The CHARA Science Meeting 2021

Science Motivation

Primary Science goal is to image the inner disks of Young Stellar Objects

 K band sensitivity better for T Tauri Stars and will allow "temperature mapping" of the inner disk when combined with MIRC-X

	MWC275 (Herbig Ae)	V1295 Aql (Herbig Be)	SU Aur (T Tauri)
J/H/K uncorrelated	6.2 / 5.5 / 4.8	7.2 / 6.6 / 5.9	7.2 / 6.6 / 6.0
Visibility (V) on longest baseline	0.3? / 0.2 / 0.1	0.5? / 0.3 / 0.2	0.6? / 0.5? / 0.4
J/H/K correlated	7.5 / 7.2 / 7.3	8.0 / 7.9 / 7.6	7.8 / 7.3 / 7.0

Secondary Science goal is to detect exoplanets with precision closure phases

<u>Tertiary Science goal is to explore Spectro-Interferometry</u>

• YSOs, Be stars (Br-gamma); cool stars (CO)

Requirement: MYSTIC integration with MIRC-X and SPICA for simultaneous V+R+J+H+K observing with all 6 telescopes (!) MYSTIC Update (Monnier)
WYSTIC Update (Monnier)
WYSTIC Update (Monnier)
WYSTIC Update (Monnier)
WYSTIC Update (Monnier)

MYSTIC Instrument Architecture

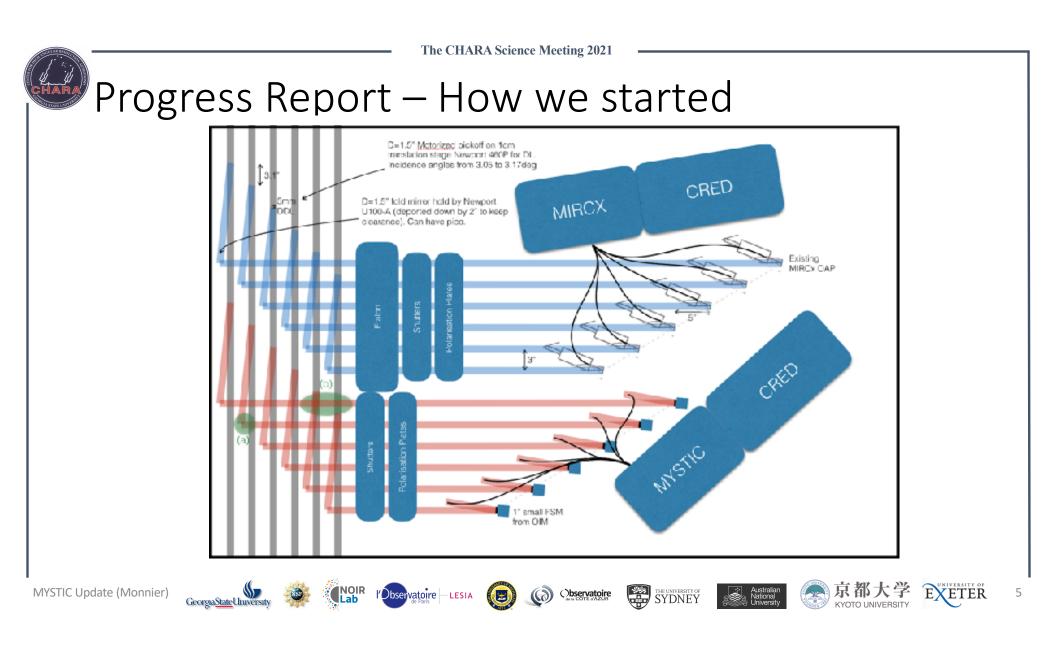
- CRED-One e-APD Camera (80K)
 - Low readnoise (yes!), low background (not so much)
- Custom Cryostat (200K, cryocooled) for Combiners/Spectrograph
 - Fed by single-mode fibers

