectrum calculated from residuals of quarter 1 and quarter 0 − 17 are

shown in Figure 6.17. The dominant feature in the spectrum is the equal spacing of the

frequency peaks. The main pulsational frequencies and their amplitudes and phases are

listed in Table 6.3. We have labeled them as f1 to f10, in the order of increasing frequency.

A close examination reveals that most of these peaks are exact multiple integer times of

orbital frequency (forb = 1/7.0471062 = 0.141902d−1), for instance, f3, f5, f6, f7, f8, f9

and f10. The orbital harmonic nature of the pulsational frequencies, together with the
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high eccentricity of the binary and the masses of the stars strongly suggest that these are

tidally induced pulsations. Note that the two non-orbital-harmonic frequencies f1, f2 can

be added up to get an orbital harmonic (f1 + f2 = 9.88forb + 12.12forb = 22forb). The

same phenomenon was also found in the tidal oscillation frequencies of KOI-54. This can

be explained by non-linear mode coupling as detailed by Burkart et al. (2012), O’Leary &

Burkart (2014), and Weinberg et al. (2013). It is also interesting to note that f1 = 9.88forb

and f4 = 13.88forb have the same fraction to the nearest orbital harmonic. The feature that

nonharmonic frequencies share the common fractional parts in units of orbital frequency

was discussed in detail by O’Leary & Burkart (2014) for KOI-54. This further supports the

interpretation of these frequencies as the result of non-linear mode coupling.
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Table 6.3: Main Oscillation Frequencies of KIC 3230227

Frequency (d−1) Amplitude (10−3 mag Phase (2π) S/N Comment
f1 1.40214± 0.00002 0.179± 0.027 0.97± 0.07 11.01 9.88forb
f2 1.71988± 0.00002 0.192± 0.022 0.34± 0.05 14.92 12.12forb
f3 1.84482± 0.00002 0.096± 0.021 0.32± 0.10 7.95 13forb
f4 1.969765± 0.000008 0.338± 0.020 0.16± 0.03 29.33 13.88forb
f5 2.12855± 0.00001 0.188± 0.018 0.89± 0.05 17.47 15forb
f6 2.41235± 0.00001 0.189± 0.016 0.39± 0.04 20.28 17forb
f7 2.55425± 0.00002 0.118± 0.015 0.85± 0.06 13.55 18forb
f8 2.69615± 0.00002 0.159± 0.014 0.37± 0.04 19.84 19forb
f9 2.83805± 0.00002 0.076± 0.013 0.37± 0.08 10.18 20forb
f10 2.979948± 0.000008 0.192± 0.012 0.86± 0.03 27.52 21forb
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Figure 6.17 Fourier spectrum of light curve residuals with eclipses masked. The upper panel

was calculated from the quarter 1 long cadence data. The lower panel presents a similar plot

but using all quarters (Q0 − 17) of long cadence data. The inset shows the corresponding

spectral window, and sidelobes with frequency spacing of orbital frequency can be seen. The

10 dominant frequencies listed in Table 6.3 are labeled. Filled and open circles indicate the

harmonic and nonharmonic orbital frequencies, respectively.

Many frequency triplets can be seen in the spectrum, with equal spacing of orbital fre-

quency. This can mainly be explained as side-lobes due to the spectral window. Close exam-
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inations reveal that all these triplets have frequencies that are equal to N−0.12, N,N +0.12

times orbital frequency. Thus they can be explained as a combination of one real oscilla-

tion peak and two side-lobes due to the spectral window. The nonharmonic peaks f1, f2, f4

generate side-lobes at (N − 0.12)forb and (N + 0.12)forb, and the harmonic peaks generate

side-lobes at Nforb. Low amplitude rotational splittings of m = 0 modes can also exist. At

high inclination, these m = 0 modes are expected to have low amplitudes, but some triplets

have rather high amplitudes which contradicts this explanation. As discussed below, the

Ledoux constant Cnl (Ledoux 1951) is about 0.16 for the g-modes in the observed frequency

range. This means the splitting δf is about (1− 0.16)frot for modes with frequencies much

higher than frot. If we adopt pseudo-synchronous rotation frot = 5forb = 0.71 d−1, δf is

then 0.6 d−1. Thus the splittings will be located at several orbital harmonics away from

their central m = 0 peak. This will make the identification more difficult. Thus the detailed

analysis will be presented in a further study.

The amplitude variation of these oscillations are shown in Figure 6.18 and listed in Table

6.4. Most of the frequencies have relatively stable amplitudes over 16 quarters, with variation

less than 0.05 milli-mag. The exception seems to be f3, which decreased from 0.174 milli-mag

in Q1 to 0.078 milli-mag in Q16.
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Figure 6.18 The amplitude variations of ten dominant oscillation frequencies. Filled and

open circles indicate the harmonic and nonharmonic orbital frequencies, respectively.
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Table 6.4: Amplitude Variations of the Main Frequencies

(10−3 mag)

Quarter f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Q1 0.178 0.177 0.174 0.294 0.201 0.200 0.116 0.163 0.074 0.212
Q2 0.177 0.185 0.126 0.336 0.232 0.192 0.159 0.161 0.085 0.215
Q3 0.177 0.173 0.157 0.320 0.215 0.190 0.155 0.159 0.082 0.213
Q4 0.163 0.202 0.122 0.330 0.215 0.191 0.132 0.165 0.074 0.206
Q5 0.171 0.175 0.119 0.332 0.231 0.171 0.120 0.166 0.076 0.208
Q6 0.178 0.182 0.122 0.319 0.202 0.1881 0.126 0.164 0.075 0.209
Q7 0.168 0.190 0.094 0.334 0.232 0.182 0.133 0.164 0.077 0.205
Q8 0.172 0.194 0.113 0.319 0.201 0.173 0.121 0.146 0.076 0.205
Q9 0.164 0.189 0.054 0.331 0.218 0.191 0.145 0.157 0.081 0.211
Q10 0.168 0.176 0.073 0.335 0.198 0.193 0.126 0.160 0.070 0.205
Q11 0.160 0.190 0.056 0.333 0.207 0.190 0.129 0.164 0.071 0.213
Q12 0.154 0.203 0.069 0.328 0.227 0.174 0.145 0.155 0.064 0.205
Q13 0.157 0.198 0.061 0.346 0.211 0.191 0.134 0.164 0.081 0.208
Q14 0.178 0.205 0.053 0.331 0.207 0.183 0.134 0.158 0.080 0.203
Q15 0.165 0.190 0.091 0.321 0.193 0.190 0.137 0.157 0.080 0.209
Q16 0.151 0.205 0.078 0.321 0.198 0.184 0.118 0.152 0.075 0.199
1σ 0.027 0.022 0.021 0.020 0.018 0.015 0.015 0.014 0.013 0.012
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6.4.3.2 Mode Identification from Phases

Phases of tidal oscillations contain important information on the mode properties. O’Leary

& Burkart (2014) identified the two dominant pulsations in KOI-54 as l = 2,m = 0 modes by

studying their phases. Following their treatment, we express the pulsations with the formula

sin(2π(Ωit+ δi)) instead of cosine functions and t = 0 is the time of periastron passage. The

phases of observed flux variation (δJ/J) due to tidal oscillations that have kth times the

orbital frequency are:

δ =

(
1

4
+ ψnlmk +mφ0

)
mod

1

2
(6.3)

and

φ0 =
1

4
− ωp

2π
(6.4)

where ωp = 293◦ = 5.114 rad is the argument of periastron from the RV and light curve

analysis. In the limit of poor tuning, that is, the difference between intrinsic mode frequency

of free oscillations and the nearest orbital harmonics (δω = ωnl − kforb) is much larger than

mode damping rate (γnl), |δω| � γnl, we have the following approximation ψnlmk ≈ 0, then

the observed phases are then

δ =

(
1

4
+mφ0

)
mod

1

2
. (6.5)
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Figure 6.19 Phases of ten dominant oscillations (see Table 6.3). The 1σ error bars of phases

are shown, those of frequencies are smaller than the symbols. Red and green dashed lines

indicate the theoretical phases of l = 2,m = 2 and l = 2,m = −2 modes. Filled and open

circles indicate the harmonic and nonharmonic orbital frequencies, respectively.

Note that if using magnitude variation, the phase will be off by π (by 1/2 if in units of

2π), since δmag ∝ −δJ/J . In Figure 6.19, we show the observed phases of main oscillations.

Within uncertainties, phases of f2, f3, f5, f6, f7, f8, f9, f10 can be explained by the theoretical

phases of l = 2,m = −2 modes (δm=−2 = 0.38, 0.88). The phase of f4 is close to the predicted
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phase of m = 2 modes (δm=2 = 0.12). As the time dependence of these orbital harmonic tidal

oscillations is sin(Nforbt+ 2πδ) and we cannot determine the sign of N (we can only observe

|N |), we refrain the specification of these modes as prograde or retrograde (Burkart et al.

2012). We conclude that the observed oscillations are very likely due to l = 2,m = |2| modes,

in agreement with the expectations for high inclination angle of the binary (i = 73.4◦). On

the other hand, l = 2,m = 0 modes are expected to have low amplitudes, and none of the

main frequencies have phases close to their predicted phases (δm=0 = 0.25, 0.75). As pointed

out by O’Leary & Burkart (2014), oscillations that are in a resonance lock can have nearly

arbitrary phases of pulsation. The observed phases seem to rule out this possibility.

6.4.3.3 Theoretical Flux Variations

We want to study whether the observed amplitudes of tidal oscillations agree with theory. To

this end, we evolve a star of M = 1.84M� with solar metallicity with MESA evolution code

(Paxton et al. 2011, 2013) until its properties match the observations of the primary. The

closest equilibrium model has the same radius (R = 2.01R�), but slightly cooler effective

temperature (Teff(model) = 7800K vs. Teff(observation) = 8000K). We use parameters of

the secondary (M2 = 1.73M�) for the calculation of tidal forcing from the companion.

Following Fuller & Lai (2012), the Lagrangian tidal displacement ξ(r, t) can be expressed

as the sum of displacement of free oscillations ξα(r),

ξ(r, t) =
∑
α

cα(t)ξα(r). (6.6)
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Here α represents the mode indices which include (n, l,m). The amplitude of each mode cα

is derived from solving the forced harmonic oscillator equation (eq. 3.70) and the solution is

given by eq. 3.72. The expression of cα(t) involves the sum over the forcing from each orbital

harmonic k, and this is from the Fourier expansion of orbital motion in the eccentric orbit

(eq. 3.43, 3.44). The displacement ξα and various other eigenfunctions of l = 2,m = 0 modes

are calculated with the GYRE code (Townsend & Teitler 2013) in the non-adiabatic mode.

We use the updated collocation method COLLOC GL2 to solve the oscillation equations

which has better performance than the Magnus solver for non-adiabatic calculations.

We use the perturbative approximation which is valid when rotation frequency ωrot is

much smaller than mode frequency in the zero-rotation limit (ωnl). The frequencies of

l = 2,m = 2 modes are calculated from ωnlm = ωnl−mCnlωrot, and the mode eigenfunctions

are not changed by rotation.

Following Buta & Smith (1979), the magnitude variation of a single oscillation mode due

to temperature changes has the following expression assuming pulsations are adiabatic:

(∆mag)T

= −1.0857
ξr(R)

R

[
xex

ex − 1

Γ2 − 1

Γ2

(
l(l + 1)

ω2
− 4− ω2)

]
γl

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos is)e

imφ0eiσt

(6.7)

where ξr(R) is the radial displacement evaluated at the stellar surface, x = hc/λkT , is is the

orbital inclination, Γ2 ≈ 5/3 is adiabatic index and ω is the dimensionless mode frequency

given by ω = ωα/
√
GM/R3. γl is bolometric limb darkening coefficient defined in eq. (39)
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of Buta & Smith (1979). For an A-star similar to KIC 3230227 and flux in the Kepler

passband, γl is about 0.3. The magnitude variation due to geometric effect is orders of

magnitude smaller and not considered here.
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Figure 6.20 Theoretical magnitude variations of l = 2, |m| = 2 modes are indicated by

diamonds. The observed magnitudes of oscillations are shown as color symbols. Oscillation

frequencies that are orbital harmonics are indicated by the filled circles, and otherwise by

open circles.

Using eq. (7) and summing up the contribution from each mode α, we calculated the

magnitude variation for each orbital harmonic k for l = 2, |m| = 2 modes. The result is

shown in Figure 6.20, together with the observed amplitudes of oscillations. The amplitudes
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show various local Lorentzian-like peaks, and their amplitudes are very sensitive to the

mode tuning parameter δω = ωnl− kforb. A stellar equilibrium model with almost the same

observed parameters (radius, temperature, and mass) and slightly different mode frequencies

will have quite different mode tuning. Even with this effect taken into account, the theoretical

predicted mode amplitudes seem to have overall agreement with observations. It further

supports the argument that the observed oscillations are due to |m| = 2 quadrupole modes.

6.4.4 Summary and Future Aspects

The unprecedented light curves from the Kepler satellite offer us opportunities to study the

effect of tides on stellar oscillations. Heartbeat stars in eclipsing systems are among the best

laboratories since the model independent fundamental stellar parameters such as mass and

radius can be determined. We presented the study of KIC 3230227, which consists of two

A-type stars in an eccentric orbit with a period of 7 days. The observed pulsations, mostly

orbital harmonics, can be explained by the tidally induced l = 2, |m| = 2 modes. This is

supported by their observed phases and amplitudes.

The fundamental parameters of KIC 3230227 are determined only to 10% in mass and 4%

in radius. Further analysis could take advantage of high resolution spectra and more phase

coverage in RVs. This is already in process (Kelly Hambleton, private communication). Once

more accurate parameters are determined, asteroseismic modeling of these tidal oscillations

can be performed, as was done in Burkart et al. (2012). To solidify the results of this work,

mode identification techniques can be applied to the line profile variations as well as to the

time series of multi-color photometry. It is also worthwhile studying the Fourier spectrum
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more closely, identifying individual modes, characterizing rotational splittings, and analyzing

the non-linear mode couplings. Another weakness of this work is that we are unable to tell

which star is pulsating. A study of pulsations during eclipses may help to clarify this issue

(B́ıró & Nuspl 2011).

6.5 Preliminary Results for More Heartbeat Stars

Table 6.5: Parameters of Other Heartbeat Stars

Name Teff1 Teff1 Period e ω K1 K2

(K) (K) (days) (deg) (km s−1) (km s−1)
KIC 10162999 6504(436) 5626(903) 3.4292146(62) 0.14 168 46.8 57.2
KIC 6117415 6637(379) 5571(1462) 19.7416252(765) 0.60 211 70.2 57.0
KIC 4142768 5435(359) 7698(841) 27.991603(126) 0.43 18 58.1 52.7
KIC 8456774 7182(935) 6420(792) 2.8863398(48) 0.11 185 56.4 62.8
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Figure 6.21 Radial Velocities of KIC 10162999 in units of km s−1, derived from Keck HIRES

spectra

In collaboration with Jim Fuller, we have obtained Keck HIRES spectra for 5 double-

lined Kepler heartbeat stars. The detailed analysis is still under way. Here we present the

preliminary analysis of 4 systems. The effective temperatures (taken from Armstrong et al.

2014) and orbital parameters are listed in Table 6.5. Individual systems are described in the

following.

KIC 10162999. The RVs and light curves are shown in Figure 6.21 and Figure 6.22,
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respectively. The RVs suggest that this binary has a relatively small eccentricity (e ≈ 0.14)

and two components of similar mass. The near symmetry of the light curve about periastron

indicates that argument of periastron is close to 180◦, in agreement with the result from

RVs. A preliminary light curve model with a moderate inclination (i ≈ 40◦) seems to fit the

observations very well. The Fourier spectrum of the light curve residuals is shown in Figure

6.23. The frequency peaks at 0.4788 d−1 and its harmonic 0.9597 = 2 × 0.4788 d−1 are

probably due to rotational modulation. Since the orbital frequency is forb = 1/3.429215 =

0.2916 d−1, the frequencies at 0.5831, 0.8748, 1.1666, 1.4582d −1 are exactly 2, 3, 4, 5 times

forb. These are probably tidally induced oscillations.
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Figure 6.22 Kepler light curve of KIC 10162999 (plus an arbitrary constant in magnitude),

with a preliminary ELC light curve model (red solid). The orbital inclination i is 39.35◦; e

and ω are fixed to spectroscopic values, see Table 6.5.
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Figure 6.23 Fourier spectrum of the light curve residuals of KIC 10162999.
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Figure 6.24 Radial Velocities of KIC 6117415.

KIC 6117415. The RVs and light curves (original and phase-folded) are shown in Figure

6.24 and Figures 6.25, 6.26, respectively. The brightness increase at periastron and the

eccentricity (e ≈ 0.6) from RVs are similar to that of the binary KIC 4544587 as shown by

Hambleton et al. (2013). The Fourier spectrum of the light curve residuals (Figure 6.27)

show signatures of rotational modulation.
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Figure 6.25 Kepler light curve of KIC6117415. Obvious pulsations can be seen in the out-

of-eclipse part.
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Figure 6.26 Phase folded Kepler light curve of KIC 6117415. Phases are calculated with

respect to the eclipse minimum. The brightening due to reflection followed by a deep eclipse

can be seen near periastron.
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Figure 6.27 Fourier spectrum of the out-of-eclipse part of the light curve of KIC 6117415

(Amplitude vs. Frequency). The highest peak in the first frequency group has an frequency

of 0.052 d−1, which is close to the orbital frequency forb = 1/19.7416252 = 0.05065 d−1. The

other three frequency groups are located at fgroup2 = 0.335, fgroup3 = 0.670, fgroup4 = 1.005

d−1. These groups are probably results of rotational modulation.
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Figure 6.28 Radial Velocities of KIC 4142768

KIC 4142768. The derived RVs (Figure 6.28) show some scatter, requiring further re-

finement. Two deep eclipses are present in the light curve (Figure 6.29), suggesting a high

inclination angle. Pulsations are obvious in the out-of-eclipse part. The Fourier spectrum

(Figure 6.30) shows both strong low-frequency g-modes and high-frequency p-modes. This

system is an interesting hybrid pulsator, and detailed seismic modeling is worthwhile.
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Figure 6.30 Fourier spectrum of the out-of-eclipse part of the light curve of KIC 4142768.

Both low-frequency (0− 2 d−1) and high-frequency peaks (15− 19 d−1) can be seen, which

are probably due to g-modes and p-modes, respectively.
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Figure 6.31 Radial Velocities of KIC 8456774.

KIC 8456774. Light curves (Figure 6.32) show symmetric periastron brightening, indi-

cating ω ∼ 180◦ and a low inclination angle. The broadness of the brightening suggests a

relatively low eccentricity. Orbital harmonic pulsations are present. The two components

have similar masses as shown in the RVs (Figure 6.31).
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Figure 6.32 Phase folded light curve of KIC 8456774.
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CHAPTER 7

Miscellaneous Case Studies of Oscillating Binaries that Contain an White
Dwarf

In previous chapters, we studied the A- or F-type pulsating stars (δ Scuti, γ Dor, heartbeat

stars) in binary systems. In this chapter, we extend the scope to include a Slowly Pulsating

B-star with a white dwarf (WD) companion (KOI-81), as well as a cataclysmic variable (KIC

9406652). We utilize both Fourier and wavelet analysis to study their light curves. These

two binaries represent the systems of which we know little about their pulsation properties.

In the former one, the mass-transfer history and the fast rotation make it hard to model and

identify the pulsation modes. For the latter one, due to the complications of the interactions

between the accretion disk and the WD, the flux variability is quasi-periodic and a wide

variety of amplitudes and timescales are present.

7.1 KOI-81: A Fast-rotating Slowly-pulsating B-Star With A Hot Companion

KOI-81 (KIC 8823868, P=23.8760923 d), was first identified as a Kepler object of interest,

stars that are suspected of hosting transiting planets. Later, Rowe et al. (2010) reported

that its light curve displays minima that were deeper during occultation than during transit,

implying that the planetary size companions are hotter than their A- or B-type host stars.

The transit and occultation light curve of KOI-81 are shown in Figure 7.1. van Kerkwijk et

al. (2010) found that KOI-81 belongs to a class of beaming binaries which show the Doppler

boosting phenomenon. This phenomenon reveals itself from photometry as showing a more

luminous part of the light curve at one quadrature phase (when the star is approaching) than
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the other (upper panel in Figure 7.1). The radial velocity semiamplitude can be inferred

from Doppler boosting, and the same authors estimated that the white dwarf (WD) star of

KOI-81 has a mass of ≈ 0.2 − 0.3M�. The spectroscopic analysis of Matson et al. (2015)

refined these results, and their derived fundamental parameters are listed in Table 7.1. Figure

7.2 illustrates a model of this system as seen projected in the sky, containing a rotationally

distorted fast rotating B-star and a small, hot WD companion.

Radial velocities (RVs) of the two components in KOI-81 are presented in Figure 7.3

and Figure 7.4. The small companion contributes only a small percentage of flux, and only

UV spectra from HST/COS1 reveal its presence. Its RVs with large amplitudes are shown

as open circles in Figure 7.3. RVs of the primary have very small amplitudes. Careful

RV measurements are performed by using the spectra from KPNO2, HST, and TRES3.

The results are shown in Figure 7.4. We used both the Levenberg-Marquardt algorithm

and Markov Chain Monte Carlo (MCMC) to derive the orbital parameters. Note that the

MCMC method can reveal the correlations between parameters. If we only use the spectra

from KPNO, the orbital parameters K1 and γ1 have strong correlations (Figure 7.5), due

to the concentration of the KPNO observation times to phases in the first half of the orbit

(Figure 7.4), the uncertainties from Levenberg-Marquardt are underestimated. When all

spectra are used, the correlations are very small (Figure 7.6) and both methods (Levenberg-

Marquardt and MCMC) give similar uncertainties.

1Hubble Space Telescope and Cosmic Origins Spectrograph
2Kitt Peak National Observatory (KPNO) 4m Mayall telescope and the RitcheyChretien (RC) Focus

Spectrograph
3Tillinghast Reflector Echelle Spectrograph
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Table 7.1: Fundamental Parameters of KOI 81

Parameters Primary Secondary
Mass (M�) 2.916± 0.057 0.194± 0.020
Radius (R�) 2.447± 0.022 0.0911± 0.0025
Teff (kK) 11.7± 1.5 > 19.4± 2.5
log g (cgs) 4.13± 0.01 5.81± 0.01
V sin i (km s−1) 296± 5 < 10
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Fig. 1.— The phased lightcurve of KOI-74 containing 8 transits and 9 eclipses observed by

the Kepler photometry between 2 May 2009 and 15 June 2009. The upper panel shows the

full 43-day time series after detrending. The bottom panel shows the lightcurve folded with

the orbital period. The lower curve shows the primary eclipse, with the fitted transit model

overplotted in red and corresponding scale to the left. The upper curve covers the expected

time of secondary eclipse, with the fitted model overplotted in green with corresponding scale

found to the right. Odd and even transits are marked with stars and pluses, respectively,

and measurements near the eclipse are shown with circles.

Figure 7.1 Detrended and normalized light curve of KOI-81. The upper and lower panel

show the original and phase-folded version, taken from Rowe et al. (2010). The occultation

of the hot companion is shown as the circles (shifted upwards for clarity). The transit light

curve of the companion is indicated by the asterisks. Solid lines refer to the light curve

model (red for transit and green for occultation).
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There is a broad distribution of peaks just above
2 cycles day−1, and we show an enlarged version of the Fourier
amplitude in this vicinity in the top panel of Figure 9. A wide
distribution appears around 2.04 cycles day−1 that is accom-
panied by a strong peak at f5 = 2.08287 cycles day−1. The
lower panel shows the residual peaks after pre-whitening and
removal of the strong f5 signal, and this reveals the presence of
several other significant peaks near f5. This kind of broad
feature with a stronger single peak at slightly higher frequency
has been detected by Balona (2013, 2014) in the Kepler light
curves of some 19% of A-type stars. Balona argues
persuasively that this feature probably corresponds to the
stellar rotational frequency. In his interpretation, the single
strong peak corresponds to the equatorial rotational frequency
and the wider peak samples the rotational frequencies at
different latitudes in stars with differential rotation. Thus,
following this line of argument, we may tentatively identify f5
as the equatorial rotational frequency of the B-star in KOI-81,
and thus, the rotational period is 0.48 days at the equator.
Balona (2014) considers several explanations for the origin of
the photometric variation including pulsation, rotational
modulation by starspots, and tidal variations induced by a co-
orbiting exoplanet. We suspect that in the case of KOI-81, any
co-orbiting planet would have a short period and an orbital
plane similar to that of the stellar companion, so that we might
expect to observe a transit signal in the f5 folded light curve, but
instead the folded light curve is approximately sinusoidal in
shape. We speculate that the rotational signals in the light curve
of KOI-81 and similar stars may result from long-lived vortices
(Kitchatinov & Rüdiger 2009) that develop in the outer
atmospheres of rotating stars due to differential rotation
(similarly to the spots in the atmosphere of Jupiter).

6. TRANSIT LIGHT CURVE

The B-star we observe was spun up during the mass transfer
process to produce a very rapidly rotating star with a
rotationally broadened spectrum. It is important to consider
how this rapid rotation influences our interpretation of the light
curve. We expect that the spun up star will have a rotational
axis parallel to the orbital angular momentum vector, so that
the starʼs spin axis also has an inclination of i 90≈ °. We
argued in Section 5 that the photometric signal f5 is
the rotational frequency of the B-star. Then we may estimate
the starʼs equatorial radius from R V i( sin )1equator =

πf i R(2 sin ) (2.81 0.05)5 = ± ⊙. This is somewhat larger than
what we derived from the mass and mean stellar density
(Table 3), but is not unexpected for a rotationally distorted star
in which the equatorial radius will be larger (and the polar
radius smaller) than the mean radius.
We can model the predicted appearance of the B-star based

upon our estimates of stellar mass, equatorial radius, rotational
period, and average effective temperature. We created a model
image of the specific intensity at a wavelength of 6430 Å,
which is the centroid of the Kepler instrument response
function, using the same methods applied in a study of the
rapidly rotating B-star Regulus (McAlister et al. 2005). The
star is assumed to have a shape that follows the Roche potential
for rotation about a point mass, and each surface element has a
specific intensity defined by limb and gravity darkening. The
specific intensity of a surface element is set by interpolation in

Table 4
Significant Photometric Frequencies

Frequency (day−1) Amplitude (10−6) Phase (rad/ π2 ) S/N Comment

f1 0.722974 ± 0.000002 257.6 ± 4.1 0.822 ± 0.001 107.4 L
f2 1.32403 ± 0.00001 33.4 ± 2.8 0.34 ± 0.006 20.6 f f4 6+
f3 1.08445 ± 0.00002 22.1 ± 3.2 0.98 ± 0.01 20.5 f f1 6+
f4 0.96250 ± 0.00001 34.6 ± 3.6 0.22 ± 0.008 16.7 L
f5 2.08287 ± 0.00001 31.4 ± 2.6 0.77 ± 0.006 11.4 frot
f6 0.36148 ± 0.00002 47.5 ± 7.7 0.28 ± 0.01 10.6 0.5 f1
f7 2.34753 ± 0.00002 15.7 ± 2.3 0.36 ± 0.01 8.0 L
f8 0.70933 ± 0.00009 6.3 ± 4.2 0.96 ± 0.04 6.9 L
f9 1.74647 ± 0.00006 5.8 ± 2.3 0.15 ± 0.03 6.8 L
f10 2.08357 ± 0.00003 12.3 ± 2.6 0.37 ± 0.05 4.5 frot
f11 4.16643 ± 0.00008 4.4 ± 2.4 0.08 ± 0.04 4.3 2 frot
f12 0.0837 ± 0.0002 10.9 ± 4.0 0.25 ± 0.02 3.2 2 forb
f13 2.08216 ± 0.00003 10.4 ± 2.6 0.09 ± 0.04 3.1 frot

Figure 10. A model representation of the monochromatic intensity in the
Kepler band-pass of the rotationally distorted B-star and the small, hot
companion star (shown at first contact). The horizontal gray line shows the
derived transit path.
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Figure 7.2 An illustration of the Roche model of KOI-81 in the Kepler bandpass. The system

consists of a rotationally distorted B-star primary and a small, hot companion secondary

(shown at first contact). The horizontal line indicates the modeled transit path. Figure is

taken from Matson et al. (2015).
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same result, K 6.751 0.44
0.43= −

+ km s−1. However, we conserva-
tively adopt the somewhat larger uncertainty estimates from the
nonlinear least squares program in what follows. Van Kerkwijk
et al. (2010) estimated K 71 ≈ km s−1 from the Doppler
boosting in the light curve of KOI-81, and their result is
verified through our direct Doppler shift measurement of
K1 = 6.7 ± 0.7 km s−1.

The orbital inclination is very close to i = 90°. We derive a
value from the transit light curve (Section 6) of i = 88◦. 97 ±
0◦. 04, which is intermediate between the estimates from Rowe
et al. (2010) of i = 88◦. 2 ± 0◦. 3 and from the Kepler project
posted at CFOP of i = 89◦. 95. Thus, we can use our estimate to
derive the physical masses from the M isin1

3 , M isin2
3

products, and these are given in Table 3. Furthermore, the
average density ρ of the B-star can be directly estimated from
the transit light curve (provided the star is spherical; see
Section 6), and the Kepler project finds 0.280 0.005ρ = ±
g cm−3 for KOI-81 (reported at the CFOP website). We used
this value together with the mass estimate M1 to arrive at the
radius R1 reported in Table 3. Finally, the CFOP website gives
the ratio of the radii derived from the transit light curve,
R R 0.03725 0.000262 1 = ± , and we used this ratio to find R2
(Table 3). Table 3 also presents the gravitational acceleration

glog derived from the mass and radius information. We must
examine the spectrum of the system to derive the remaining
stellar parameters.

4. TOMOGRAPHIC RECONSTRUCTION
OF THE UV SPECTRA

We used a Doppler tomography algorithm (Bagnuolo
et al. 1994) to extract the individual UV spectra of the primary
and secondary stars. This is an iterative scheme that uses
estimates of the orbital Doppler shifts of each component and
their flux ratio to derive reconstructed spectra for both stars. We
initially assumed featureless continua as the starting approx-
imation for the spectra of both stars, but after comparison with
model spectra, we ran the algorithm again using the models as
starting values, and this choice helped to limit the continuum

wander in the resulting spectral reconstructions. We present in
Figures 4 and 5 the reconstructed UV spectra derived from the
four COS spectra obtained at the quadrature phases. Figure 4
also shows the excellent agreement between the reconstructed
spectrum of the primary and the hot star occultation phase
spectrum that represents the flux of the primary alone. Figures 4
and 5 indicate some of the principal lines as well as the
locations of the interstellar lines, where their removal
by interpolation may have interfered with the accurate
reconstruction of the spectra. All the spectra in Figures 4 and
5 are smoothed by convolution with a boxcar function of width
133 km s−1 in order to reduce the noise and facilitate
intercomparison of the line features.
We compared the reconstructed spectra with model spectra

from the UVBLUE grid of high resolution spectra11

calculated by Rodríguez-Merino et al. (2005) that are based
upon the ATLAS9 model atmosphere code and SYNTHE
radiative transfer code developed by R. L. Kurucz. We used
their solar metallicity models that incorporate a microturbu-
lent velocity of 2 km s−1. We made simple bilinear interpola-
tions of flux in the T g( , log )eff plane to derive the model
spectra. We adopted glog 4.131 = for the primary (Table 3),
but set glog 5.02 = for the secondary because this value is
the largest available in the UVBLUE grid. The model spectra
were rebinned onto the observed wavelength grid and then
convolved with the instrumental broadening function (from
the COS line spread function12 for a central wavelength of
1300 Å) and with a rotational broadening function (using
linear limb darkening coefficients from Wade &
Rucinski 1985).
We first compared the reconstructed and model spectra to

estimate the projected rotational velocity V isin of each star.
This was done by forming a 2χ goodness-of-fit statistic
between the observed and model spectra over a test grid of
V isin values, and then finding theV isin corresponding to the
minimum 2χ . This was repeated for a series of wavelength
regions that contained well defined absorption lines or line
blends, and the mean and standard deviation of the derived
V isin for the primary is presented in Table 3. The primary
B-star is indeed a very rapidly rotating star, a property noted
first by van Kerkwijk et al. (2010). The lines of the hot
secondary companion, on the other hand, appear very sharp and

Figure 3. Radial velocity curves for KOI-81 and its companion. The solid
circles and open circles represent the radial velocities derived from COS
spectra for the B-star and hot subdwarf, respectively. Plus signs represent the
measurements of the B-star velocity from ground-based spectroscopy (see
Figure 2).

Table 3
Stellar Parameters for KOI-81

Parameter Primary Secondary

M M⊙........ 2.916 ± 0.057 0.194 ± 0.020

R R⊙........ 2.447 ± 0.022a 0.0911 ± 0.0025a

glog (cgs)..... 4.13b 5.81b

Teff (kK)...... 11.7 ± 1.5 >19.4 ± 2.5
V isin (km s−1) 296 ± 5 <10

Notes.
a Assuming a spherical shape for the primary.
b Calculated from M M⊙ and R R⊙.

11 http://www.inaoep.mx/~modelos/uvblue/go.html
12 http://www.stsci.edu/hst/cos/performance/spectral_resolution/
fuv_130M_lsf_empir.html
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Figure 7.3 Radial velocities of KOI-81 with the best-fitting Keplerian model. RVs of the

primary and secondary are indicated by crosses and filled circles. Those of the secondary

are shown as open circles. Figure is taken from Matson et al. (2015).
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Figure 7.4 Radial velocities of the primary star of KOI-81 with the best-fit Keplerian model.

The ±2 σ credible region is filled with gray color.
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Figure 7.5 The posterior distributions of K1 and γ1 from the MCMC fit to KPNO radial

velocities (80000 iterations). Dash lines indicate the median and ±1 σ percentile boundary.
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Figure 7.6 The posterior distributions of K1 and γ1 from the MCMC fit to the ALL

(KPNO+TRES+HST/COS) radial velocities (40000 iterations). Dashed lines indicate the

median and ±1 sigma percentile boundary.

After masking the transits and occultations, we calculated the Fourier spectrum of the

detrended, long cadence light curve from quarters 0 to 17 using the package Period04 (Lenz

& Breger 2005). We adopted an empirical noise level by smoothing the envelope of the

residual spectrum after prewhitening all significant frequencies with S/N > 3 (except for the

broad rotational feature; see below). The uncertainties are calculated following Kallinger et
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al. (2008). The Fourier spectrum is dominated by a very strong signal with a frequency of

f1 = 0.722974 cycles d−1 (period of 1.38318 d), and the spectrum after pre-whitening this

signal is plotted in Figure 7.7. The frequencies, amplitudes, phases (relative to the epoch of

central transit), and signal-to-noise ratio are listed in Table 7.2. The final column of Table 7.2

lists several numerical relations among these frequencies. One frequency (f12) corresponds to

the ellipsoidal (tidal) variation with twice the orbital frequency. The dominant periodicity

(1.38 d) is unrelated to the orbital period, and it probably represents a strong and long-lived

pulsational mode. There are also other low frequency pulsation signals in the spectrum.

The B-star primary of KOI-81 has a temperature and radius that are similar to those

of the slowly pulsating B-type (SPB) stars (Pamyatnykh 1999). According to Saio (2013),

most visible modes should be low degree prograde (m < 0) sectoral (l = m) g-modes and

(retrograde) r-modes in rapidly rotating intermediate mass stars (assuming the time depen-

dence of modes is ei(σt+mφ)). For high order g-modes in rapidly rotating stars with rotational

frequency Ω, if ω � |m|Ω with ω being frequency in the co-rotating frame, then we expect

to observe these modes at σ = |ω − mΩ| ∼ |m|Ω. Since sectoral prograde g-modes are

expected to be most visible, we expect groups of frequencies slightly above Ω and 2Ω for

m = 1 and 2 modes, respectively. (Modes with higher |m| are expected to be less visible due

to cancellation.) These frequency groups are indeed observed in several pulsating Be stars,

for example, HD 163868 (Walker et al. 2005) and HD50209 (Diago et al. 2009). For KOI-81,

however, no frequency groups are observed, except for a broad feature near f5 which we

interpret as differential rotation (discussed below). The criterion ω � |m|Ω is not satisfied
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since the observed pulsation frequency σ is comparable to or lower than Ω. The observed

low ferquency pulsations are more likely due to retrograde (m > 0) pulsations with low m.

Townsend (2005b) and Savonije (2013) argue that rapidly rotating, late-type B-stars can ex-

perience retrograde mixed modes of low azimuthal order m. Furthermore, the interpretation

of the frequencies of the primary should incorporate a stellar structure model that includes

the results of prior mass transfer from the WD progenitor star (Matson et al. 2015). The

presence of frequency combinations also indicates that non-linear effects may be at work.

There is a broad distribution of peaks just above 2 d−1, and we show an enlarged version

of the Fourier amplitude in this vicinity in the top panel of Figure 7.8. A wide distri-

bution appears around 2.04 d−1 that is accompanied by a strong peak at f5 = 2.08287 d−1.

The lower panel shows the residual peaks after pre-whitening and removal of the strong f5

signal, and this reveals the presence of several other significant peaks near f5. This kind of

broad feature with a stronger single peak at slightly higher frequency has been detected by

Balona (2013, 2014) in the Kepler light curves of some 19% of A-type stars. Balona argues

persuasively that this feature probably corresponds to the stellar rotational frequency. In

his interpretation, the single strong peak corresponds to the equatorial rotational frequency

and the wider peak samples the rotational frequencies at different latitudes in stars with

differential rotation. Thus, following this line of argument, we may tentatively identify f5 as

the equatorial rotational frequency of the B-star in KOI-81, and thus, the rotational period

is 0.48 d at the equator. Balona (2014) considers several explanations for the origin of the

photometric variations including pulsation, rotational modulation by starspots, and tidal
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variations induced by a co-orbiting exoplanet. We suspect that in the case of KOI-81, any

co-orbiting planet would have a short period and an orbital plane similar to that of the stellar

companion, so that we might expect to observe a transit signal in the f5 folded light curve,

but instead the folded light curve is approximately sinusoidal in shape. We speculate that the

rotational signals in the light curve of KOI-81 and similar stars may result from long-lived

vortices (Kitchatinov & Rüdiger 2009) that develop in the outer atmospheres of rotating

stars due to differential rotation (similarly to the spots in the atmosphere of Jupiter).
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Figure 7.7 The Fourier amplitude spectrum after prewhitening the dominant peak at 0.72297

d−1 indicated by the dotted line. The empirical noise level is indicated by the red solid line.
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Table 7.2: Significant frequencies

Frequency (d−1) Amplitude (10−6) Phase (rad/2π) S/N Comment
f1 0.722974± 0.000002 257.6± 4.1 0.822± 0.001 107.4
f2 1.32403± 0.00001 33.4± 2.8 0.34± 0.006 20.6 f4 + f6

f3 1.08445± 0.00002 22.1± 3.2 0.98± 0.01 20.5 f1 + f6

f4 0.96250± 0.00001 34.6± 3.6 0.22± 0.008 16.7
f5 2.08287± 0.00001 31.4± 2.6 0.77± 0.006 11.4 frot
f6 0.36148± 0.00002 47.5± 7.7 0.28± 0.01 10.6 0.5f1

f7 2.34753± 0.00002 15.7± 2.3 0.36± 0.01 8.0
f8 0.70933± 0.00009 6.3± 4.2 0.96± 0.04 6.9
f9 1.74647± 0.00006 5.8± 2.3 0.15± 0.03 6.8
f10 2.08357± 0.00003 12.3± 2.6 0.37± 0.05 4.5 frot
f11 4.16643± 0.00008 4.4± 2.4 0.08± 0.04 4.3 2frot
f12 0.0837± 0.0002 10.9± 4.0 0.25± 0.02 3.2 2forb
f13 2.08216± 0.00003 10.4± 2.6 0.09± 0.04 3.1 frot
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Figure 7.8 Top: The broad differential rotation feature at about 1.96 ∼ 2.06 d−1

and the adjacent sharp peak at f5 ≈ 2.08287 d−1. Bottom: the same diagram but with the

sharp peak prewhitened.

7.2 Variability of the Cataclysmic Variable KIC 9406652

7.2.1 Introduction

Cataclysmic variable (CV) stars are evolved, interacting binaries. The system usually con-

sists of a cool, Roche-filling donor star and a mass-gaining white dwarf companion surrounded
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by a dynamic accretion disk (Warner 1995; Hellier 2001). A wide variety of amplitudes and

timescales can present in their flux variations, which are due to the processes of accretion

around the disk (Honeycutt et al. 1998).

KIC 9406652 is a CV with an orbital period of 6.108 hours. It was observed by Kepler and

the light curve shows both very rapid oscillations and long term outbursts. The fundamental

parameters from a combined analysis of light curves and spectra are shown in Table 7.3. The

separated individual spectra from the donor star and accretion disk are presented in the left

two panels of Figure 7.9 (Gies et al. 2013). The right panel refers to the radial velocities

measured from cross-correlating the absorption feature (MgH and Mg I b blend) of the donor

star with a model template spectrum from the BT-Settl PHOENIX grid (Rajpurohit et al.

2013). The Hβ emission lines are used to measure the radial velocities of the WD/disk.