GeorgiaStateUniversi

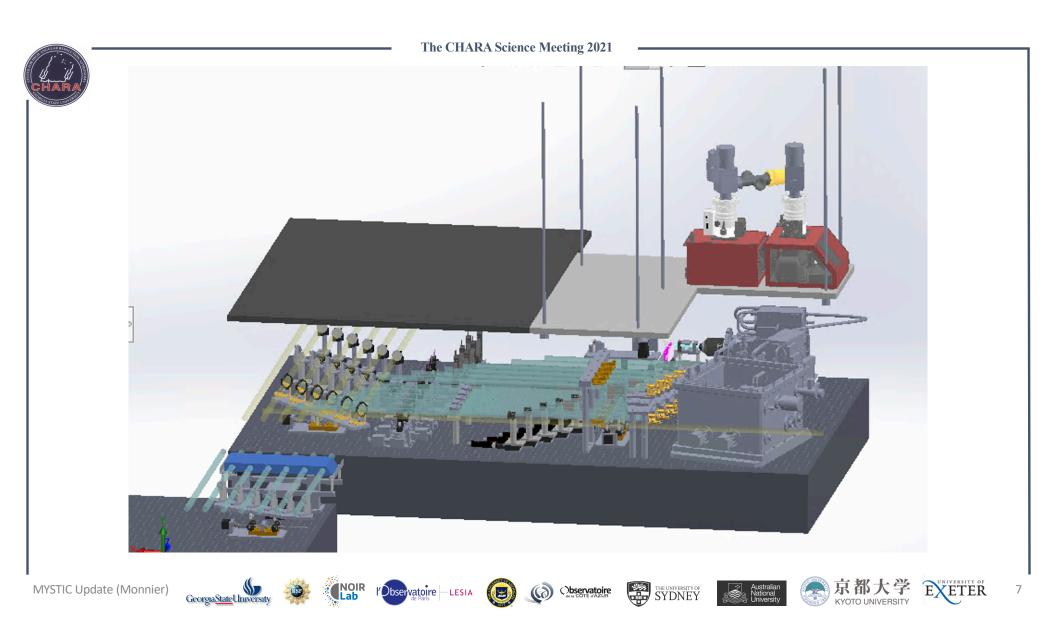
- TWO COMBINERS:
 - 4-beam mode for high sensitivity
 - Using spare GRAVITY IO chip, No cross talk
 - 6-beam mode for snapshot imaging
 - Using "classic" MIRC-style combiner
- Wollaston mode for polarization experiments
- Many options for prisms/grisms for spectroscopy

C	
	H.

PRISMS	GRISMS
R=20	R=278
R=50	R=981
R=100	R=1726 (CO + Br-γ)


Amazing Team Effort

- John Monnier (PI, UM)
- Jean-Baptiste le Bouquin (IPAG -> UM -> IPAG)
- Narsireddy Anugu (Exeter -> Arizona)
- Stefan Kraus (Exeter)
- Ben Setterholm (UM graduate student)
- Jacob Ennis (UM undergraduate -> UM alum)
- Cyprien Lanthermann (IPAG -> Leuven -> CHARA)
- Laurent Jocou (IPAG)

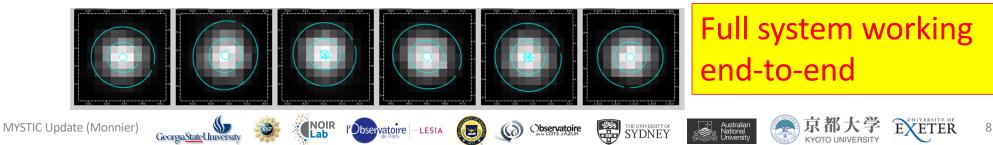

GeorgiaStateUniv

• Theo ten Brummelaar + whole Mountain team

NOIR I Deservatoire - LESIA () Subservatoire SyDNEY

Warm Optics Status

- Lab 6-beam Star Simulator
- Updated Arduino-based Shutters
- New Custom Dicroics to pick-off MYSTIC light
- New Lithium Niobate Plates for Polarization Control and tested
- Folded differential delay lines w/ stepper motors Installed, motorized, and tested