Table 7.3: Fundamental Parameters of KIC 9406652

Parameter WD&Disk System Donor Star
Period (days) 0.2544
q 0.83± 0.07
a sin i (R�) 1.54± 0.06
i (deg) ≈ 501

K (km s−1) 153± 102 167± 102

M sin3 i (M�) 0.41± 0.04 0.34± 0.04
Mass (M�) ≈ 0.91 0.751

Radius (R�) - 0.721

Teff (K) 40, 000− 50, 0001 - 43901

1Assuming the period and donor mass relation in Knigge et al. (2011)
2From absorption lines.
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Fig. 11.— The reconstructed spectrum of the companion star (middle) compared with

models for Teff = 4500 K (above) and Teff = 3900 K (below). Each model is labeled with

the adopted values of Teff / log g / log A (where A is the metal abundance relative to that

of the Sun). The spectra are offset by 0, +1, and +2 continuum units for clarity.
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with a Gaussian transfer function with a FWHM = 5 pixels for clarity. The He I λ5876

profile appears similar to that of Hβ here because the tomographic reconstruction assigned

the blended Na I doublet to the spectrum of the donor (cf. Fig. 6).
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Fig. 10.— The preliminary radial velocity curves for the companion star (filled circles)

and accretion disk (open circles) based upon the independent period fitting solutions in

Table 3 (columns 4 and 2, respectively). The measurement uncertainties are approximately

14 km s−1 (see Table 2). No companion star measurement was feasible for the two low

resolution spectra obtained near orbital phase 0.45.

Figure 7.9 The reconstructed spectra of the donor star (upper left) and the accretion disk

(lower left) of KIC 9406652. The radial velocities and best Keplerian fit are shown in the

right panel. Figure is taken from Gies et al. (2013).

7.2.2 Kepler Photometry

We obtained the Presearch Data Conditioning (PDC) version of the long cadence light curve

from the data archive (almost identical to the Simple Aperture Photometry version of the

light curve). The entire Kepler light curve from quarters 1 through 15 is shown in the lower
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panel of Figure 7.10, and Figure 7.11 contains a close up portion from quarter 7. There

are both long term outbursts on timescales of weeks as well as rapid, smaller amplitude

variations. The recurrence times for the outbursts vary from 27 to 84 d, and they are often

(although not always) characterized by slow rise followed immediately by a sharp decline or

dip. This is opposite to the fast rise and slower decline that is often observed in dwarf novae

outbursts (Cannizzo et al. 2012). At peak outburst, the system is typically 0.7 mag brighter

than average, while the dip minima are often 0.8 mag fainter than average. The outbursts

usually have a duration of ≈ 7 d, although a much longer event was recorded around BJD

2455240. The fast variation (with a cycle time of about 6 h) is seen almost all the time with a

full amplitude of approximately 0.2 mag (or smaller at peak outburst). The right hand panel

in Figure 7.10 illustrates the periodogram for the entire Kepler light curve from quarter 1 to

15. There is a broad distribution of low frequency power that corresponds to the cyclic (but

not strictly periodic) outbursts. However, there are also four significant and narrow peaks

that labeled in Figure 7.10 and that have frequencies (periods) of f1 = 0.2421 d−1 (4.131 d),

f2 = 3.9291 d−1 (6.108 h), f3 = 4.1714 d−1 (5.753 h), and f4 = 7.8584 d−1 (3.054 h). We also

made periodograms of the light curve from each quarter separately, and the frequencies and

amplitudes of the peaks nearest these mean frequencies are listed in Table 7.4 and plotted

in Figure 7.12. The typical measurement uncertainties associated with the peak frequencies

are 0.03 d−1 for quarter 1 and 0.01 d−1 for the subsequent quarters. We see that f1 and

f3 grew significantly in strength up to quarter 7 while f2 and f4 remained approximately

constant in amplitude.
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In order to explore this change in the strength of the periodic signals over time, we also

performed a wavelet analysis that is displayed in the central panel of Figure 7.10. We made

the wavelet analysis using the package of Torrence & Compo (1998). The wavelet amplitude

of a discrete time series xn with a sampling time δt is given by a convolution of xn with a

wavelet function Ψ((t′ − t)/s),

Wn(s) =
N−1∑
n′=0

xn′Ψ
∗
[

(n′ − n)δt

s

]
(7.1)

where s is the wavelet scale, n is the index for the time variable, and the superscript ∗

indicates the complex conjugate. The wavelet function used here is the Morlet function

defined by

Ψ(t/s) = π−
1
4 exp

(
iω
t

s

)
exp

(
−1

2

t2

s2

)
(7.2)

where t is the time difference and ω is a dimensionless oscillation frequency multiplier that

sets the number of oscillations within the central part of the wavelet function. We adopted

ω = 10 which gave better frequency resolution than the default value of ω = 6 in the

Torrence & Compo wavelet package, but at the cost of somewhat worse temporal resolution

(De Moortel et al. 2004). The wavelet scale sets the test frequency and the effective width

of the time window, and a grid of scale lengths was set by the geometric series

sj = s02jδj, j = 0, 1, · · · , J.

We used twice the average time spacing of the Kepler long cadence data for s0, and adopted
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δj = 0.25 for a grid of values up to J = 50. The wavelet analysis is done in a similar way to

the short-time Fourier transform (STFT) analysis, in the sense that the signal is multiplied

with a wavelet function, similar to the window function in the STFT, and the transform

is computed separately for different segments of the time-domain signal. The width of the

window is changed as the transform is computed for every single spectral component, which

is probably the most significant characteristic of the wavelet transform. Because the wavelet

method is a multi-resolution analysis which was designed to overcome the resolution problem

of STFT, it will give good time resolution and poor frequency resolution at high frequencies

and bad time resolution and good frequency resolution at low frequencies. Furthermore,

the edge effects introduced by the finite limits of the time series become progressively worse

at low frequencies so that the derived wavelet power becomes unreliable within a cone of

influence at the boundaries of the time series (Torrence & Compo 1998).

The wavelet power for the Kepler light curve is shown as a grayscale image in the central

panel of Figure 7.10 as a function of both time and frequency. In the same way as the

periodogram, most of the wavelet power occurs in the lower frequency part of the diagram,

corresponding to the outbursts and dips. However, the periodic signals, f1 to f4, are also seen

as the dark horizontal bands in the wavelet diagram. We see the same trends as documented

in Figure 7.12, namely the near constancy of the signals f2 = 3.9291 d−1 (6.108 h) and f4 =

7.8584 d−1 (3.054 h) while the other signals f1 = 0.2421 d−1 (4.131 d) and f3 = 4.1714 d−1

(5.753 h) grow from near invisibility to maxima around BJD 2455400. These four frequencies

are related in two ways. First, f4 is the first harmonic of f2 (f4 = 2f2) indicating that the f2
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signal has a non-sinusoidal shape. This is seen in Figure 7.13 (upper panel) that shows the

light curve rebinned according to phase in the f2 period. It resembles that of a low amplitude

ellipsoidal binary light curve with two unequal minima. On the other hand, the shape of

the f3 signal (Fig. 7.13, lower panel) is approximately sinusoidal. The second relation is

f1 = f3− f2. Both f1 and f3 share the increase in amplitude towards a maximum in quarter

7 (Fig. 7.12). We argue below that the f2 signal is probably the orbital frequency while the

f1 signal may correspond to the precessional frequency of a tilted accretion disk.

The orbital period determined from spectroscopy is consistent with the f2 signal from the

Kepler light curve. The fact that the orbital phased light curve displays a minimum around

the time of donor inferior conjunction suggests that the orbital part of the light curve varia-

tions is associated with a reflection effect, i.e., the hemisphere of the donor facing the white

dwarf appears brighter. The stronger f3 signal indicates the presence of a periodic variation

that is somewhat shorter than the orbital period. Such near orbital period variations are

known in many CVs through the presence of ‘superhumps’ in the light curve, and in some

cases they appear at shorter periods.

We suggest that the precessional frequency is f1 = f3 − f2 and that the flux variation

corresponding to f3 relates to how our view changes of the gas stream-disk interaction zone

as the orbital and disk plane orientation varies.

The lower frequency signals in the periodogram of the light curve are related to the

outbursts and dips that occur on a ∼ 30 day timescale (Figure 7.10). These generally take

the form of an outburst followed immediately by a dip. One exception was observed near
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BJD 2,455,190 where a strong dip occurred before an outburst. Curiously, the next outburst

that occurred near BJD 2,455,240 was also exceptional in its duration. Both of these events

happened just prior to the appearance of the f1 and f3 signals in the periodogram (see Figure

7.10), which marks the beginning of the disk precession phase in these observations. The

cause of the stunted outbursts in this system is unknown, but they may be related to cycles

of changing disk mass.
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Figure 7.10 A grayscale image of the logarithm of the wavelet power as a function of time

and frequency. The white dots indicate the end of each quarter (1 – 15). The panel below

shows the corresponding Kepler light curve, and the rotated panel to the right displays the

amplitude of the full sample periodogram.
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Fig. 2.— A detailed view of an outburst and rapid variations in a portion of the light curve

from quarter 7.

Figure 7.11 A detailed view of an outburst and rapid variations in a portion of the light

curve from quarter 7.
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Fig. 3.— The amplitudes of one low and three high frequency signals in the periodograms

of the Kepler light curves plotted against observing quarter number. The symbols represent

the amplitudes of the signals at f1 = 1/4.131 d, f2 = 1/6.108 h, f3 = 1/5.753 h, and

f4 = 1/3.054 h (see Table 1).

Figure 7.12 The amplitudes of one low and three high frequency signals in the periodograms

of the Kepler light curves plotted against observing quarter number. The triangles, dia-

monds, asterisks, and solid circles represent the amplitudes of the f1, f2, f3, and f4 signals,

respectively, that are also listed in Table 7.4.
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Fig. 4.— Phase binned light curves from quarters 1 – 4 for the f2 signal (top panel) and

from quarters 5 – 15 for the f3 signal (lower panel). The starting phase is arbitrary in both

cases. Vertical lines indicate the square root of the variance of the mean within each bin.
Figure 7.13 Binned light curves for the entire Q1−Q15 set for the f2 signal (top panel) and

f3 signal (lower panel). Vertical lines indicate the standard deviation of the mean within

each bin.
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CHAPTER 8

Bayesian Inference with BUGS/JAGS: Applications to Binary Stars and
Asteroseismology

Bayesian inference is ubiquitous in fields such as statistics and machine learning. As an at-

tempt to bridge the gaps between astronomy and statistics, we apply the Bayesian statistical

packages BUGS and JAGS to some problems in binary stars and asteroseismology, including

fitting the radial velocity data, inferring atmospheric parameters from stellar spectra, etc.

The problems of Bayesian experimental design and model comparison are also considered.

8.1 Introduction

A vast majority of problems in astronomy can be cast as parameter estimations. Assuming

we have a vector θ containing all parameters of a given model M , and we also have some

observational data in the vector y. Our goal is thus to get the posterior distribution of θ

given data: P (θ|y), that is, the probability density of θ given y, where symbol | means

‘Given’. Bayes’ theorem solves this problem:

P (θ|y,M) = P (y|θ,M)P (θ|M)/P (y|M). (8.1)

Note that we explicitly show that all the probabilities are based on the assumption that

model M is correct. To be more concise, we omit this default condition of ‘Given model M’,

P (θ|y) = P (y|θ)P (θ)/P (y). (8.2)
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Situations of having more that one model will be discussed later in the context of Bayesian

model comparison. Note that the above equation is just a direct rearrangement of the

expression of the joint distribution of θ and y:

P (θ,y) = P (θ|y)P (y) = P (y|θ)P (θ). (8.3)

P (y|θ) is the likelihood function, usually written explicitly as a function of θ: L(θ). P (θ)

is the prior distribution of θ. P (y) is called Bayesian evidence or marginal likelihood, often

written as Z. If the problem of parameter estimation is restricted to one model, P (y) is

usually ignored as it is only a normalization constant. Thus we only need to find P (θ|y)P (y).

If model comparison is needed, Z = P (y) is needed and it is usually calculated in logarithmic

form as logZ.

We often need a point-estimate of parameter θ, and there are many different ways to

summarize the result. θMAP maximizes the posterior distribution P (θ|y), and θML maxi-

mizes the likelihood P (y|θ), and we can also use the mean θ̄mean or the median θ̄median of

the posterior distribution.

Consider a simple curve fitting problem, and the model M can be described by a function

f , with an input vector x and some model parameters θ, given by ymodel = f(x,θ). ymodel is

the unknown underlying error-free model output. Assume our measurements, or data vector

y, are the true model outputs ymodel added with measurement noise e:

y = ymodel + e = f(x,θ) + e. (8.4)

As Gaussian distribution is ubiquitously adopted, we may assume the noise e is Multivari-
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ate normal distributed with a mean of zero and covariance matrix Ce, y − ymodel = e ∼

N(e|0,Ce) = (2π)−k/2|Ce|−1/2e−
1
2

(e−0)TC−1
e (e−0), where e has the dimension of k. Thus the

likelihood function, as a distribution of y, which represents how the data are generated from

the model is, P (y|x,θ) ∼ N(y|ymodel,Ce) = (2π)−
k
2 |Ce|−

1
2 e−

1
2

(y−ymodel)TC−1
e (y−ymodel).

Thus the maximum likelihood solution θML minimizes (y−ymodel)TC−1
e (y−ymodel), and

if the noise is independently distributed, Ce is then a diagonal matrix with diagonal elements

σ2
i , then (y − ymodel)TC−1

e (y − ymodel) reduces to the normal χ2 =
∑

i(
yi−ymodel,i

σi
)2.

The maximum posterior solution θMAP maximizes P (y|θ)P (θ). If the prior distribution

P (θ) is constant (e.g., the uniform distribution), then θMAP is reduced to θML.

8.2 Fitting Radial Velocity Curves

8.2.1 General Formulation

As an application, we fit the radial velocities of spectroscopic binaries in the aforementioned

Bayesian framework. The same Keplerian problem is discussed in Gregory (2005) as well.

In this specific problem, the likelihood function is

P (v|t,θ) ∼ N(v|vmodel(t,θ),Ce) (8.5)
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which can be expressed in BUGS language (Spiegelhalter et al. 1996) with the following line

(if we have 20 RV data points),

# likelihood function

for(i in 1 : 20){

v[i] ∼ dnorm( modelrv[i], weight[i] )

}

(8.6)

where weight[i] is 1/sigrv[i]2. Note we have assumed independent RV noise for each point. If

it is necessary to consider correlated noise in RVs (a common problem in exoplanet detection

from RVs), then we can specify the mean vector modelrv[ ] and the covariance matrix Cov[ , ]

and then use a multinormal distribution:

v[1 : 20] ∼ dmnorm(modelrv[], Cov[, ]). (8.7)

Cases with independent noise correspond to diagonal covariance matrices, and correlated

noise will introduce off-diagonal elements.

The model RV is

vmodel(t,θ) = K[cos(ν + ω) + e cos(ω)] + γ (8.8)

where the model inputs are the HJD times t, and model parameter vector is θ = (Tperi, P, γ,K,

e, ω). The model radial velocities vmodel are not directly related to t but directly to the true

anomaly ν, and we need the following auxiliary relations for t→ ν:
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φ =
t− Tperi

P

M = 2πφ

M → E

ν = 2 arctan[

√
1 + e

1− e tan(E/2)]

(8.9)

where M is mean anomaly, E is eccentric anomaly, φ is orbital phase, and the time of

periastron passage is denoted by Tperi. M → E means to get E from M by solving the

Kepler equation M = E − e sinE. This equation is often solved by an iterative method:

Step 1. E1 = M + e sinM + [e2 sin(2M)/2]

Step 2. E0 = E1

Step 3. M0 = E0 − e sinE0

Step 4. E1 = E0 + M−M0

1−e cosE0

Repeat Step 2, 3, 4, until |E1 − E0| < ε.

ε is a small criterion for convergence. We need to specify the prior distributions for the

orbital parameters P (θ). For example, for uniform priors of e and ω in JAGS:

e ∼ unif(0, 1)

ω ∼ unif(0, 360).

(8.10)

It is convenient to represent this simple parameter estimation problem by a graphical

model (Figure 8.1). Nodes represent variables, and the graph structure connecting them

(arrows) represents dependencies. The observed and unobserved variables are indicated by
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shaded and unshaded nodes, respectively.

Figure 8.1 The graphical model of fitting one RV curve.

To sample from the posterior, the Markov Chain Monte Carlo (MCMC) is often per-

formed, using the popular Metropolis-Hastings algorithm, Gibbs sampling, and their vari-

ants. We briefly summarize the two main sampling methods here. Suppose we want to

sample from a probability distribution P (θ). This is often the posterior distribution P (θ|y),

but can also be any distribution. θ is the parameter and it is a vector in p dimensions

θ = (θ1, θ2, · · · , θp). Initially, we are at θ(0) in the parameter space, and the super-script

indicates the iteration number.

For the Metropolis-Hastings algorithm, we can use a Gaussian distribution centered on

θ(0) with an appropriate variance to find a next proposal position θ(1). If the posterior prob-

ability is larger at θ1, i.e., P (θ(1))/P (θ(0)) > 1, we accept the proposal step; if the posterior

probability is smaller at θ(1), we do not totally reject this step but only accept this proposal

step with a small probability P (θ(1))/P (θ(0)). This can be achieved by first generating a
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random number τ ∈ [0, 1], and then accepting this proposal if τ < P (θ(1))/P (θ(0)). The

above steps are repeated to get the final Markov chain.

To use the Gibbs sampling algorithm, we assume that the conditional distributions of

one θ component i given other components p(θi|θ1, θ2, · · · , θi−1, θi+1, · · · , θp) are given or

easy to sample. We want to sample from P (θ) = P (θ1, θ1, · · · , θp), and again we begin at

θ(0) = (θ
(0)
1 , θ

(0)
2 , · · · , θ(0)

p ). We can use the following iterative steps to get the next sample

θ(1) = (θ
(1)
1 , θ

(1)
2 , · · · , θ(1)

p ) one component by one component,

θ
(1)
1 ∼ p(θ1|θ(0)

2 , · · · , θ(0)
p )

θ
(1)
2 ∼ p(θ2|θ(1)

1 , θ
(0)
3 · · · , θ(0)

p )

...

θ(1)
p ∼ p(θp|θ(1)

1 , · · · , θ(1)
p−1).

(8.11)

Repeat the above steps, we then finally get the joint distribution P (θ1, · · · , θp) which is just

P (θ).

Some handy packages exist in the astronomical community, such as the emcee package

in Python (Foreman-Mackey et al. 2013) and the De-MC package in IDL (Eastman et al.

2013). Here, we instead use the statistical packages JAGS (Just Another Gibbs Sampler)

(Plummer 2003) and Stan (Hoffman & Gelman 2014), which are not widely used in astronomy

and which implement the Gibbs sampler and Hamiltonian Monte Carlo (HMC) algorithm,

respectively. The advantages of using these packages are the reduced time in coding and
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easy applications of more complex hierarchical Bayesian models. The drawback is that the

whole problem has to be specified in BUGS language.

A drawback in JAGS/BUGS is that nodes cannot be redefined, thus we cannot use a

while loop to get E from M (the iterative method above). To overcome this problem, we

need some auxiliary nodes to represent the updated M and E values in each iterative step.

We have tested the iterative method above for a variety of eccentricities, and find that only

a maximum of 5 iterations are needed. Note this is not a problem for Stan though, where

a ‘while’ loop works fine as in other languages. Another advantage of Stan is that we only

need several thousands of samples from the posterior due to the efficient HMC sampling

algorithm, while in JAGS/BUGS we usually need tens of thousands of samples.

To use JAGS for Bayesian modeling, we need four input files:

1. model.txt; 2. data.txt; 3. initial.txt; 4. script.txt,

model.txt specifies the model (priors, likelihood, etc.) in BUGS language; data.txt (Fig-

ure 8.3) stores the input data and observed data in table format similar to those in R

language; initial.txt (Figure 8.4) gives the initial values of model parameters; and finally,

script.txt (Figure 8.5) contains the details of the Markov chain, such as how many iterations

(line 17 in Fig 8.5), the number of burn-in iterations (line 8), how to thin the chains (lines

9 − 16), which parameters to monitor (lines 9 − 16), etc. Note that chain thinning (e.g.,

adopt every other points in the chain) is necessary to get independent samples since the raw

samples from the Metropolis-Hastings or Gibbs algorithm are correlated.

The sampling can then be performed by the following line:
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jags script.txt

The output contains the posterior chain file and the index file. Tools exist for the post

analysis of these chains, e.g., the coda package1 in the R language.

8.2.2 KIC 3230227: An SB2 with Good RV Phase Coverage

We apply JAGS to fit the radial velocities (RVs) of eclipsing binary KIC 3230227 (Smullen

& Kobulnicky 2015). It represents an example with a good phase coverage of RVs, and in

this case the model parameters have little correlation.

In Figures 8.2 to 8.5 , we show the JAGS code to fit the RVs. The result is shown in

Figure 8.6, and compared with original result in Smullen & Kobulnicky (2015) in Table 8.1.

The correlation plot of orbital parameters is shown in Figure 8.7, which is generated from

the posterior Markov chains of JAGS. We adopt the maximum posterior estimates for the

orbital parameters and their 1 σ uncertainties are derived from the 50± 34% percentiles.

1https://cran.r-project.org/web/packages/coda/index.html
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Figure 8.2 The model.txt file, which contains the JAGS code used to fit the RVs of

KIC 3230227.