Installed, motorized, and tested

Installed, motorized, and tested

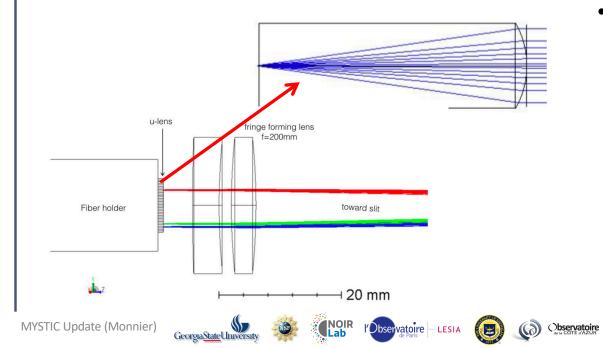
Installed, motorized,

Installed, motorized, and tested.

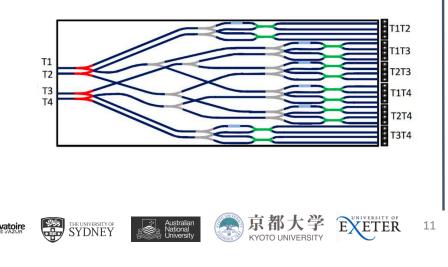
- Voice-coil actuated tip-tilt mirror for fiber injection
- Custom diamond-turned Off-axis Parabolas
 - Original plan to use Edmund Optics OTS mirrors failed

Fibers

- Extensive testing of PM1950 fiber (silica, not fluoride)
 - NA 0.2, cutoff 1.7mu
 - Large NA required custom lenslet arrays \$\$\$\$
- 3 fibers: OAP Patch (0.45m), Feedthrough (0.4m), Vgroove (0.2m)
- Throughput between 80%-60% (1.9->2.4mu)
- Coastal Connections was a great vendor to work with for length matching and feedthrough
- We measured of every fiber length (using Luna backscatter reflectometer)
 - Mixing/matching: <75mu Combiner1, <0.5mm GRAVITY
- Late addition: Adding 4 'extra' OAPs on moving periscope so we can switch between the GRAVITY and V-groove combiners w/o unplugging fibers
 - We should develop a similar system for MIRC-X IO fringetracker



MYSTIC 1	1	2	3	4	5	6			
Patch 1	3	1	7	6	4	2	MAX-MIN	1165	μm
Feedthrough 1	6	3	7	2	1	9	RMS	441	μm
Patch 2	1	3	5	4	2	8	MAX-MIN	515	μm
Feedthrough 1	6	2	3	7	1	9	RMS	158	μm
Patch 1	3	8	7	2	4	1	MAX-MIN	497	μm
Feedthrough 2	1	7	5	3	8	9	RMS	160	μm
Patch 2	3	4	2	8	7	5	MAX-MIN	73	μm
Feedthrough 2	3	2	7	1	8	9	RMS	23	μm
Patch 1	5	1	7	6	4	2	MAX-MIN	1103	μm
FT 3 w/o #6	5	2	8	9	3	4	RMS	392	μm
Patch 2	3	5	6	4	2	1	MAX-MIN	568	μm
FT 3 w/o #6	5	9	2	7	3	1	RMS	194	μm


The CHARA Science Meeting 2021

- MIRC-Style
 - 6 beams = 15 fringes
 - w/ photometric channels split with custom pol-neutral BS

- GRAVITY
 - 4 beams = 6 fringes
 - 4 outputs/fringe ABCD => 24 outputs
 - 180 mu separation
 - MORE SENSITIVE: fewer pixels, lower spectral resolution

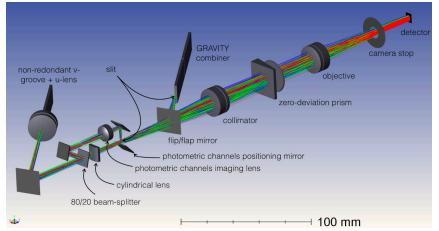
The CHARA Science Meeting 2021 MYSTIC Cryostat • From Design to Build GRAVITY non-redondant vgroove + u-lens zero-deviation prism collimator flip/flap mirror photometric channels positioning mirror otometric channels imaging lens cylindrical lens 80/20 beam-splitter + 100 mm GRAVITY combiner not installed

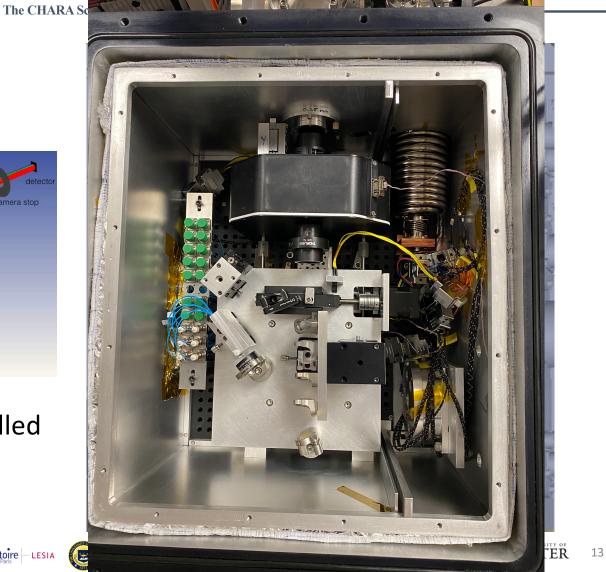
京都大学 KYOTO UNIVERSITY EXETER () Observatoire THE UNIVERSITY OF SYDNEY Australia National

MYSTIC Update (Monnier)