For the orbital parameters, we assume that the primary and secondary star have the same

epoch of periastron passage Tperi, orbital period P , eccentricity e, and systemic velocity γ (or

denoted as v0). The argument of periastron ω differs by 180◦. The velocity semi-amplitude

of the two stars K1 and K2 are assumed to range from 20 − 200 km s−1. Note the codes

from line 14 to 20 are used to derive E from M, which is normally realized in a while loop.
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Figure 8.3 The data.txt file, which contains the time of observations (T = t− 2456000.), the

RVs of the two components (rv and rv2) and their weights (1/σ2
RV ) for KIC 3230227.

Figure 8.4 The initial.txt file, which contains the starting values of orbital parameters for

the MCMC of KIC 3230227.
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Figure 8.5 The script.txt file, which specifies the needed input model (model.txt), data

(data.txt), and initial values of parameters (initial.txt), as well as the details of Markov

chains from the Gibbs sampler. Line 17 specifies the number of iterations, the number of

burn-in iterations is in line 8, lines 9−16 contain information on which parameters to monitor

and how to thin the chains.
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Figure 8.6 The radial velocities of KIC3230227 from Smullen & Kobulnicky (2015), with

the best fit model (green and red solid lines) and the ±2σ credible regions (gray shaded).

Diamonds (plus signs) represent radial velocity measurements from the primary (secondary)

star.
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Figure 8.7 Correlation plot for the orbital parameters of KIC 3230227 from the Markov

chains. The parameters on the horizontal axis (from left to right) are e, ω,K2, γ,K1, P, and

Tperi.
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Table 8.1: Comparisons of Derived Orbital Elements For

KIC 3230227

Parameter This Work Smullen & Kobulnicky (2015)
P (days) 7.051± 0.002 7.051± 0.001
Tperi (HJD-2,450,000) 4958.79+0.05

−0.04 6311.76 ± 0.03
e 0.60± 0.02 0.60 ± 0.04
ω (deg) 294± 2 293 ± 4
K1 (km s−1) 98.4+2.5

−2.4 98.5 ± 5.4
K2 (km s−1) 104.7+2.9

−2.8 104.9 ± 6.1
γ (km s−1) −15.7± 0.9 −15.7 ± 1.7
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8.2.3 Bayesian Experimental Design: Next Observation?

The spectroscopic follow-up of binary stars or exoplanet host stars needs a lot of telescope

time. Thus it is important to optimize the observations. Given that we already have several

RV data points, our question is when we shall observe for the next data point so that the

parameters of interest can be mostly constrained. This is a problem of experimental design

which is a common need in scientific exploration.

Following Loredo & Chernoff (2003), we consider this problem in the Bayesian framework.

The likelihood function is :

P (v|t,θ) = N(v|modelv, σ2
v) (8.12)

where the modelv is

modelv(t,θ) = K[cos(ν + ω) + e cos(ω)] + γ. (8.13)

It means that given the time t and orbital parameters θ = (P, T0, e, ω, γ,K), we can fit the

observed RVs (the data v), and these data are Gaussian distributed around the predictions

of modelrv with standard deviation σv (measurement errors).

We have considered the problem of inferring the posterior orbital parameters P (θ|D)

after we have the data D in the previous section. Using the terms in machine learning, we

have used the training data set D = (v, t) to infer the posterior distribution of parameters

P (θ|v, t). Note here we use bold notation for v and t since we assume we have more than

one training data point (RVs). Now for a new observation performed at tnew, if we know the

orbital parameters exactly, the predicted RV value vnew is just the likelihood function again,
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evaluated at the tnew: P (vnew|tnew,θfixed). However, we do not know the orbital parameters

θ for sure, and we only have the posterior distribution of θ. Thus the predicted RV value

vnew at tnew after taking into account the uncertainties of the posterior of θ is now called

the posterior predicted probability density of vnew: P (vnew|tnew,D) = P (vnew|tnew,v, t). We

can calculate it by marginalizing over the orbital parameters θ:

P (vnew|tnew, D) = P (vnew|tnew,v, t) =

∫
P (vnew|tnew,θ)P (θ|v, t)dθ. (8.14)

Since we have the posterior samples θi from P (θ|v, t), the above integral can be estimated

by the average value of P (vnew|tnew,θ) evaluated at these samples (assume N points, with

i = 1, 2, · · · , N).

1

N

∑
θi

P (vnew|tnew,θi) (8.15)

The calculation of posterior predictive distribution is very easy in JAGS. After specifying
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the likelihood and priors,

# likelihood function

for(i in 1 : nrv){

v[i] ∼ dnorm( modelrv[i], weight[i] )

modelrv[i]← (equations to get modelrv from t, θ)

}

# priors

e ∼ unif(0, 1)

... (priors for other orbital parameters)

(8.16)

We just add two more lines of code (specifying the likelihood function again but for tnew):

vnew[i] ∼ dnorm( modelrvnew[i], weightnew[i] )

modelrvnew[i]← (equations to get modelrvnew from tnew and θ).

(8.17)

The question of when we should observe next can be answered by simply calculating the

expected information gain for a new observation at tnew:

EI(tnew) = −
∫
P (vnew|tnew, D) log[P (vnew|tnew, D)] dvnew (8.18)

We already have samples from P (vnew|tnew, D) (assuming N points in the Markov chain),

so the above integral is just the expectation of − log[P (vnew|tnew, D) and it is approximately:
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− log[P (vnew|tnew, D) ≈ − 1

N

∑
vnew

log[P (vnew|tnew, D)]. (8.19)

Now we apply the above method to KOI-81. Assume we only have 4 RV points of the

primary star from HST/COS as tabulated in Matson et al. (2015). We assume that the

period P = 23.8760923d and T0 = 54976.07186 (time of primary minimum) are known, and

search for a circular orbital solution e = 0. The only tuning parameters are velocity semi-

amplitude K and systemic velocity γ. We use uniform priors for these two parameters with

the lower and upper boundaries [0, 100] km s−1 and [−20, 20] km s−1, respectively. Figure

8.8 shows the RV curve from the inferred orbital parameters.
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Figure 8.8 The RV data for the primary star of KOI-81 (asterisk) and the best fitting model

(solid green line) with ±2σ credible regions (shaded) plotted as a function of orbital phase.

We then calculate the post-predictive distribution of RVs and the corresponding expected

information gain for a series of 24 new observation times (in days, since Porb ∼ 24 d).

The result is shown in the following folded phase plot (Fig. 8.9). A new observation at

φ ∼ 0.2−0.3 will bring maximum information in terms of constraining the orbital parameters

K and γ.
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Figure 8.9 The expected information gain for 24 new observations in the phase diagram (red

crosses). The asterisks indicate the RV phases of existing data. The best time to observe

for the next RV point is at about φ = 0.2− 0.3, when the information gain is maximized.

As an example for eccentric systems, we also fit the RVs of the primary star in KIC3230227

as described in the last section. We optimize the six orbital parameters P, Tperi, e, ω,K, γ.

Their priors are all uniform distributions. Similarly, we calculated the corresponding ex-

pected information gain for the new observations. As can be seen in the following Figure

8.10, phases close to periastron passage φ = 1.0 are optimal.
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Figure 8.10 The upper panel shows the RVs of the primary star of KIC 3230227 and the best

model with ±2σ credible regions. The lower panel presents the expected information gain

for a series of new observations in the phase diagram (red crosses). The asterisks indicate

the RV phases of existing data. The best time to observe for the next RV point is at about

φ = 0.95, when the information gain is maximized.

Note that the information gain will be different if we want to constrain different orbital

parameters. Although we can sometimes determine the next observing phase from experience

(e.g., to constrain K we may need more quadrature phase observations; to constrain e we

may want more measurements near periastron), it is not always clear from experience which

phase to observe next. The advantage of this Bayesian experimental design is that it can
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determine the best observing time quantitatively by taking into account the existing data

and orbital parameters of interest. The calculation can also be updated on-the-fly once new

RVs are obtained.

There are already a few studies on experimental design in literature (e.g., Ford 2008;

Baluev 2008). The practical application of these methods is more complicated as more

factors like instrument issues, weather, and observing availability, etc. have to be considered.

As the telescope time of spectroscopic follow-up is quite expensive, it is still very worthwhile

to develop and promote these techniques. It is also straightforward to extend these methods

to other types of observations such as photometry, interferometry, etc.

8.3 Two More Applications

To show the potential of JAGS/BUGS and Stan, we apply them to two more problems in

spectroscopic analysis and asteroseismology.

8.3.1 Fitting Stellar Spectra

To infer the atmospheric parameters of stars, it is routine to fit the observed spectra with

synthetic model spectra. The model spectra are usually interpolated from large grids cov-

ering different values of Teff , log g and [M/H]. The stellar spectra are more sensitive to

effective temperature, and less sensitive to surface gravity and metallicity. There are known

correlations between these three parameters, and local optimizers like MPFIT or amoeba

often encounter difficulty in finding the global minimum. It is more advisable to use global

minimizers, for example, we have shown the results of using the genetic algorithm in Chapter
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5. In this section, we will apply JAGS to the problem of inferring the Teff and log g of stars

from their spectra.

Similar to the previous section, we need to specify our likelihood function in BUGS. The

likelihood function in this case does not have analytical expressions, and we can use the

interp.lin function in JAGS to get the model spectra from grids.

As a simple example, we only consider two atmosphere parameters Teff and log g here. It

is straightforward to extend it to cases with more parameters like metallicity. We generated

five grids of spectra and each grid contains 100 rows and 10 columns. Each column is the

spectrum of 100 pixels, corresponding to 10 different effective temperatures stored in the

array ‘teffarr’. The five different grids correspond to the log g values stored in the variable

loggarr = (3.0, 3.5, 4.0, 4.5, 5.0). If we want to create a model spectrum with effective tem-

perature Teff and log g, we can use this following lines to interpolate and get the spectrum

value at pixel i:

modely logg[i, 1]← interp.lin(Teff , teffarr, grids30[i, 1 : 10])

modely logg[i, 2]← interp.lin(Teff , teffarr, grids35[i, 1 : 10])

modely logg[i, 3]← interp.lin(Teff , teffarr, grids40[i, 1 : 10])

modely logg[i, 4]← interp.lin(Teff , teffarr, grids45[i, 1 : 10])

modely logg[i, 5]← interp.lin(Teff , teffarr, grids50[i, 1 : 10])

modely[i]← interp.lin(log g, loggarr,modely logg[i, 1 : 5]).

(8.20)
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The whole model is specified over a wavelength grid enumerated by i :

model{

for(i in 1 : 100){

yobs[i] ∼ dnorm( modely[i], weight[i] )

modely logg[i, 1]← interp.lin(Teff , teffarr, grids30[i, 1 : 10])

modely logg[i, 2]← interp.lin(Teff , teffarr, grids35[i, 1 : 10])

modely logg[i, 3]← interp.lin(Teff , teffarr, grids40[i, 1 : 10])

modely logg[i, 4]← interp.lin(Teff , teffarr, grids45[i, 1 : 10])

modely logg[i, 5]← interp.lin(Teff , teffarr, grids50[i, 1 : 10])

modely[i]← interp.lin(logg, loggarr,modely logg[i, 1 : 5])

chi2[i]← (yobs[i]−modely[i]) ∗ (yobs[i]−modely[i]) ∗ weight[i]

}

chi2all← sum(chi2)

#priors

Teff ∼ dunif( 5000.0, 9500.0 )

log g ∼ dunif( 3.0, 5.0 )

}

(8.21)

Note we have assumed that the observed spectrum yobs is normal distributed with the
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mean modely and variance 1/weight = 0.12. We used a uniform prior distribution for Teff

and log g.

We also need to specify the initial values:

Teff ← 6000.0

log g ← 4.2

(8.22)

and the data:

teffarr <- c(5000.0,5500.0,6000.0,6500.0,7000.0,7500.0,

8000.0,8500.0,9000.0,9500.0)

loggarr<- c(3.0,3.5,4.0,4.5,5.0)

grids30 <- structure(

c( 0.59723,

0.53844,

...

0.93176, 0.92807),.Dim=c(100,10) )

similarly for grids35, grids40, grids45, grids50

# observed spectrum

yobs<- c(

0.89360,

...
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0.73186)

# weight=1/sigma_{yobs}^2=1/0.1^2

weight<- c(

100.0

...

100.0)
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Figure 8.11 The best-fit spectrum (red solid) with parameters [Teff , log g, log z, v sin i] =[6833

K, 3.87, 0.0, 20.0 km s−1] and its ±2σ credible regions (gray shaded). The simulated observed

spectrum [Teff , log g, log z, v sin i] =[6805 K, 4.0, 0.0, 20.0 km s−1 ] is indicated as the green

solid line. The wavelength range is from 4020.06Å to 4055.19Å.

The simulated observed spectrum shown in Figure 8.11 covers the wavelength range from

4020.06Å to 4055.19Å. It is from the UVBLUE library with a random Gaussian noise added.

The resulting best model is also shown in Figure 8.11. The posterior distributions of Teff

and log g are shown in the Figure 8.12 with 80000 samples. The true value of Teff is 6805

K and the inferred value is 6833+100
−95 K. The log g value is not very well constrained partially
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because we only chose a very narrow spectral range of 100 pixels in which features are

relatively insensitive to pressure. We can distinguish high log g values (> 4.4), and all low

log g values fit the spectrum equally well. The true log g is 4.0, and the inferred log g is

3.87+0.6
−0.6.

Figure 8.12 The posteriors of Teff and log g.
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8.3.2 Fitting the Noise Background in the Power Spectrum Density of
Solar-like Oscillators

The Kepler satellite observed hundreds of main sequence solar-like oscillators and tens of

thousands of solar-like oscillating red giants. As a routine to analyze their oscillation spec-

trum, we need to fit their noise background and their Lorentzian profiles of oscillation fre-

quencies.

The noise background in the power spectral density is generally modeled with the fol-

lowing equation:
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Figure 8.13 The power spectral density of a simulated solar-like oscillator, with parameters

that resemble KIC 9139163 (Corsaro & De Ridder 2014). The observed PSD with noise is

indicated by the black solid line. The green line is the real model without noise. The best fit

model from MCMC is represented by the red solid line with the 2σ credible regions shaded.

The lines in color indicate the four components (see text).

P (ν,θ) = W +

[
sinc2

(
πν

2νnq

)]
×(

aν−b +
4τ1σ

2
1

1 + (2πντ1)c1
+

4τ2σ
2
2

1 + (2πντ2)c2
+Hosc exp(−ν − νmax

2σ2
env

)

)
.

(8.23)
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The components in the equation are shown in Figure 8.13. W (yellow line) is the constant

noise level. aν−b is the blue line, which represents the power law that represents slow vari-

ations caused by stellar activity. Purple and pink lines are the two Harvey-like Lorentzian

profiles
4τ1σ2

1

1+(2πντ1)c1
+

4τ2σ2
2

1+(2πντ2)c2
; τ1, τ2 are the characteristic timescales; σ1, σ2 are the ampli-

tudes of the signature; and c1, c2 are the corresponding exponents related to the decay time

of the physical process involved.The Gaussian component Hosc exp(−ν−νmax
2σ2
env

) is the power

excess caused by solar-like oscillations with Hosc as the amplitude of the oscillation envelope,

and νmax and σenv as the corresponding frequency of maximum power and width, respec-

tively. The sinc2
(

πν
2νnq

)
term, which multiplies each term except for the constant noise is

the response function of the sampling rate of observed time series. The Nyquist frequency

νnq of Kepler short cadence data is 8496.36 µHZ.

We optimize 12 parameters θ = (W,a, b, τ1, σ1, τ2, σ2, Hosc, νmax, σenv). Following Corsaro

& De Ridder (2014). we use uniform priors for these parameters except for a. A uniform

prior in logarithm which is called a Jeffreys prior, 1/a is used in Corsaro & De Ridder

(2014). We instead use a similar non-informative prior Gamma(ε, ε), and this distribution is

essentially the same as Jeffreys prior when ε is very small. We set ε as 0.01.

The Bayesian inference result is shown in Figure 8.13. JAGS recovered the actual values of

parameters with reasonable uncertainty estimates. The JAGS code is shown in the following.

This application of JAGS is inspired by the online notes2 by Andres Garćıa Saravia Ort́ız

de Montellano at Max Planck Institute for Solar System Research. I am inclined to apply

JAGS to more asteroseismic problems, for example, fitting the individual frequency profile

2https://research-engine.appspot.com/45001
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in the power density spectrum of solar-like oscillators.

model{

pi <- 3.14159265358979

nuNyq<- 8496.36

#likelihood

for (i in 1:100){

# loop over frequency index

psd[i] ~ dnorm( modelpsd[i],weight[i] )

modelpsd[i] <- W

+( sin(pi*nu[i]/(2*nuNyq))/(pi*nu[i]/(2*nuNyq)) )^2

*( ( a*(nu[i])^(-b) )

+4.0*tau1*sig1^2 / (1.0+ (2.0* pi * nu[i]* tau1)^{c1})

+4.0*tau2*sig2^2 / (1.0+ (2.0* pi * nu[i]* tau2)^{c2})

+H_osc * exp(-(nu[i]- numax)^2/(2 * sig_env^2)) )

chi2[i]<-(power[i]-modelpsd[i] )^2*weight[i]

}

chi2all <- sum(chi2)
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# priors

W ~ dunif(0.01,1.0)

a ~ dgamma(0.01,0.01)

b ~ dunif(0.1,10)

H_osc ~ dunif(0.01,1.0)

numax ~ dunif(1000.0,3000.0)

sig_env ~ dunif(50.0,400.0)

tau1~ dunif( 0.00001,0.001)

sig1~ dunif(1.0,100.0)

c1 ~ dunif(1.0,15.0)

tau2 ~ dunif( 0.00001,0.001)

sig2 ~ dunif(1.0,100.0)

c2 ~ dunif(1.0,20.0)

}

8.4 Bayesian Model Comparison

We often encounter model comparison problems in binary star studies. For example, in

fitting the radial velocities of binary stars, we may want to determine whether the orbit

is significantly eccentric; in analyzing double-lined spectra, we may need to know if the
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spectrum has one or two components. Traditionally, these questions are answered by some

frequentist testing. Bayesian statistics provide a nature solution to these problems of model

comparison.

8.4.1 Bayesian Evidence From Tempered Posteriors

The posterior samples from the MCMC can be used to infer the optimal parameters and

uncertainties, but generally cannot be used to calculate Bayesian evidence P (y) for model

comparison. There is a simple way to calculate marginal likelihood called thermal dynamic

integration (Gelman & Meng 1998). This method needs to do MCMC for a series of different

tempered posteriors.

Let’s apply this method to the problem of fitting a RV curve. Assume each RV datum

point yi is normal distributed with the mean rvmodel and standard deviation σrv, so the

likelihood function is L(θ) = P (yi|θ) = N(rv|rvmodel, σ2
rv), and in natural logarithm:

lnN(rv|rvmodel, σ2
rv)

= (−1

2
) log(2πσ2)− 1

2

(rv − rvmodel)2

σ2
rv

= (−1) log(
√

2πσ)− 1

2

(rv − rvmodel)2

σ2
rv

.

(8.24)

We assume uniform priors for the fitting parameters θ = (e, ω,K, v0), so the posterior is

P (θ|yi) ∝ P (yi|θ)P (θ) ∝ P (yi|θ). The tempered posterior is then proportional to tempered

likelihood: P (θ|yi)β ∝ P (yi|θ)β, and in natural logarithm:
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lnN(rv|rvmodel, σ2
rv)

β

= (−1)β log(
√

2πσ)− 1

2
β

(rv − rvmodel)2

σ2
rv

= term1 + term2

(8.25)

To calculate Bayesian evidence, we need posterior samples from a series of β in the range

of 0 − 1, where 1 corresponds to the original non-tempered posterior and 0 corresponds

to the prior. The normal distribution x ∼ N(x|µ, σ) is easily specified in BUGS language

as x ∼ dnorm(µ, 1/σ2). An important difference in notation is that BUGS/JAGS use the

precision 1/σ2 instead of variance σ2. We use the notation weight = 1/σ2 here.

There is no distribution in the form of N(x|µ, σ)β in BUGS/JAGS. But we can bypass

this problem by using the ‘Zero Trick’. The key insight is that the negative log-likelihood of

a sample of 0 from Poisson(λ) is λ (the expected number of occurrence rate),

P (x = k) = Poisson(x|λ) =
λke−λ

k!
(8.26)

and when we force x = k = 0 to be observed,

P (k = 0) =
λ0e−λ

0!
= e−λ (8.27)

Thus, lnP = −λ and if the distribution λ can be expressed in BUGS language, then we
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can get samples from λ with the following lines:

C ← 1000

λ← −(term1 + term2) + C

zeros← 0

zeros ∼ dpois(λ)

(8.28)

where C is an arbitrary constant which forces λ to be positive. So, by setting log λ appro-

priately, and forcing 0 to be observed, sampling effectively proceeds from the distribution

defined by λ (Lee & Wagenmakers 2014).

Figure 8.14, 8.15, and 8.16 show the JAGS code to fit simulated RV data (20 data

points), and we have used 60 different β values. After we get 60 different posterior samples,

we evaluate the original non-tempered likelihood lnL(θ) (the realloglike variable in the

code) with these tempered samples and calculate the mean value for each (we denote it as

< lnL(θ) >β). Then finally (Gregory 2010), the Bayesian evidence can be calculated from

these mean values and the beta values by this integral:

lnZ =

∫ 1

0

< lnL(θ) >β dβ. (8.29)

Figure 8.17 shows this integral for the aforementioned example. Below is the BUGS/JAGS

code for the Keplerian problem using the tempered posteriors (compare with Figure 8.2 ear-

lier in this chapter).



340

Figure 8.14 The model.txt file which contains the JAGS code for Bayesian evidence calcula-

tion with samples from tempered posteriors.
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Figure 8.15 The data009.txt file which contains the observed RVs (rv) and their uncertainties

(sigrv) at orbital phases (phi). The beta variable contains the series of powers from 0 to 1.

And we also need an auxiliary variable called zeros, which is used to calculate the tempered

posteriors with the ‘zero trick’.
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Figure 8.16 The script.txt file. We need Markov Chains of four parameters K, v0, e, ω as well

as the log likelihood values (loglike2) evaluated at the tempered posterior samples.
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Figure 8.17 The < lnL(θ) >β as a function of β. The log evidence is just the area under

the cyan curve.

After the Bayesian evidence is calculated for each model or hypothesis (e.g., we have two

models here, H1 and H2, for example, for a circular and elliptical orbit solutions), the model

comparison can be performed by evaluating the evidence ratio, or Bayes factor:

BF12 =
P (D|H1)

P (D|H2)
(8.30)

Jeffreys’ scale is often used to decide which model is favored (Figure 8.18).
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Figure 8.18 The Jeffrey scale from Table 7.1 in Bayesian Cognitive Modeling (Lee & Wagen-

makers 2014), originally in Jeffreys (1961).

This can be extended to cases of more than two models, and we then need to calculate

the Bayes factor for each model pair.

8.4.2 Bayes Factor for Nested Models: Savage-Dickey Ratio

For nested models, there exists a much simpler way to calculate Bayes factors. For example,

if the model H0 is a special case of model H1 by setting a parameter θ to a fixed value θ0,

then model H0 is called nested in model H1. In this case, the Bayes factor can be calculated

from the Savage-Dickey ratio (Lee & Wagenmakers 2014):

BF01 =
P (D|H0)

P (D|H1)
=
P (θ = θ0|D,H1)

P (θ = θ0|H1)
=
posterior at θ0

prior at θ0

(8.31)

This means we only need the posterior sample from Model H1, and the Bayes factor is

from the ratio of posterior density and prior density evaluated at θ0.
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An application of the Savage-Dickey ratio method is testing whether the RV curve is

significantly elliptical, because the circular model is a special case of the eccentric model

with e = 0.

We generated simulated RV data in the following manner: we fixed e to 0.05, randomly

chose a fixed value for other orbital parameters (K,ω, v0), and then generated 20 random

phases from 0 to 1; the model RVs are calculated with the RV equation in eq. (8.8); then

independent Gaussian noise is added to model RVs to get observed RVs. We then sample

from the posterior of e with other orbital parameters fixed to the real values. Here we show

the posterior and prior for eccentricity e in Figure 8.19. Usually a uniform prior from 0 to 1 is

used for eccentricity. However, we used a Beta prior (green dotted line) here to show that the

Savage-Dickey ratio method works well for any choice of prior. The Beta distribution is a very

flexible distribution defined on the interval [0, 1], which is appropriate for the distribution

of eccentricity. Its probability density function is P (x) = xα−1(1 − x)β−1/B(α, β), where

B(α, β) is defined with the Gamma functions by B(α, β) = Γ(α)Γ(β)/Γ(α + β).
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Figure 8.19 The posterior and prior distributions from fitting a RV curve with e = 0.05. A

beta prior is used for the eccentricity e. The Bayes factor of two hypothesis H1 : e = 0.03

and H2 : e 6= 0.03 can be calculated by the ratio of the posterior and the prior evaluated at

e = 0.03 (indicated by the red and green dots). And similarly for e = 0.0.

The Bayes factor is then the ratio of posterior and prior evaluated at e. This is shown as

the dotted black line in Figure 8.20. To test the reliability of this method, we also calculated

the Bayes factors from the nested sampling package MULTINEST (Feroz & Hobson 2008),

which is indicated as the red solid line. There is good agreement between the Bayes factor
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estimates from the two methods.

Figure 8.20 The Bayes factor BF01 (dotted gray) from the ratio of posterior (black solid) and

prior (not shown) distribution from fitting a RV curve with e = 0.05. The red solid curve

is the BF01 calculated from MULTINEST package which implemented the nested sampling

algorithm to calculate Bayesian evidence.
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8.5 Hierarchical Bayesian Models

Previously, we have shown the graphical model of fitting RV curve of one system, and the

model function is

y(t,θ) = K[cos(ν + ω) + e cos(ω)] + γ (8.32)

where the model inputs are the HJD times t, and model parameter vector is θ = (T0, P, γ,K, e, ω).

Here we explicitly show each orbital parameter,

y(t, T0, P, γ,K, e, ω) = K[cos(ν + ω) + e cos(ω)] + γ. (8.33)

Now, suppose we want to fit the RV curves of a population of stars (i = 1, 2, 3, ...N), and

this population shares the same eccentricity distribution. To parameterize the population

distribution of e, we followed Kipping (2013) and assumed a Beta distribution P (e|a, b) =

Beta(e|a, b). Note that Beta distribution is quite flexible and is able to represent many distri-

butions (e.g., exponential distribution, etc.). Kipping (2013) compared several distributions

for exoplanets (uniform, Rayleigh+exponential, etc.) and found that the Beta distribution

best describes the observed eccentricity histogram in terms of Bayesian evidence. We assume

uniform priors for other orbital parameters (T0, P, γ,K, ω), and thus the prior distribution is

then P (θi, a, b) = P (ei, a, b)P (T0i, Pi, γi, Ki, ωi). Note that we have explicitly used the index

i to show that the distribution is for the ith system. To evaluate P (ei, a, b), the population

distribution parameters a and b are treated as hyper-parameters, and we assume hyper-priors

for a and b: P (a) and P (b). So P (ei, a, b) = P (ei|a, b)P (a, b) = Beta(ei|a, b)P (a)P (b). The

whole parameter set is [θ = (θ1,θ2, ...θN), a,b]. Assuming that each system is independent,
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we can write the posterior distribution as follows,

P (θ, a, b|y) ∝ P (y|θ, a, b)P (θ, a, b)

= P (a)P (b)
∏
i

P (y|θi, a, b)
∏
i

P (θi, a, b)

= P (a)P (b)
∏
i

P (y|θi, a, b)
∏
i

P (ei|a, b)P (T0i, Pi, γi, Ki, ωi)

= P (a)P (b)
∏
i

P (y|θi, a, b)Beta(ei|a, b)P (T0i, Pi, γi, Ki, ωi).

(8.34)

We generated simulated RV data for 300 stars, and each system has different orbital pa-

rameters. We generated 300 samples from a Beta distribution Beta(a, b) = Beta(0.867, 3.03)

and set these values as the eccentricities. The other parameters (ω,K, v0) are randomly sam-

pled from uniform distribution with lower and upper bound (0◦, 360◦), (0, 30) km s−1, and

(−10, 10) km s−1, respectively. Note that without lost of generality, we assume T0 and P are

known, i.e., we assume the phases of RVs are already specified.

The following Figure 8.21 shows the graphical model for this problem. Note that the red

plate (rectangle) means replication.
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Figure 8.21 The graphical model of fitting N = 300 systems in order to find the population

eccentricity distribution.

In BUGS language, the model can be expressed as in the following Figure 8.22.
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Figure 8.22 The JAGS code of fitting RVs of 300 systems (model.txt file).

The following Figure 8.23 presents the result. Our inferred posteriors for a and b are very

close to the true values.

The traditional method to infer the eccentricity distribution is to fit the RVs of each

individual system and find the point estimate eccentricity ei for each one. Using these ei, we

generate an observed histogram for e, and we use some assumed parameterized distribution

to fit the histogram. This procedure is affected by the choice of histogram bin-size. The

adopted different point estimate (MAP, mean, median) for ei will also change the shape of

the histogram.
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This hierarchical method has the advantage of directly inferring the distribution param-

eters (a and b) and thus produces more reliable results. A drawback is that problem needs

a little bit more complicated formulation. BUGS/JAGS and Stan, which are designed to

work with hierarchical Bayesian models, make the formulation and sampling much easier for

practitioners.

Figure 8.23 The lower panel shows the distribution of eccentricity from samples of all 300

posteriors. The black and pink solid line are the real and inferred eccentricity distribution

parameterized as Beta(a, b). The upper panel shows the posterior distribution of hyper

parameters a and b.
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CHAPTER 9

Bayesian Spectral Tomography

We discuss the spectra separation techniques of multiple stellar systems. The current meth-

ods in the literature are essentially based on solving an over-determined, ill-posed, least

squares problem either in the wavelength domain or Fourier domain. The techniques include

the iterative methods and those that based on Singular Value Decomposition (SVD). First,

we propose different iterative methods and test their convergence properties and speeds.

We then show that by solving a revised least squares problem with regularization we can

incorporate the prior knowledge of the spectra into the reconstruction process. Thirdly,

we reformulate the SVD method in a more explicit elegant form by taking advantage of the

properties of the circulant matrix and introduce regularization as well. Lastly, we summarize

all these methods in the framework of Bayesian inference including the Tikhonov regulariza-

tions. These regularizations can improve the quality of the reconstructed spectra, and this

is especially valuable for studies of systems with a faint component.

9.1 Introduction

Binary stars or multiple systems are important sources where we can get accurate stellar

parameters like mass and radius (e.g., eclipsing binaries). The observed composite (double-

lined) spectra cannot be analyzed in a straightforward manner as for normal single-lined

spectra. Popular methods include those based on cross-correlating the observed spectra with

template spectra, either one-dimensional or two-dimensional (e.g., TODCOR by Mazeh &

Zucker 1994). By comparing the peak heights of cross-correlation functions, we can also
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find the best spectral templates so that individual atmospheric parameters can be inferred.

However, this is not always possible if the secondary component is very faint. It is often

advantageous to separate the spectra of the components in multiple stellar systems, so that

the nature of the faint companion can be identified (Matson et al. 2015).

The problem of spectral separation is a classical tomography problem, which has been

studied extensively in other fields (geophysics, medical imaging, etc.). However, it was

not introduced in the context of spectroscopic binaries until the application presented by

Bagnuolo & Gies (1991). The developments of spectral separation techniques are presented

in section 9.2. For a brief review, please refer to Gies (2004).

We formulate the problem of separating the component spectra of a multiple stellar

system closely following Hensberge et al. (2008). The stellar system consists of K stars

k = 1...K, and we assume the individual spectrum of each component does not depend

on orbital phase. The light from each star adds up linearly to get an observed composite

spectrum. We have J composite spectra bji observed at time tj(j = 1, 2, · · · , J). The

component and composite spectra are discretized onto a common grid of log-wavelength

(base e) pixels: lnλi, i = 1, 2, · · · , N . The advantage of log-wavelength grid can be seen from

the equation dv/c = dλ/λ = d lnλ, and thus shifts in wavelength and velocity space are both

linear. The Doppler shift of component k at tj is βkj pixels, and the light contribution factor

of this star at the pixel i is represented by lkji. These contribution factors satisfy the relation

(
∑K

k=1 lkji = 1). We can usually assume a constant light ratio over all orbital phases, and

lkji simplifies to lki. If the light ratio is independent of wavelength, lki further reduces to lk.
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Then the composite spectra bj(lnλi) can be related to the component spectra xk(lnλi) by

the following linear relation:

bj(lnλi) =
K∑
k=1

lkj xk(lnλi − βkj) + noise, j = 1, 2, · · · , J. (9.1)

Note that in order to use the above equation the component spectra need to have more pixels

than N to account for Doppler shifts. Since eq. (9.1) is linear with respect to xk, we can

write it in a compact matrix form:

Ax = b (9.2)

and we call it the linear tomography equation. We define x a (
∑K

k=1Nk)×1 vector, concate-

nated by the K component spectra, of which each has Nk pixels. We call it the model vector,

and it is the unknown we wish to determine. b is a (N × J)× 1 vector, concatenated by the

J observed composite spectra, and we call it the data vector. A is called the design matrix,

and it includes the effects of Doppler shifts and light contribution from each component. A

can be treated as a linear operator that maps the model vector x to the data vector b. The

matrix A is very sparse, composed of J×K blocks, and the jkth block of A is just a diagonal

matrix with the diagonal shifted by βkj pixels and multiplied by a constant lkj. Please see

Figure 9.1 for a detailed illustration of the structures of A. Equation (3) shows explicitly the

corresponding structure of equation (2). In Figure 9.1 we show a toy example for a binary

system K = 2, with J = 3 observed composite spectra and each has N = 8 pixels. The

star 1 and star 2 have RVs of (−1.6, 0, 1.6) and (0.8, 0,−0.8) pixels, flux contributions of

0.75 and 0.25, respectively. This is similar to the example in the Appendix of Hensberge et
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al. (2008). We have explicitly shown the fractional pixel shifts which are represented by a

linear combination of two diagonals corresponding to the upper and lower integer shifts. The

design matrix has a dimension of 3N by 2N + 6, and the 6 extended columns corresponds

to the maximum Doppler shifts in RVs.

 A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

 .

(
x1

x2

)
=

 b1

b2

b3

 (9.3)

To illustrate the performances of different algorithms described below, we make a syn-

thetic binary system composed of two B stars. The original component spectra are taken

from the high resolution spectral library UVBLUE (Rodriguez-Merino et al. 2005), with

the same effective temperature, surface gravity, and projected surface rotational velocity

T1 = T2 = 12000 K, log g1 = log g2 = 3.0, v sin i1 = v sin i2 = 100 km s−1. Both stars have

solar metallicity and microturbulence velocity of 2 km s−1. The flux contributions from the

primary and secondary star are 70% and 30%, respectively. The two component spectra are

shifted in accordance with their RVs and added linearly to simulate the observed composite

spectra. Poisson noise with the mean value of 1/50 is added. In this example, we have 5

observed spectra corresponding to 5 pairs of RVs. These RVs range from 4 to 5 pixels.
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9.2 Spectral Separation in the Wavelength Domain

9.2.1 Traditional Least Square Problems

Figure 9.1 The design matrix in wavelength domain similar to Figure 1 in Hensberge et al.

(2008). Fractional pixel shifts are explicitly shown. The Doppler shifts are (1.6, 0,−1.6)

pixels for the primary, and (−0.8, 0, 0.8) pixels for the secondary. Note in the first and third

row, the fractional pixel shifts are approximated by a linear combination of two adjacent

integer pixels. The design matrix has a dimension of 3N by 2N + 6 with N = 8. The 6

extended columns correspond to the maximum Doppler pixel shifts of 2 + 2 + 1 + 1.
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The spectral separation problem reduces to solving for x given b and A in the equation

Ax = b. The naive solution of A−1b is not applicable, because matrix A is often rank

deficient and not invertible by a direct method like Gauss elimination. Even when the

inverse of A exists, this naive solution A−1b can greatly magnify the noise in b, making the

solution essentially meaningless. Usually K < J , and thus it is an overdetermined linear

inverse problem in which there is no solution that satisfies equation (9.2) exactly. We can

find a solution that minimizes L2 norm of residuals. The objective function we need to

minimize in this least squares case is:

minimize |Ax− b|2. (9.4)

This standard linear equation, usually in an intermediate or large scale, is often solved

by an iterative method. First, we have an initial estimate of the component spectra, x(0).

We then improve the spectra at each iteration (e.g. the ith) by adding a correction term,

x(i+1) = x(i) + δx(i). We iterate until the residual is smaller than some small number ε

(|Ax− b|2 < ε).

Different iterative methods differ in the correction term δx. Bagnuolo & Gies (1991)

(BG91) solved this spectra separation problem by applying the (ILST) Iterative Least Square

Technique. Their algorithm is very similar to the Kaczmarz’s algorithm (Aster et al. 2012).

It updates the model in the ith iteration by projecting the current model x(i) onto the

hyperplane defined by the (i + 1)th row (or column in Bagnuolo & Gies) of A. This can be
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written in a compact form following Aster et al. (2012):

δx(i) =
bi+1 −Ai+1,.x

(i)

Ai+1,.AT
i+1

AT
i+1δ (9.5)

where δ is a factor to facilitate convergence and ranges from 0 to 1; it is similar to the

learning rate in neural network optimization. Ai+1,. is the (i + 1)th row of A. bi+1 is the

(i + 1)th element of vector b. The above equation should be compared to equations (1)

and (2) in the original paper by Bagnuolo & Gies. This is essentially a gradient descent

method with the search direction δx(i) at iteration i along the greatest descent direction.

It is similar to the ART (Algebraic Reconstruction Technique) and SIRT (Simultaneous

Iterative Reconstruction Technique) algorithm widely used in the field of medical image

reconstruction (Aster et al. 2012). This algorithm will converge to a local minimum close to

the initial estimate.

Another iterative method, the conjugate gradient method is better suited to solve this

problem. At each iteration i, instead of searching along the greatest descent direction at

current position xi, the algorithm uses a new direction δx(i+1) constructed by the current

gradient and the previous search direction δx(i), so that the new direction and the previous

direction are orthogonal to the matrix H (the Hessian matrix1 ) at the current position xi,

δx(i+1)Hδx(i) = 0. (9.6)

1Hessian matrix is a square matrix of second-order partial derivatives of a scalar-valued function. For a

scalar function f(x) with an input vector x ∈ Rn, its Hessian is Hi,j = ∂2f
∂xi∂xj

.
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The conjugate gradient iterative method has better convergence performance, and the final

solution usually has smaller residuals comparing with the Kaczmarz algorithm used in BG91.

The new revision such as the code lsqrCOV (Paige & Saunders 1982) developed by the

Systems Optimization Laboratory at Stanford can output the covariance matrix at each

iteration, which facilitates the error estimation of the reconstruction.

As an example, we use the LSQR algorithm, which is widely used in solving geophysics

inverse problems, to reconstruct the component spectra of the aforementioned synthetic

binary system. The squared residuals are plotted as a function of iteration number. The

conjugate gradient method has a similar convergence speed but it converges to a solution

with smaller squared residuals (0.145) comparing with the Kaczmarz’s algorithm (0.229)

used in BG91.
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Figure 9.2 Upper panel: The convergence of conjugate gradient method LSQR (red) and

the Kaczmarz algorithm used in BG91 (green). Lower panel: reconstructed spectra (star 1

on the left, star 2 on the right, separated by the dotted dividing line) by using the algorithm

LSQR (red) and BG91 (green) after 100 iterations, and the real component spectra are

shown in black. The residuals (two flat lines at the bottom) are indicated by the same color

but shifted downwards by −0.3 and −0.4 for clarity.

It is also possible to further improve the convergence by using other iterative methods

which take advantage of the non-negativity or other constraints of the matrix elements. For
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a thorough discussion, please refer to Berisha & Nagy (2012).

Another important technique of solving the least squares problem is Singular Value De-

composition (SVD). SVD is a widely used technique in many different fields. Its applications

can also be found in geology, image compression, image de-blurring and de-noising, etc. It

was first implemented by Simon & Sturm (1994) for spectral separation. They also consid-

ered the design matrix A as a function of orbital parameters, and thus got the optimized

orbital parameters along with reconstructed spectra x. This procedure is since called spec-

tral disentangling in literature. A direct implementation of SVD for large scale problems

is computational expensive, and it is usually required to exploit the sparse property of the

matrix A. The innovations by Hadrava (1995) and Ilijic et al. (2004) solve equation (9.2) in

the Fourier domain, which makes the computation much more efficient.

In SVD, a m by n matrix A is factored into three matrices,

A = USVT (9.7)

where U is an m by m orthogonal matrix, V is an n by n orthogonal matrix, and S is an m by

n diagonal matrix with diagonal elements called singular values. The singular values along

the diagonal of S are customarily arranged in decreasing size s1 ≥ s2 ≥ ... ≥ smin(m,n) ≥ 0.

If the first p singular values are nonzero, we partition S as

S =

[
Sp 0
0 0

]
(9.8)

and equation (7) simplifies to A = UpSpV
T
p , where Up and Vp is the first p columns of U

and VT . We thus have the SVD solution to equation Ax = b:
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xSVD =
(
VpS

−1
p UT

p

)
b = A†b. (9.9)

A† is the pseudo-inverse matrix of A. In practical applications, we often treat singular values

that are smaller than a certain limit as zero, and we call the eq. (9.9) the truncated SVD

solution. The codes Korel and FDBinary by Hadrava (1995) and Ilijic et al. (2004) are both

based on truncated SVD solutions.

The uncertainties of the SVD solution can be quantified by the model resolution matrix

defined by R = A†A. The SVD solution xSVD is related to the true (error free) solution

xtrue by,

xSVD = Rxtrue = A†Axtrue. (9.10)

It usually suffices to use the diagonal elements of R to infer the uncertainties. Values

of 1.0 suggest full reconstruction, and the differences from unity represent the fractional

uncertainties.

Note that there is an ambiguity in the least squares solution: by adding or subtracting

a constant continuum from the reconstructed spectra, equation 9.2 can still be satisfied.

This can be seen in the upper right panel of Fig. 9.4: there is a vertical displacement

between the reconstructed component spectra (black) and the real component spectra (red).

This ambiguity is related to the flux ratio, and it can usually be resolved by comparing

reconstructed and model spectra.

Other methods for the reconstruction of component spectra include minimizing eq. (9.4)
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by a constrained non-linear least square minimizer LBFGS (Byrd et al. 1995) as in Harries,

Hilditch, & Howarth (2003). This algorithm (LBFGS) is suitable for large scale, non-linear

parameter optimization problems.

9.2.2 Spectra Separation with Regularization in Wavelength Domain

In the classical spectra separation techniques, the reconstructions completely depend on the

observed data (the composite spectra). In real applications, we want to incorporate our

prior knowledge of the stellar spectra into the reconstruction process. One way to achieve

this is to use regularization, which has been widely used in the fields such as interferometric

imaging. In the classic Tikhonov regularization (Aster et al. 2012), instead of minimizing the

least squares, we penalize the least squares solution by adding an extra term, representing

our certain prior knowledge of the solution,

minimize |Ax− b|2 + α2|L(x− xprior)|2 (9.11)

where xprior represents the prior mean of the solution (initial estimate of component spectra),

α is a scalar regularization parameter, and L is the Tikhonov matrix which can have different

forms.

In the zeroth order Tikhonov regularization, L = L0 = I (I is the identify matrix), and

we regularize our solution to match our prior mean xprior. In the first and second order

Tikhonov regularization, L = L1 or L2, where L1 and L2 are the first and second finite

difference matrices:
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L1 =


−1 1

−1 1
. . . . . .

−1 1
−1 1

 , L2 =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1

 (9.12)

Note that if x ∈ Rn, then the L1 and L2 are of dimensions (N − 1)×N and (N − 2)×N ,

respectively. In these cases, we regularize our least squares solution so that L1x is close to

the derivative of our prior mean L1xprior (or convexness and concaveness L2xprior in 2nd

order Tikhonov regularization). The above regularized least squares problem can be written

as an ordinary least squares problem:

minimize

∣∣∣∣[ A
αL

]
x−

[
b

αLxprior

]∣∣∣∣2 . (9.13)

Thus we can solve this least squares problem by utilizing the SVD for the augmented

matrix

[
A
αL

]
= UpSpV

T
p , so that the solution is xT ikhonov = VpS

−1
p UT

p

[
b

αLxprior

]
. A

standard least squares solution to eq. (9.4) given by SVD is a mathematically correct global

minimum, but it often contains some low frequency modulation which is not physical. This is

due to the fact that the Doppler shifts set the velocity range over which reconstructed features

are unambiguous. What we really need are continuum normalized, smooth reconstructed

spectra. This is achieved this by solving eq. (9.13).

The regularization parameter α is very important. The best α should minimize |x− xreal|

which is not known. We need a way to estimate regularization parameter α from the data

at our disposal. There are several such methods such as the discrepancy principle, L-curve

method, Generalized Cross Validation (Hansen 2010), Maximum Bayesian Evidence, and
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hierarchical models. We use the intuitive L-curve method here. In later sections, we use

Bayesian evidence to choose the appropriate regularization parameter. The L-curve diagram

is a plot of squared residuals |Ax− b|2 and the difference between the regularized solution

and the prior |L(x− xprior)|2 for different values of the regularization parameter α. Usually

a search from 10−2 to 102 uniformly in logarithm scale is satisfactory. Such a plot is shown in

Figure 9.3, with best regularization parameter α marked at the point of maximum curvature.

In Figure 9.4, we show the reconstructed spectra of two components for the same synthetic

binary system mentioned above. In this example, we apply two prior spectra xprior1, xprior2

for the two components. The prior spectrum can be, e.g., a flat continuum, a low order

polynomial depicting the overall trend of the spectra, or some real atmosphere model. The

regularization parameter α is determined by the L-Curve method. With regularization, the

reconstructed spectra will then be set to the correct continuum level and have a much smaller

χ2. Note the priors on the component spectra do not have to be very good, even a very bad

initial estimate with Teff , log g, and v sin i off by 3000K, 1.0 dex and 100 km s−1 can get

a better overall reconstruction, especially if we only use its low frequency components. We

have the best reconstruction when the adopted prior mean is closest to the true component

spectra (the 3rd and 4th panel in Figure 9.4), which correspond to the low frequency prior

and good model prior.

Figure 9.5 shows that the L1 and L2 Tikhonov regularization schemes generate smoother

reconstructed spectra with reduced square errors.
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Figure 9.3 The L-Curve diagram is a log-log plot of the squared residuals |Ax− b|2 and the

square difference between the prior and the reconstructed sepctra |x − xprior|2. The best

regularization parameter α corresponds to the one with the maximum curvature, indicated

by the red cross with the value of 0.127. This figure corresponds to the 0th order Tikhonov

regularization with a low frequency model prior (see Figure 9.4).
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Figure 9.4 Reconstruction with 0th order Tikhonov regularization with different priors. The

primary and secondary star contribute to 70% and 30% flux, respectively. The first row is

a reconstruction without prior; note the reconstructed spectra have been corrected for the

mean difference when comparing with models. The following rows show the prior spectra and

the reconstructed spectra for 4 different priors: flat continuum; low frequency component

of an atmosphere model; a good atmophere model; a bad atmosphere model with Teff off

by 3000 K, log g off by 1.0 dex and v sin i off by 100 km s−1. The intrinsic true component

spectra are indicated by the red lines. Green lines are priors and black lines represent the

reconstruction. The two component spectrum have been concatenated into a single spectrum

with the dashed line at 400 pixels separating the two components. In the second column,

the best regularization parameters α are labeled and the square errors of the two component

spectra are marked at the bottom of each panel.
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Figure 9.5 Reconstructions with 0th, 1st, and 2nd order Tikhonov regularization with the

prior mean being a low frequency component of the true component spectra. The intrinsic

true component spectra are indicated by the red lines. Green lines are prior means and black

lines represent the reconstruction. The two component spectra have been concatenated into

a single spectrum with the dashed line at 400 pixels separating the two components. In the

second column, the best regularization parameter α is labeled and the square error for the

two component spectra are marked at the bottom of each panel.

Direct least squares solutions from SVD usually introduce undulations in the continuum
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of reconstructed spectra. This is especially the case when applied to long spectral intervals,

since the input composite spectra are usually not perfectly continuum normalized. This

phenomenon is dominant in the reconstructed spectrum of faint components. One way to

overcome this difficulty is to use the empirical ‘corridor correction’ proposed in Hensberge et

al. (2008). In this procedure, one of the reconstructed spectra is flipped and stacked above

the spectrum of the other component. A corridor enclosed by the two spectra is then used,

probably with some smoothing, to rectify the spectra to a flat continuum. Lehmann et al.

(2013) split the spectra into overlapping wavelength bins, and corrected the continuum of

the reconstructed spectrum at each bin and finally merged all bins and averaged overlapping

parts.

We can overcome this problem by regularizing the solution with a flat prior spectrum. In

Figure 9.5, we show the reconstructed spectra for the two components in KIC 9851944, which

is an eclipsing binary system composed of two A stars both with effective temperature of

about 7000K (discussed in Chapter 5). The direct least squares solutions by SVD are shown

as red lines. Unphysical low frequency modulations are obvious. The 0th order Tikhonov

regularization solution is shown as black lines, with flatter continuum.
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Figure 9.6 Reconstructed spectra of two components in KIC 9851944. The direct SVD

solutions are represented as the red lines, while the regularized solution with a flat prior are

shown as the black lines.
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9.3 Spectra Separation in the Fourier Domain

Figure 9.7 The equivalent design matrix in wavelength domain. Each square block of size 8

by 8 within the red solid lines is a circulant matrix with successive shifting rows. Only the

blocks within the red lines compose the design matrix, which has a dimension of 3N by 2N ,

with N = 8.

9.3.1 A Reformulation of the Fourier Method

Hensberge et al. (2008) showed that the Fourier domain method by Hadrava (1995) is equiv-

alent to the log-wavelength (velocity) domain method. This is achieved by properly folding
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the design matrix A such that each block of A is a circulant matrix. It is defined as matrices

for which each row in the matrix is shifted one element to the right relative to the preceding

row. In Figure 9.7, we show such a folded design matrix with circulant matrix blocks for

the toy model mentioned in section 2. Figure 9.7 can be directly compared with Figure 9.1.

Note that this approach makes the assumption that the spectra repeat cyclically beyond the

observed boundaries, so care must be taken in interpreting the results at the wavelength

extrema.

The spectral decomposition property of a circulant matrix is that it can be diagonalized

by the Discrete Fourier Transform (DFT) matrix F̃ (Hansen et al. 2006):

A = F̃ ∗Λ̃F̃ , (9.14)

where we use the symbol ˜ to indicate complex variables. The DFT matrix is defined that,

when operating on a N by 1 vector b,

F̃ b = b̃ (9.15)

outputs b̃, the discrete Fourier transform of b. The matrix elements of F̃ are given by

F̃jk = (
ωjk√
N

)j,k=0,1,··· ,N−1, (9.16)

where ω = e−
2πi
N and i =

√
−1. The exponent term in ωjk is j times k, and should not be

confused as indices. F ∗ is the inverse DFT matrix (also the conjugate of F̃ ). It follows that

F̃ and F̃ ∗ are unitary matrices, with the orthogonal property F̃ F̃ ∗ = I. In eq. (9.14), Λ is

a diagonal matrix whose elements are the eigenvalues of matrix A. Since A is a circulant
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matrix, its eigenvalues are fully determined by the first column, and can be calculated directly

by its FFT (Hansen et al. 2006).

Using this property of circulant matrix we can reformulate the Fourier domain method

in an explicit matrix form. Without loss of generality, we show the equivalence between the

wavelength domain method (with a folded design matrix) and the Fourier domain method

for the above toy example with a 3 by 2 design matrix. We start with eq. (9.3),

Ax =

 A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

 .

(
x1

x2

)
=

 b1

b2

b3

 . (9.17)

and each block of A is a circulant matrix (see Figure 9.7). We first block diagonalize matrix

A by using a block diagonal matrix composed of the DFT matrix:

 F̃∗ 0 0

0 F̃∗ 0

0 0 F̃∗

 .

 Λ̃1,1 Λ̃1,2

Λ̃2,1 Λ̃2,2

Λ̃3,1 Λ̃3,2

 .

(
F̃ 0

0 F̃

)
.

(
x1

x2

)
=

 b1

b2

b3

 (9.18)

Then multiply a block inverse DFT matrix on both sides and utilizing the orthogonal prop-

erty, we find:

 I 0 0
0 I 0
0 0 I

 .

 Λ̃1,1 Λ̃1,2

Λ̃2,1 Λ̃2,2

Λ̃3,1 Λ̃3,2

 .

(
F̃ 0

0 F̃

)
.

(
x1

x2

)
=

 F̃ 0 0

0 F̃ 0

0 0 F̃

 .

 b1

b2

b3

 (9.19)

The tomography equation eq. (9.3) is now written in the Fourier domain in eq. (9.20).

Each block Λ̃jk in matrix Λ is a diagonal matrix with the diagonal elements equals to the

FFT of the 1st column of the original block Ajk in matrix A,
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 Λ̃1,1 Λ̃1,2

Λ̃2,1 Λ̃2,2

Λ̃3,1 Λ̃3,2

 .

(
x̃1

x̃2

)
=

 b̃1

b̃2

b̃3

 (9.20)

Then eq. (9.17) can now be decomposed into N independent equations for each frequency

m, and for each m there are simply 3 equations with two complex variable unknowns.

 λ̃1,1m λ̃1,2m

λ̃2,1m λ̃2,2m

λ̃3,1m λ̃3,2m

 .

(
x̃1m

x̃2m

)
=

 b̃1m

b̃2m

b̃3m

 , m = −N/2 + 1, · · · , N/2. (9.21)

Thus we have re-derived eq. (14) in Hensberge et al. (2008). This derivation can be

trivially applied to matrix A of any dimensions (multiple systems, different number of ob-

servations). Note that the Fourier method assumes the spectrum is cyclically repeating which

is un-physical (Hadrava 1995). This will affect the reconstruction at the extreme edges.

9.3.2 Spectra Separation in the Fourier Domain with Regularization

The regularized least squares method of spectra separation can be applied in the Fourier

domain as well. In this domain, the equation Ax = b decouples into n independent equa-

tions. Each equation has only two unknowns for a binary (or K unknowns in general) and

corresponds to a Fourier frequency m ( m = −N
2

+ 1, · · · , N
2

, when N is even).


λ̃1,1m λ̃1,2m

λ̃2,1m λ̃2,2m

λ̃3,1m λ̃3,2m

α 0
0 α

 .

(
x̃1m

x̃2m

)
=


b̃1m

b̃2m

b̃3m

x̃prior1m
x̃prior2m

 , m = −N/2 + 1...N/2. (9.22)



376

This is simply an extension of eq. (9.13) in the Fourier domain. The low frequency modulation

problem in the least square solution can also by solved by introducing regularization in

the Fourier domain following the same procedure. The Fourier transform of the priors

x̃prior1, x̃prior2 for frequency m appear in the right hand side of eq. (9.22).

In the following example, we show the advantage of regularization for a binary system

with a very faint companion. KOI-81 is an eclipsing binary system composed of a fast-

rotating B star and a faint and hot sub-dwarf companion. The flux ratio of the companion

to the B stars f2/f1 is only about 0.008 in Kepler band. Matson et al. (2015) reconstructed

the spectrum of the faint companion in the UV band, in which the flux ratio f2/f1 increases

to about 0.05 at 1370 Å. Matson et al. (2015) first used a flat continuum as an initial

estimate and then used a model spectrum as the starting values for their reconstruction. As

the noise in the reconstructed spectrum is inversely proportional to the flux contribution,

the reconstructed spectrum of the faint companion is very noisy. They were still able to

identify some features, such as the Si II lines at 1295, 1297, 1299Å, and the Si IV lines

at 1394, 1403Å. Based on these identifications, they derived a lower limit estimate for the

effective temperature of the hot companion.

We did the reconstruction for the same system by using the same data. We used a prior

spectrum for the faint companion, which is generated by the first 5 lowest Fourier frequencies

of a model spectrum from UVBLUE library with Teff = 19000 K and log g = 5.0. The prior

spectrum is essentially featureless except for a dip due to the broad Lyα λ1216 line (the

red line in the upper panel of Figure 9.8). The regularized reconstruction indicated by the
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black line in the upper panel of Figure 9.8 shows a much smaller noise amplitude compared

to the result from the BG91 algorithm (green). All lines identified in Matson et al. (2015)

are also present in our reconstruction as shown in the middle and lower panels. However,

the regularized solution (black) from our algorithm follows more closely to the model (red),

while the BG91 result (green) deviates from the model greatly. This improvement makes it

possible to identify more spectral lines.
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Figure 9.8 Reconstructed spectra of KOI-81 with regularization in Fourier domain. Upper

panel: The reconstruction of the hot subdwarf star with two methods, BG91 algorithm

(green), FT with regularization (black). The prior spectrum is indicated by the solid red

line. Middel & Lower panel: comparison of the reconstructed spectrum of the hot star

from the BG91 algorithm (green) and FT with regularization (black) with the model (red).

All spectra have been smoothed by convolution with a box car of width 133 km s−1 as done

by Matson et al. (2015).
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9.4 Regularization in Bayesian Inference

9.4.1 Bayesian Linear Regression with Gaussian Variables

Bayesian inference is ubiquitous in statistics. It allows us to update the current probabilities

as new data are acquired. It is actually an extension of the basic and &or logic and represents

a basic method of reasoning.

The basic product rule in probability theory is that the joint probability of random

variables x (model) and b (data) can be decomposed by the conditional probability of x

given b and the probability of b as well as the conditional probability of b given x and

the probability of x: p(x,b) = p(x|b)p(b) = p(b|x)p(x). This leads to the bayes’ theorem:

p(x|b) = p(b|x)p(x)/p(b), where p(x) is the prior probability distribution of the model x.

p(x|b) is the posterior distribution of x after we are given the new data b. p(b|x) is often

called the likelihood function if treated as a function of x. p(b) is a constant term called

marginal likelihood or Bayesian evidence.

In the Bayesian statistical method, we treat both the concatenated component spectra

x and concatenated observed spectra b as random variables. As the pixel intensities in the

spectrum are photon counts, it is a Poisson process and each pixel intensity should satisfy a

Poisson distribution. When the S/N is larger than, e.g., ∼ 10, the distribution can be well

approximated by a Gaussian as the result of the central limit theorem. Closely following the

derivation in Aster et al. (2012), we assume x satisfies a multivariate Gaussian distribution:

p(x) = N(x|xprior,CX) = (2π)−
n
2 |CX |−

1
2 e−

1
2

(x−xprior)TC−1
X (x−xprior) (9.23)
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where n is the number of elements in x. We use a prior model distribution p(x) to best

represent our prior knowledge of the concatenated component spectra. xprior is the mean

of this prior distribution. Our prior knowledge about the overall continuum level, the dip

at some broad hydrogen lines, and other spectral features are included in xprior. CX is the

covariance matrix of the prior distribution, and it incorporates our prior knowledge of the

correlations between different pixels in the component spectra. |CX | is the determinant of

CX . Λ = C−1
X is the precision matrix which is the inverse of covariance matrix.

The noise in the observed composite spectra is also modeled by a multivariate Gaussian

distribution, with the mean value of zero. This is equivalent to assuming that b is a mul-

tivariate Gaussian, with a mean of Ax and covariance CB. The likelihood function or the

conditional distribution of data given model is

p(b|x) = N(b|Ax,CB) ∝ e−
1
2

(Ax−b)TC−1
B (Ax−b) (9.24)

When the prior and likelihood are both Gaussians with known covariance matrices, the pos-

terior and the Bayesian evidence can both be represented elegantly as normal distributions.

Following Bishop (2006), the posterior distribution of the component spectra x is:

p(x|b) ∝ e−
1
2

((Ax−b)TC−1
B (Ax−b)+(x−xprior)TC−1

X (x−xprior)) (9.25)

p(x|b) = N(x|xMAP ,CX′ ) ∝ e
− 1

2
(x−xMAP )TC−1

X
′ (x−xMAP )

(9.26)

xMAP = CX′ (A
TC−1

B b + C−1
X xprior) (9.27)
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CX′ = (C−1
X +ATC−1

B A)−1 (9.28)

where the mean and the mode of the posterior, which is also the best reconstructed spectrum,

is xMAP. Its uncertainties are contained in the covariance matrix CX′ .

The Bayesian evidence (also called the marginal likelihood) is given by:

p(b) = N(b|Axprior,CB′)

where CB′ = CB + ACXAT .

(9.29)

The evidence is usually calculated in logarithmic form,

lnZ = ln(p(b)) = lnN(b|Axprior,CB′)

= ln[(2π)−
N
2 |CB′ |−

1
2 e−

1
2

(b−Axprior)
TCB′ (b−Axprior)]

= −N
2

ln(2π)− 1

2
ln(|CB′ |)−

1

2
(b−Axprior)

TCB′(b−Axprior).

(9.30)

After Cholesky decomposing CB′ as CB′ = LLT , the determinant |CB′| can be calculated

as the product of squares of the diagonal elements of L:

ln(|CB′|) = ln(
∏
i

L2
ii) = 2

∑
i

(lnLii). (9.31)

Thus the tomography algorithm reduces to a problem of simple linear algebra as given in

equation (9.27, 9.28). This is just a basic Bayesian linear regression with Gaussian variables.

Given the importance of Gaussian distributions, we repeat the above equations (Bishop 2006;
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eq. 2.113− 2.117) below.
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Assume random variables x and b are related by the linear equation

b = Ax. (9.32)

Suppose we are given a prior Gaussian distribution for x and a likelihood

function for b given x which is also a Gaussian distribution,

Prior : p(x) = N(x|xprior,CX)

Likelihood : p(b|x) = N(b|Ax,CB)

(9.33)

Then the posterior distributions for x and the Bayesian evidence are both

Gaussians given by

Posterior : p(x|b) = N(x|xMAP ,CX
′ )

where xMAP = CX′ (A
TC−1

B b + C−1
X xprior)

CX′ = (C−1
X +ATC−1

B A)−1

Evidence (Marginal likelihood) : p(b) = N(b|Axprior,CB + ACXAT ).

(9.34)
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9.4.2 Tikhonov Regularization in Bayesian Framework

Here, we show that the aforementioned Tikhonov regularization in the 0, 1, 2 order (section

9.2.2) can also be cast as the above Bayesian linear regression problem.

Assuming the different pixel values in the component spectra are independent, then the

covariance matrix of the prior distribution p(x) is CX = β2I. I is the identity matrix . We

also assume the covariance matrix of the observed spectra vector b is CB = σ2I. Then the

posterior (eq. 9.25) simplifies to

∝ exp{−0.5[(Ax− b)TC−1
B (Ax− b) + (x− xprior)

TC−1
X (x− xprior)]}

= exp{−0.5[
1

σ2
|Ax− b|2 +

1

β2
|x− xprior|2]}.

(9.35)

Thus maximizing the posterior is just a zero-order Tikhonov regularization problem:

minimize |Ax− b|2 +
σ2

β2
|x− xprior|2. (9.36)

Following the previous notation, the regularization parameter α is then given by α2 = σ2

β2 .

Thus the 0-order Tikhonov regularization parameter α is interpreted as the ratio of the noise

level in the observed spectra to that in the reconstructed spectra (assuming the noise in both

spectra are identical independent distributed).

For the 1st and 2nd order Tikhonov regularization, following Bui-Thanh (2012), if we set

the covariance matrix of x as CX = β2SST , where S = L−1 is the inverse of the difference
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matrix L defined in eq. (9.12), then we have

C−1
X =

1

β2
(SST )−1 =

1

β2
(ST )−1(S−1)

=
1

β2
(S−1)T (S−1) =

1

β2
LTL

(9.37)

Then the posterior reduces to:

∝ exp{−0.5[(Ax− b)TC−1
B (Ax− b) + (x− xprior)

TC−1
X (x− xprior)]}

term in [ ] =
1

σ2
|Ax− b|2 +

1

β2
(x− xprior)

TLTL(x− xprior)

=
1

σ2
|Ax− b|2 +

1

β2
[L(x− xprior)]

T [L(x− xprior)]

=
1

σ2
|Ax− b|2 +

1

β2
|L(x− xprior)|2.

(9.38)

Thus, in general maximizing the posterior is equivalent to the Tikhonov regularization

problem:

minimize |Ax− b|2 +
σ2

β2
|L(x− xprior)|2 (9.39)

We thus can set α2 = σ2

β2 , and the above equation is then the same as eq. (9.11). We have

some estimates of the measurement errors of the composite spectra b (the covariance matrix

CB = σ2I). However, the uncertainties of the component spectrum x, which are unknown,

are harder to quantify. Thus, β can be treated as a regularization parameter, equivalent to

the role of α.

Recall the definition of CX = β2SST , where S = L−1. For a vector x of dimension N×1,

its covariance matrix CX should be N ×N . So S and L are both N ×N matrices. However,

the finite difference matrix L2 defined in eq. (9.12) is (N − 2)×N . That is, L2 has rank of
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N − 2. Hence, if directly using L2 to construct the covariance matrix, the prior distribution

p(x) will be a Gaussian density in RN−2 which is degenerate in RN space (Bui-Thanh 2012).

The reason is that we have not specified the smoothness at the two boundary points. To

this end, we define the revised form of L2 as

LD =



δ1 0
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1

0 δn


(9.40)

We do not know the values of x at the two boundary points (i = 1 and i = N), and thus we

assume they are Gaussian variables with a mean of zero and standard deviations of δ1 and

δN , respectively. Their values can be estimated assuming each point (i = 1, · · · , N) has the

same variance. In the process of prior elicitation via differential operators, it is a crucial to

make sure that the operator is positive definite by incorporating some well-posed boundary

conditions (Bui-Thanh 2012).

9.4.3 Choosing the Regulariztion Parameter by Maximizing Bayesian
Evidence

To choose an appropriate regularization parameter, except for the aforementioned L-curve

and cross-validation methods, we can maximize the Bayesian evidence in eq. (9.29). Thanks

to the properties of Gaussians, the Bayesian evidence can be directly computed (eq. 9.30, 9.31).

We denote the evidence as logZ = ln(p(b)).

We consider a synthetic binary system. The two stars in the system have same atmo-
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spheric parameters: (Teff , log g, [M/H], v sin i)=(12000 K, 3.0, 0.0, 100 km s−1). We generate

five synthetic composite spectra by shifting the component spectra of star 1 and star 2 by

their RVs: RV1 = (−4.0, 4.5, 4.3, 4.0, 3.5) pixels and RV2 = (4.0,−4.5,−4.3,−4.0,−3.5) pix-

els, respectively. We multiply the component spectra by their flux contribution (f1 = 0.6,

f2 = 0.4) before the linear summation. Random Gaussian noise (with standard deviation

σ = 0.01) is added to the composite spectra. Figure 9.9 shows these composite spectra and

the true component spectra that are used to generate them.
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Figure 9.9 True component spectra (black) of the star 1 and star 2 in the synthetic binary

system. The component spectra are shifted accroding to the RVs to generate the composite

spectra (color). Only four composite spectra (out of five) are shown.

We then reconstruct the component spectra following the procedures in section 9.4.2.

Assuming independent noise in the composite spectra b and treating the uncertainty of the

component spectra β as a regularization parameter, the individual (component) spectra are

calculated in the 0th order Tikhonov scheme. We adopt the best regularization parameter

as the one that maximizes the Bayesian evidence (log Z) (eq. 9.30), and this is shown in



389

Figure 9.10 where red cross indicates the peak of logZ at βbest = 0.016.
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Figure 9.10 The Bayesian evidence logZ for a grid of regularization parameter β. The

maximum is marked by the red cross.

The reconstructed spectra (the xMAP in eq. 9.27) are shown in Figure 9.11 as black

solid lines. Two gray lines above and below are the +2σ and −2σ uncertainties. The true

component spectra are indicated by the solid red lines. In principle, the uncertainties of

reconstructed spectra should roughly scaled with 1/
√
N times the original uncertainty in

the composite spectra if the two stars have the same flux.
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Bayesian evidence seems to work fine in setting an appropriate regularization parameter

for this simple example. It is interesting to compare and evaluate different methods of

choosing regularization parameters. This will be presented in a future study.
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Figure 9.11 The reconstructed spectra (xMAP in eq. 9.27) for star 1 and star 2 (black solid

line). Two gray lines above and below are the +2σ and −2σ uncertainties, respectively. The

true component spectra are indicated by the solid red lines.
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9.4.4 Choosing the Regularization Parameter with Hierarchical Bayesian
Models

The Bayesian evidence is generally very hard to calculate. Analytical forms hardly exist,

and the previous section for Gaussian variables is a rare exception. In Bayesian philosophy,

if we do not know anything about a parameter (regularization parameter in this case), let it

be a random variable. This naturally leads to the method of hierarchical Bayesian models.

We have demonstrated that the Bayesian approach to tomographic reconstruction is

equivalent to the use of α and β as regularization parameters, where CX = β2I is the

covariance of the prior distribution p(x). Since β is a new unknown parameter, the prior

distribution becomes the joint distribution of β and x,

p(x, β) = p(x|β)p(β). (9.41)

Using the Bayes’ rule, the posterior is,

p(x, β|b) ∝ p(b|x, β)p(x, β) = p(b|x, β)p(x|β)p(β). (9.42)

With a proper sampling algorithm (e.g., MCMC), we can get the posterior samples from

eq. (9.42). Thus both x and β are determined from data, that is, the regularization parameter

is naturally chosen by the data we have, along with the reconstructed spectra x.

In practice, we need the posterior sample for each pixel in the spectrum. To make sure

of the convergence of Markov chains, usually ∼ 104 iterations are needed. This makes the

reconstruction relatively expensive in computational time. We only consider a toy model

here. We use the same spectra desrcibed in the previous section for star 1 and star 2. Each
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component spectrum has 20 pixels. We consider only three composite spectra, corresponding

to RV1 = (−4.8, 0.6,−4.4) pixels and RV2 = (2.4,−0.3, 2.2) pixels. The flux contributions of

the two stars are the same as before (f1 = 0.6, f2 = 0.4). The generated composite spectra

and original component spectra are shown in Figure 9.12.

Component Spectra
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Figure 9.12 True component spectra of star 1 (red) and star 2 (green). The component

spectra are shifted accroding to the RVs to generate the three composite spectra (black)

that appear offset below.

The uncertainties of the composite spectra are assumed to be known, which all satisfy
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a normal distribution with σ = 0.02 (independent noise), and the covariance matrix of b is

CB = σ2I. We use a flat spectrum as the prior mean for the component spectra x with all

values equal to 1.0. The covariance matrix of the component spectra is CX = β2I, and β is

an unknown regularization parameter. We set a hyperprior on β as a Gamma distribution

p(β) = Gamma(0.01, 0.01). Note that the Gamma distribution is a commonly used, non-

informative distribution for an unknown scale parameter such as the standard deviation of

a Gaussian. It is very similar to the Jeffreys prior (uniform prior on a log-scale) when the

two input parameters are small.

We use the Gibbs sampling implemented in JAGS to find the posterior samples of β and x.

The posterior distribution of hyperparameter β is shown in Figure 9.13. The reconstructed

spectra (the mean or maximum posterior of x: x̄ = xMAP ) are shown in Figure 9.14, with

x̄± σx indicated by dotted lines.
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Figure 9.13 The posterior distribution of hyperparameter β (as a regularization parameter)

.
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Figure 9.14 The maximum posterior solution of component spectra x. Dotted lines indicate

the +1σ and −1σ percentile. True component spectra are indicated by the red and green

solid lines, for stars 1 and 2, respectively.

We show the JAGS code in the following, which is a basic linear regression problem

(y = X · beta): solving for beta given y and X. beta is the component spectra vector and

y is composite spectra vector. Note that we use different notations here, where previously

b = A · x, and b corresponds to y, matrix A corresponds to X, and the component spectra

vector x corresponds to β. The hyperparameter β defined in the last paragraph is denoted
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as tau. dmnorm in the code is the multi-normal distribution. The inprod function is the

inner product of two vectors. Note that in JAGS the normal distribution N(µ, σ2) is written

as dnorm(µ,1/σ2), i.e., JAGS uses a precision matrix instead of covariance matrix.
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A Hierarchical Bayesian Model for Tomography

model {

# define the identity matrix

for (l in 1:50) {

for (j in 1:50) {

V[l,j] <- ifelse(l==j, 1, 0)}

}

#precision matrix, tau is unknown

for (l in 1:50) {

for(j in 1:50) {

prior.T[l,j] <- V[l,j]*tau

}

}

# likelihood function for each pixel

for (i in 1:60){

y[i] ~ dnorm(mu[i], 1/(0.02*0.02))

mu[i]<- inprod( beta[ ], X[i, ])
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}

# prior for beta (component spectra)

beta[1:50]~ dmnorm(mu.beta[ ], prior.T[ , ])

#hyperprior for tau

tau ~ dgamma(0.01,0.01)

}
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9.5 Discussion

In practice, uncertainties in the reconstructed spectra x are from two sources. One is from the

algorithm itself, which we have already characterized by the diagonal elements of covariance

matrix CX in the previous sections. The other source, however, is the design matrix A.

Our discussions in previous sections are all based on a fixed design matrix A. Uncertainties

related to the radial velocities contribute to the uncertainties of A, and thus to the errors

in the reconstruction x. One simple way to take this into account is to use the Monte

Carlo method. After deriving RVs from cross correlation, we can fit the RVs with Markov

Chain Monte Carlo and get posterior samples of orbital parameters (e.g, (P, T0, K, e, ω, γ)i for

i = 1, 2, · · · , N , where N is the length of the Markov Chains. For each sample i, we calculate

the corresponding RVs and use these to construct a design matrix Ai. Thus we can perform

tomography for each Ai, and get many reconstructed spectra xi. The uncertainties of x are

then inferred from the distribution of xi using values at certain percentiles.

Although this chapter covers many techniques for spectral separation (tomography), a

lot of work remains to be done.

1. We need to extend the hierarchical Bayesian tomography to large scale problems (a

few thousands pixels).

2. Comparing and evaluating different methods of determining regularization parameters.

3. Effects of different phase coverage and numbers of RVs on the reconstruction. Hynes

& Maxted (1998) did some tests for spectral disentangling and discussed briefly about phase

coverage. Pál (2009) investigated the best phases for a limited number of RVs (4 or 5)
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by using an analytical formula for Kepler’s problem. This is related to the problem of

experimental design discussed in the previous section of Chapter 8.

4. The effect of uncertainties from light ratio.

5. Quantification of the low frequency modulations in the spectra. The shape of the

continuum in the raw spectra, e.g., those from an echelle spectrograph, are due to the

blaze function of the gratings in the instrument. In the data reduction process, the spectra

are usually normalized to the continuum and this involves de-trending with some kind of

polynomial or spline. These modulations will propagate to the final reconstructed spectra.

6. Assigning better covariance matrix for the composite spectra b. The Gaussian process

(GP) is one of the tools for this (Rasmussen & Williams 2006). The kernel width used in

the GP can be characterized from the autocorrelation of spectral pixels.

These techniques for spectral separation can be naturally applied to other linear or non-

linear inverse problems, not necessarily astronomical. For example, measuring the structure

of the broad emission-line region with reverberation mapping (Brewer & Elliott 2014), de-

termining the mass density from gravitational lensing (Brewer & Lewis 2006), inferring

rotational profiles from pulsation frequencies in asteroseismology (Christensen-Dalsgaard et

al. 1990), various geophysical inverse problems (Snieder & Trampert 1999), inverse electro-

magnetic scattering problems (Cakoni et al. 2010), problems in fluid mechanics (Cotter et

al. 2009), and many many more.
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CHAPTER 10

Summary and Future Prospects

Asteroseismology is already a mature field for solar-like oscillating stars. Mode identification

and seismic modeling for these stars are relatively straightforward and we can already perform

ensemble studies (Chapter 1).

Asteroseismology of intermediate mass pulsators, e.g., the δ Scuti and γ Doradus variables

is very difficult, and in most cases we cannot even identify their pulsation modes. In this

dissertation, we try to tackle this problem by studying δ Scuti/γ Dor variables in eclipsing

binaries (Chapter 5 ). The binary nature adds more complexity to analyzing their data

(light curve, radial velocities, double-lined spectra), and appropriate binary modeling tools

are needed (Chapter 4). The benefits are that the fundamental parameters like mass and

radius can be well constrained, and we hope that more asteroseismic information will be

extracted. We found that this is indeed the case for KIC 3858884, for which we can identify

the fundamental radial mode. However, for KIC 9851944, the mode identification for its δ

Scuti components is still inconclusive. In some binaries (e.g., KIC 8262223 in Chapter 5 and

KOI-81 in Chapter 7), the prior mass transfer history poses a challenge to the evolutionary

and asteroseismic modeling.

Binary stars also offer us a new asteroseismic phenomenon, i.e., the tidally excited pulsa-

tions. After presenting the theories in Chapter 3, we study several tidal pulsating eccentric

binaries discovered by Kepler in Chapter 6. The variability caused by precession of an

accretion disk around a white dwarf in a cataclysmic variable is discussed in Chapter 7.
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Asteroseismology thrives thanks to the large amount of data collected by space missions.

It is thus desirable to advance our treatment of data with statistical methods. We apply

Bayesian statistics to some problems in binaries and asteroseismology, and it forms the con-

tents of Chapter 8. In Chapter 9, we focus on the inverse problem (tomography) encountered

in separating the spectral components of double-line spectroscopic binaries.

On the observational side, interferometry is like a missing piece of jigsaw puzzle of astero-

seismology. We have obtained data with the CHARA Array interferometer (ten Brummelaar

et al. 2005) for two well-studied δ Scuti stars (44 Tau and 29 Cygni). We have also obtained

high-resolving-power spectra for several δ Scuti stars in the Hyades cluster. Apart from char-

acterizing more δ Scuti/γ Dor EBs and heartbeat stars. I would also like to study solar-like

oscillators such as red giants. Future space missions like TESS will target on more bright

stars which are easier for spectroscopic followup. The methods and techniques presented in

this dissertation, spectroscopic analysis, light curve fitting, stellar evolutionary and astero-

seismic modeling can be naturally applied to exoplanet host-star systems. On the theoretical

side, I would like to advance the theories in Chapter 3. This includes the tidally forced oscil-

lations with rotation in the traditional approximation. The statistical methods presented in

Chapter 8 and 9 could be applied to more problems in asteroseismology, e.g., the modeling

of individual frequency profile in the power density spectrum of solar-like oscillators, the

inversion of rotational splittings, etc.

THE FUTURE IS BRIGHT.
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APPENDIX A

Spherical Harmonics as an Orthonormal Basis on a Sphere

Lmax=2�
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Figure A.1 On the unit sphere, any (square-integrable) function f(θ, φ) can be expanded as

a linear combination of spherical harmonics Y m
l (θ, φ). We approximate the original image

‘Doug’ on the sphere by gradually adding spherical harmonics, with maximum number lmax =

2, 4, 6, 10, 15, 20, 25,+∞.
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APPENDIX B

ELC Usage

The basic usage of ELC is to configure the two input files: ELC.inp and gridloop.opt.

The ELC.inp contains all the model parameters and gridloop.opt stores the information

on the input light curve and RV curve files and details of the optimization process. In

practice, I follow these steps:

1) Estimate the main parameters that can define the system. The effective

temperatures can be found at Kepler Input Catalog, Huber et al. (2014), Armstrong et al.

(2014), etc. Based on these temperatures, we can estimate the radius of stars assuming some

main-sequence prior. Some estimated orbital parameters such as the period, eccentricity,

inclination, T0 can be found at Kepler EB catalog1 online maintained by the Villanova group.

In practice, we usually find the effective temperature of two components from spectra, and

then fix Teff1 to the spectroscopic value. The orbital period is often fixed to the value from

light curve. Bolometric albedos, gravity darkening exponents are fixed to theoretical values.

Limb-darkening coefficients are interpolated from tables based on the stellar temperatures

and gravities.

2) Make some trial runs of ELC to compare with the observed light curve.

Change some parameters manually and check their influence on the light curve.

3) Determine the tuning parameters and optimization method. Usually the

parameters to optimize are among the following: e, ω, inclination,T0, period, filling factor

or fractional radii, temprat or Teff2, bolometric albedo, rotational frequency. If RVs are

1http://keplerebs.villanova.edu/



405

included in the fitting, parameters such as primK, mass ratio, systemic velocity are also

optimized. The genetic algorithm is a handy optimization tool (Charbonneau 1995), and we

need to set the lower and upper boundary for each parameter. We usually set broad ranges

in the gridloop.opt file and run geneticELC for 200− 400 generations with 100 members for

each generation. Alternatively, we can use the MCMC (Tegmark 2004) or de-MC sampler

(Eastman et al. 2013) and we need an extra input file MarkovELC.inp to specify the length

of chains, the number of chains and the number of iterations to skip (the burn-in part of the

chain). Note that the de-MC sampler is more efficient than the ordinary MCMC algorithm.

The same converged result can be reached with about 10000 samples in the de-MC method

and 50000 samples in the MCMC method. For eccentric binaries, the computation is quite

expensive, and we can combine the genetic algorithm with other faster optimizers like amoeba

and Levenberg-Marquardt.

4) Analyzing the results. The parameter values and χ2 at each generation are recorded

in the generation.XXX files. We usually plot the χ2 values for each tuning parameter to check

if a global minimum has been found. If the parameters have converged, we usually scale the

χ2 values so that the χ2
min ≈ ν, where ν = Ndata−Nparam is the number of degrees of freedom.

The 1σ, 2σ error bars are then found from the intersections of χ2
min + 1.0, 4.0 levels with the

χ2 lower envelopes. Note that this approach may underestimate the errors as the parameter

correlations are not fully taken into account. For partial eclipsing systems, the light curve

shape depends on (R1 + R2)/a, thus the two parameters R1/a and R2/a (or effectively, f1

and f2) are correlated. If we use the MCMC or de-MC optimizers in ELC, the outputs are
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just Markov chains for each parameter. We need to check the convergence of the chains and

then find the point estimates (usually use median values or maximum likelihood values) from

the histogram of these posterior samples. Convenient packages exist for such analysis such

as the coda2 package in R language, and corner3 package in python, etc. Other calculated

parameters are stored in ELC.parm or ELCparm.XXX files.

2https://cran.r-project.org/web/packages/coda
3https://github.com/dfm/corner.py
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APPENDIX C

Call tree of the subroutine light curve

Figure C.1 Call tree of the subroutine lightcurve in ELC.
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Figure C.2 Call tree of the subroutine lightcurve in ELC (Continued).
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APPENDIX D

An IDL program for Bayesian Isochrone Fitting with Padova models

pro padova2

;read padova isochrones for bayesian isochrone fitting

;following Jorgensen & Lindegren 2004

;/01/13/14,/09/22/15, apply to two components in EBs, G=G1*G2

;-----------------

openr,1,’isochron.dat’

d=dblarr(19,64381)

readf,1,d

close,1

;----------------------------------------------content of the file

;1 0.00040 6.310e+07 7.80 0.15000001

;overshoot z age logage mini

;0.1500 -2.3035 3.5907 5.2264 10.529

;mact logL logTeff logg Mbol

;13.922 12.907 11.548 10.655 9.824 8.900 8.279 8.028 -9.59274740

;Umag Bmag Vmag Rmag Imag Jmag Hmag Kmag flum

;--------------------------------------------------------

overshoot=reform(d(0,*)) ;all overshoot type=1

z=reform(d(1,*))
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age=reform(d(2,*))

logage=reform(d(3,*))

;corresponds to each z, logage=7.8 7.85 7.9.....10.25,increment=0.05

mini=reform(d(4,*))

mact=reform(d(5,*))

logL=reform(d(6,*))

logTeff=reform(d(7,*))

logg=reform(d(8,*))

Mbol=reform(d(9,*))

Umag=reform(d(10,*));absolute mag in U band

Bmag=reform(d(11,*))

Vmag=reform(d(12,*))

Rmag=reform(d(13,*))

Imag=reform(d(14,*))

Jmag=reform(d(15,*))

Hmag=reform(d(16,*))

Kmag=reform(d(17,*))

flum=reform(d(18,*))

;--------------------

;fix z=0.03,get G for different age



411

window,2,xsize=1200,ysize=600

g=where( (abs(z - 0.03) le 0.0001)and(abs(logage -9.30) le 0.02) )

xx=logTeff(g)

yy=logg(g)

m=mini(g)

plot,xx,yy,symsize=0.5,xrange=[4.5,3.2],yrange=[4.5,2.0],$

ystyle=1,xstyle=1,xtitle=textoidl(’log(T_{eff})’),ytitle=’logg’,$

title=’KIC9851944 isochrone fitting’,/nodata

;KIC9851944 observed log(Teff),logg

xobs=3.8467 ;logTeff

yobs=3.96 ;logg

xobs2=3.839

yobs2=3.69

sigx=0.01 ;obvervation logTeff error bar

sigy=0.05

sigx2=0.01

sigy2=0.05

;-----------------component1

age=findgen(49)/49*(10.25-7.8)+7.8
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Gfinal=fltarr(49)

for j=0,48 do begin

g=where( (abs(z - 0.03) le 0.0001)and(abs(logage -age[j]) le 0.02) )

;fix Z for now, then pick an isochrone in the age array

xx=logTeff(g)

yy=logg(g)

m=mini(g)

ng=n_elements(g)

mm=findgen(2000)/2000.0*(max(m)-min(m))+min(m)

part1=1/(sqrt(2.0*!pi)*sigx*sqrt(2.0*!pi)*sigy)

G=fltarr(1998)

for i=1,1998 do begin

qx=interpol(xx,m,mm[i])

qy=interpol(yy,m,mm[i])

chi2=(xobs-qx)^2/sigx^2+(yobs-qy)^2/sigy^2

part2=exp(-0.5*chi2)

G[i-1]=part1*part2*mm[i]^(-2.7)*(mm[i+1]-mm[i-1])

endfor

Gfinal[j]=total(G)

endfor
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ageGyr=10.0^age/1D9

int3=INT_TABULATED(age, Gfinal,/double)

Gfinal=Gfinal/int3 ;normalize pdf

plot,age,Gfinal,xtitle=’Log(age)’,$

ytitle=’Probability Density’,yrange=[0,15],xrange=[8.0,10.0]

;-------------------component2

age=findgen(49)/49*(10.25-7.8)+7.8

Gfinal=fltarr(49)

for j=0,48 do begin

g=where( (abs(z - 0.03) le 0.0001)and(abs(logage -age[j]) le 0.02) )

;fix Z now, then pick an isochrone in the age array

xx=logTeff(g)

yy=logg(g)

m=mini(g)

ng=n_elements(g)

mm=findgen(2000)/2000.0*(max(m)-min(m))+min(m)

part1=1/(sqrt(2.0*!pi)*sigx*sqrt(2.0*!pi)*sigy)

G=fltarr(1998)

for i=1,1998 do begin

qx=interpol(xx,m,mm[i])
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qy=interpol(yy,m,mm[i])

chi2=(xobs2-qx)^2/sigx^2+(yobs2-qy)^2/sigy^2

part2=exp(-0.5*chi2)

G[i-1]=part1*part2*mm[i]^(-2.7)*(mm[i+1]-mm[i-1])

endfor

Gfinal[j]=total(G)

endfor

ageGyr=10.0^age/1D9

int4=INT_TABULATED(age, Gfinal,/double)

print,int4

Gfinal=Gfinal/int4

oplot,age,Gfinal,linestyle=1;,xtitle=’Age in Log’,$

ytitle=’relative Posterior Prob.’

;----------system=component1*component2

age=findgen(49)/49*(10.25-7.8)+7.8

Gfinal=fltarr(49)

for j=0,48 do begin

g=where( (abs(z - 0.03) le 0.0001)and(abs(logage -age[j]) le 0.02) )

;fix Z now, then pick an isochrone in the age array

xx=logTeff(g)
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yy=logg(g)

m=mini(g)

ng=n_elements(g)

mm=findgen(2000)/2000.0*(max(m)-min(m))+min(m)

part1=1.0/(sqrt(2.0*!pi)*sigx*sqrt(2.0*!pi)*sigy)

part1b=1.0/(sqrt(2.0*!pi)*sigx2*sqrt(2.0*!pi)*sigy2)

G=fltarr(1998)

for i=1,1998 do begin

qx=interpol(xx,m,mm[i])

qy=interpol(yy,m,mm[i])

chi2=(xobs-qx)^2/sigx^2+(yobs-qy)^2/sigy^2

chi2b=(xobs2-qx)^2/sigx2^2+(yobs2-qy)^2/sigy2^2

part2=exp(-0.5*chi2)

part2b=exp(-0.5*chi2b)

G[i-1]=(part1*part2)*(part1b*part2b)*mm[i]^(-2.7)*(mm[i+1]-mm[i-1])

endfor

Gfinal[j]=total(G)

endfor

ageGyr=10.0^age/1D9
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int5=INT_TABULATED(age, Gfinal,/double)

Gfinal=Gfinal/int5 ;normalize the pdf

oplot,age,Gfinal,color=cgcolor(’red’),$

,xtitle=’System Age in Log’,ytitle=’Posterior Prob.’

end
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APPENDIX E

An IDL package for spectral tomography

We have discussed in Chapter 9 various algorithms for tomographic reconstruction of spec-

tra. Most of the algorithms are only demonstrated with toy examples of small scale. For

practical applications of large scale problems, the methods in Fourier space are fast and

appropriate. The tomoft code is about three times faster than the old tomography.pro pro-

gram. The Bayesian methods (linear regression) can also be applied to real spectra (e.g.,

1000 pixels), but one reconstruction usually takes about several minutes. The hierarchical

Bayesian method currently can only be used for small scale problems (e.g., a few hundred

pixels).

We attach two IDL programs for tomography in Fourier domain tomoft and tomoftregu2.

The second program includes regularization.

I have tried to design the programs so that they have the same calling sequence as the

old program (tomography.pro). Thus the new codes may be run by directly replacing the

line containing the old tomography run (with tomography.pro):

TOMOGRAPHY,100,0.8,obsspec,recspec,pshift,fratio,simspec

with the following lines:

tol=1D-5

tomoft,tol,obsspec,recspec,pshift,fratio,simspec

If low frequency deviations appear in the reconstructions, the spectra can be renormalized

using the ‘corridor correction’ by adding these lines:



418

;(if F2/F1=1.3,then)

f1=1.0/(1.0+1.3)

f2=1.3/(1.0+1.3)

sp1=fltarr(npix)+1.0

sp2=fltarr(npix)+1.0

z1=(sp1-1.)*f1-(rec1-1)*f1

z2=(sp2-1.)*f2*(-1.0)-((rec2-1)*f2)*(-1.0)

zmean=(z1+z2)/2.0

zmean=smooth(zmean,20)

;oplot,wave,zmean,color=cgcolor(’green’)

rec1corr=rec1+zmean/f1

rec2corr=rec2-zmean/f2

where the smoothing width parameter 20 is arbitrary and should be varied empirically.

The source codes for the two programs are listed in the following:

1 tomoft.pro (tomography in Fourier domain, algorithm in section 9.3.1)

pro tomoft,tol,obsspec,recspec,pshift,ratio,simspec

;a similar pro to tomograph.pro, but in FT domain,3 times faster

;NO regularization

;Inputs:--------------

;tol: SVD singular value tolerance,
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;singular values smaller than tol will be

;treated as zero, usually 1D-5

;obsspec: npix*nrv

;recspec: npix*2; set initial values for prior spectra

;pshift: 2*nrv

;ratio: 2*nrv

;(nstar=2 for now)

;Outputs:---------------

;recspec: npix*2

;simspec: npix*nrv

yobs=obsspec

;dimension: dblarr(npix,nrv)

ydim=size(yobs,/dimension)

npix=ydim[0]

nrv=ydim[1]

pdim=size(pshift,/dimension)

nstar=pdim[0]
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ym=dcomplexarr(npix,nrv);FT of the obsspec

for i=0,nrv-1 do begin

yobs(*,i)=obsspec(*,i)-mean(obsspec(*,i))

ym(*,i)=fft(yobs(*,i),/double)

endfor

;-------------------------

bet=dblarr(nrv,nstar)

bet=transpose(pshift)

L=ratio

Farr=dcomplexarr(nstar,nrv,npix)

;nrv obs spec, 2 stars,npix pixels

for i=1,nrv do begin

for j=1,nstar do begin

Lj=L(j-1,i-1)

col=dblarr(npix)

;npix=n_elements(col)

temp=abs(bet(i-1,j-1))
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low=fix(temp)

high=low+1.0

fhigh=temp-low

flow=1.0-fhigh

if(bet(i-1,j-1) lt 0.)then begin

if(low eq 0.)then begin

;speciall cases when RV within[-1,0]

;2 nonzero elements are col(npix-1)and col(0)

col(0)=flow*Lj

col(npix-high)=fhigh*Lj

endif else begin

col(npix-low)=flow*Lj

col(npix-high)=fhigh*Lj

endelse

endif else begin

col(low)=flow*Lj

col(high)=fhigh*Lj

endelse
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;print,i,j,’col=’,col

Farr(j-1,i-1,*)=fft(col,/double)

endfor

endfor

Farr=Farr*npix

x_inv=dcomplexarr(npix,nstar);ft of component spectra

ysim=dcomplexarr(npix,nrv);ft of simspec

for mm=0,npix-1 do begin

y=ym(mm,0)

for iy=1,nrv-1 do y=[y,ym(mm,iy)];form the FT(yobs)at freq=m

Fm=Farr(*,*,mm);the Fm matrix for freq=mm

;----SVD solution for each mm

la_svd,Fm,w,u,v

wfilter=w

for i=0,n_elements(w)-1 do begin
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if(w[i] le tol)then begin

wfilter[i]=0.0d

endif else begin

wfilter[i]=1.0/w[i]

endelse

endfor

;for each freq=mm,x_inv is a 2 elements array

x_inv(mm,*)=v##diag_matrix(wfilter)##transpose(conj(u))##y

ysim(mm,*)=Fm##x_inv(mm,*);nrv*nstar nstar*1 =nrv*1,all complex arrays

endfor

for i=0,nstar-1 do begin

recspec(*,i)=real_part(fft(x_inv[*,i],/inverse,/double))

endfor

;ysim(npix,nrv)

simspec=dblarr(npix,nrv)

for i=0,nrv-1 do begin

simspec(*,i)=real_part(fft(ysim(*,i),/inverse,/double))

simspec(*,i)=simspec(*,i)+mean(obsspec(*,i))
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;dblarr(npix,nrv)

endfor

end

2 tomoftregu2.pro (algorithm in section 9.3.2, calling subroutines tomoftregu and find-

corner)

pro tomoftregu2,tol,bound,nalpha,prior,obsspec,recspec2,pshift,ratio,simspec,

resi_arr,x_xprior,alpha_arr,alphaBest

;tomoft with regularization,use tomoftergu and

;findcorner to find best regularization paramter alpha

;tol: SVD singular value tolerance, smaller than tol will be treated as zero

;bound: two elements array,lower and upper bounds of alpha,e.g. [0.01,10]

;nalpha: # of regular parameter calculated

;prior: npix*2

;obsspec: npix*nrv

;recspec2: npix*2,inital value is going to be set as prior

;pshift: 2*nrv

;ratio: 2*nrv
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;----------Outputs:

;recspec2: npix*2; final recspec

;simspec: npix*nrv

;resi_arr: nalpha elements array, store the |Gx-d|^2

;x_xprior: nalpha elements array, store the |x-xprior|^2

;alpha_arr: nalpha elements array,store the regular parameters alpha

;bestalpha: the alpha adopted for final reconstruction

;

;yobs=obsspec;dblarr(npix,nrv)

ydim=size(obsspec,/dimension)

npix=ydim[0]

nrv=ydim[1]

;nalpha=20.

low=alog10(bound[0])

up=alog10(bound[1])

alpha0=dindgen(nalpha)/nalpha*(up-low)+low;low->up

alpha_arr=10.0^alpha0;

resi_arr=dblarr(nalpha)
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x_xprior=dblarr(nalpha)

for al=0,nalpha-1 do begin

;alpha=0.1

alpha=alpha_arr[al]

recspec2=prior;need to reset prior, recspec2 initial values=prior

tomoftregu,tol,alpha,obsspec,recspec2,pshift,ratio,simspec

rec1=recspec2(*,0)

rec2=recspec2(*,1)

x_xprior[al]=total((rec1-prior(*,0))^2)+total((rec2-prior(*,1))^2)

sum=0.0d

for j=0,nrv-1 do begin

sum=sum+total((obsspec(*,j)-simspec(*,j))^2)

endfor

resi_arr[al]=sum

print,x_xprior[al],resi_arr[al],alpha

;alpha=-2->2, resi,xxprior,alpha saved in xyz.txt,



427

;and used by test_findcorner

endfor

window,18,xsize=1200,ysize=600

x=alog10(resi_arr)

y=alog10(x_xprior)

plot,x,y,psym=4,yrange=[min(y),max(y)],$

xrange=[min(x),max(x)],xstyle=1,ystyle=1,$

title=’log(resi) vs log(x_xpior)’,xtitle=’resi’,ytitle=’x_xprior’

;use findcorner

findcorner,resi_arr,x_xprior,alpha_arr,alphaBest,g,kap

print,’best alpha=’,alphaBest,’ index=’,g

oplot,[x(g)],[y(g)],psym=1,color=cgcolor(’red’)

for i=0,nalpha-1 do begin

str=strtrim(string(alpha_arr[i],format=’(f6.3)’),2)

xyouts,[x(i)],[y(i)],str

endfor

;calculate curvature numerially

dy1=deriv(x,y)
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dy2=deriv(x,dy1)

curv=abs(dy2)/(1.0+dy1^2)^1.5; Curvature

gg=where(curv eq max(curv))

;print,gg,alpha(gg)

oplot,x[gg],y[gg],psym=4,color=cgcolor(’red’)

window,19

plot,alpha_arr,curv,psym=1,title=’alpha vs curvature’

oplot,alpha_arr,kap,psym=4,color=cgcolor(’red’)

;curvature from findcorner.pro approx.method

;--------------Lcurve end-----------------------------

;use the best alpha to do final tomo again

recspec2=prior

tomoftregu,tol,alphaBest,obsspec,recspec2,pshift,ratio,simspec

end

;------------------------------tomoftregu----------------------------

pro tomoftregu,tol,alpha,obsspec,recspec,pshift,ratio,simspec

;tomoft with regularization

;------------Inputs:
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;tol: SVD singular value tolerance,

;smaller than tol will be treated as zero

; usually 1d-5

;alpha: regularization parameter;

;larger value->solution is closer to prior

;obsspec: npix*nrv

;recspec: npix*2; set inital values are prior spectra

;pshift: 2*nrv

;ratio: 2*nrv

;----------Outputs:

;recspec: npix*2

;simspec: npix*nrv

;set recspec initial values as prior

;tol=1d-4

;--------------

;use modelspectra as mprior ,regularization in Fourier domain

;modp=spmod(w,paramp)

;mods=spmod(w,params)

;prior: npix*nstar array

modp=recspec(*,0)
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mods=recspec(*,1)

x1=modp-mean(modp)

x2=mods-mean(mods)

x1m=fft(x1,/double)

x2m=fft(x2,/double)

;the following part is the pro:

;tomoft,tol,obsspec,recspec2,pshift,ratio,simspec2

yobs=obsspec;dblarr(npix,nrv)

ydim=size(yobs,/dimension)

npix=ydim[0]

nrv=ydim[1]

pdim=size(pshift,/dimension)

nstar=pdim[0]

ym=dcomplexarr(npix,nrv);FT of the obsspec

for i=0,nrv-1 do begin

yobs(*,i)=obsspec(*,i)-mean(obsspec(*,i))

ym(*,i)=fft(yobs(*,i),/double)
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endfor

;-----

bet=dblarr(nrv,nstar)

bet=transpose(pshift)

L=ratio

Farr=dcomplexarr(nstar,nrv,npix)

;nrv obs spec, 2 stars,npix pixels

for i=1,nrv do begin

for j=1,nstar do begin

Lj=L(j-1,i-1)

col=dblarr(npix)

;npix=n_elements(col)

temp=abs(bet(i-1,j-1))

low=fix(temp)

high=low+1.0

fhigh=temp-low
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flow=1.0-fhigh

if(bet(i-1,j-1) lt 0.)then begin

if(low eq 0.)then begin

;speciall cases when RV within[-1,0],

;2 nonzero elements are col(npix-1)and col(0)

col(0)=flow*Lj

col(npix-high)=fhigh*Lj

endif else begin

col(npix-low)=flow*Lj

col(npix-high)=fhigh*Lj

endelse

endif else begin

col(low)=flow*Lj

col(high)=fhigh*Lj

endelse

Farr(j-1,i-1,*)=fft(col,/double)

endfor

endfor
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Farr=Farr*npix

x_inv=dcomplexarr(npix,nstar);ft of component spectra

ysim=dcomplexarr(npix,nrv);ft of simspec

II=dcomplexarr(2,2)

temp=complex(1.0,0.0)

II(0,0)=temp

II(1,1)=temp

for mm=0,npix-1 do begin

y=ym(mm,0)

for iy=1,nrv-1 do y=[y,ym(mm,iy)];form the FT(yobs)at freq=m

mprior=[x1m(mm),x2m(mm)]

Fm=Farr(*,*,mm);the Fm matrix for freq=mm

;----svd solution for each mm

Fm2=[[Fm],[alpha*II]]

ynew=[y,alpha*mprior]
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la_svd,Fm2,w,u,v

wfilter=w

for i=0,n_elements(w)-1 do begin

if(w[i] le tol)then begin

wfilter[i]=0.0d

endif else begin

wfilter[i]=1.0/w[i]

endelse

endfor

;---for each freq=mm,x_inv is a 2 elements array

x_inv(mm,*)=v##diag_matrix(wfilter)##transpose(conj(u))##ynew

ysim(mm,*)=Fm##x_inv(mm,*);nrv*nstar nstar*1 =nrv*1,all complex arrays

endfor

for i=0,nstar-1 do begin

recspec(*,i)=real_part(fft(x_inv[*,i],/inverse,/double))

endfor

;ysim(npix,nrv)
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simspec=dblarr(npix,nrv)

for i=0,nrv-1 do begin

simspec(*,i)=real_part(fft(ysim(*,i),/inverse,/double))

simspec(*,i)=simspec(*,i)+mean(obsspec(*,i))

;dblarr(npix,nrv)

endfor

end

;------------------------------findcorner------------------------------

pro findcorner,resi,x_xprior,reg_param,reg_corner,g,kappa

;translate from matlab code:l_curve_corner(rho,eta,reg_param)

;transform rho and eta into log-log space

;Input: --------------

;resi :|Gm-d|^2

;x_xprior :|x-xprior|^2

;reg_param: alpha array

;Output:---------------

;reg_corner :best alpha(regularization parameter)
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;g : index of the best alpha

;kap : curvature at each alpha

x=alog(resi);

y=alog(x_xprior);

; Triangular/circumscribed circle simple approximation to curvature

; (after Roger Stafford)

; the series of points used for the triangle/circle

nx=n_elements(x);nx=ny

x1 = x(0:nx-3);

x2 = x(1:nx-2);

x3 = x(2:nx-1);

y1 = y(0:nx-3);

y2 = y(1:nx-2);

y3 = y(2:nx-1);

; the side lengths for each triangle

a = sqrt((x3-x2)^2+(y3-y2)^2);

b = sqrt((x1-x3)^2+(y1-y3)^2);

c = sqrt((x2-x1)^2+(y2-y1)^2);
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s=(a+b+c)/2;%semi-perimeter

; the radius of each circle

R=(a*b*c)/(4*sqrt((s*(s-a)*(s-b)*(s-c))));

; The curvature for each estimate for each value which is

; the reciprocal of its circumscribed radius.

;Since there aren’t circles for

; the end points they have no curvature

kappa = [0,1.0/R,0];

nk=n_elements(kappa)

curvature_max=max(abs(kappa(0:nk-1)),g);

reg_corner=reg_param(g)

end