GeorgiaStateUniversit

NOIR


Observatoire LESIA

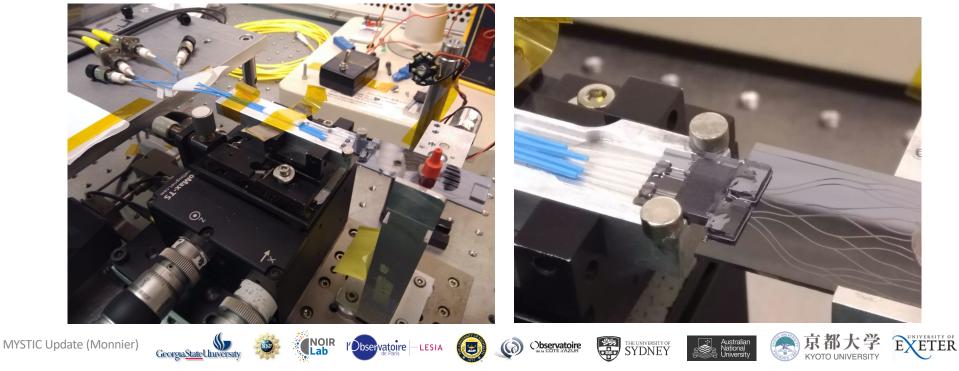

12

MYSTIC Cryostat

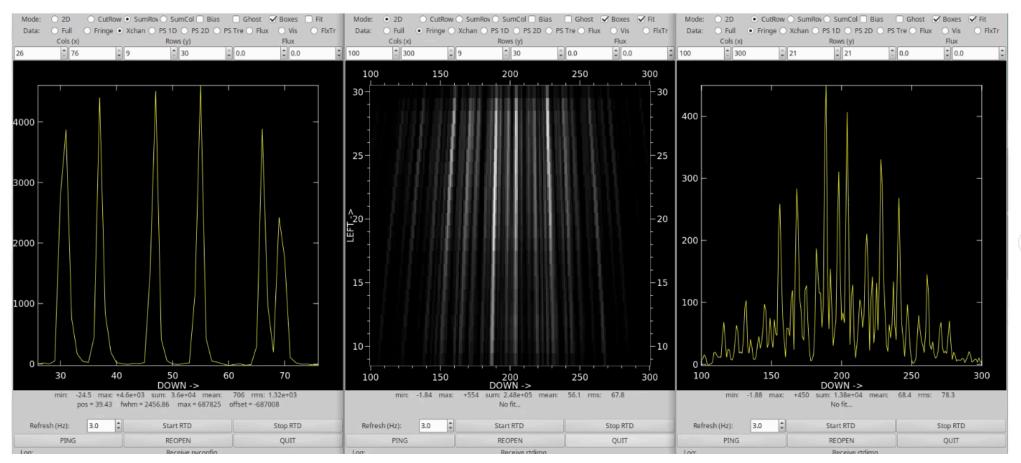
• From Design to Build

GRAVITY combiner not installed

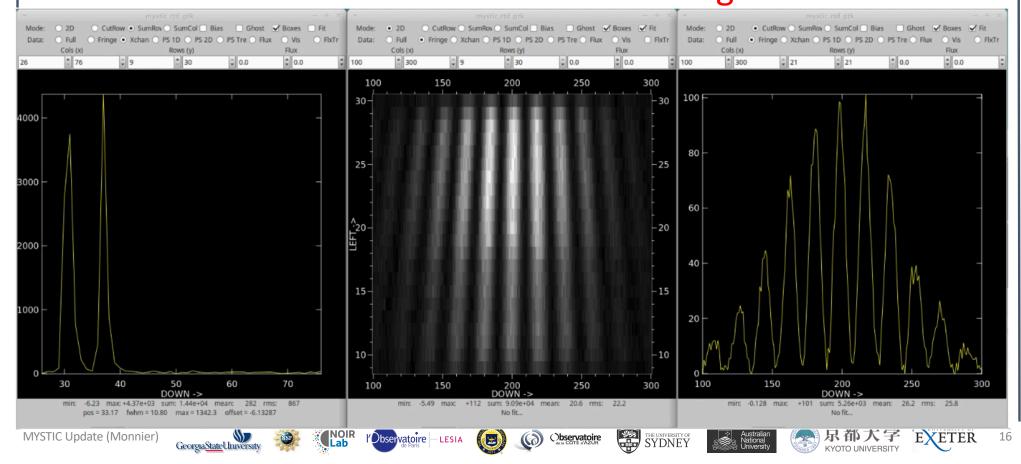
MYSTIC Update (Monnier)


GeorgiaStateUniversit

bservatoire LESIA

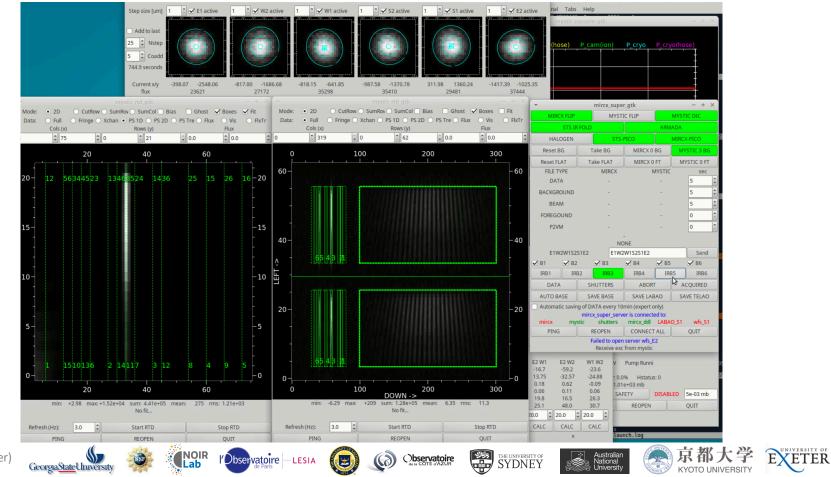

Preparing the GRAVITY Chip in IPAG

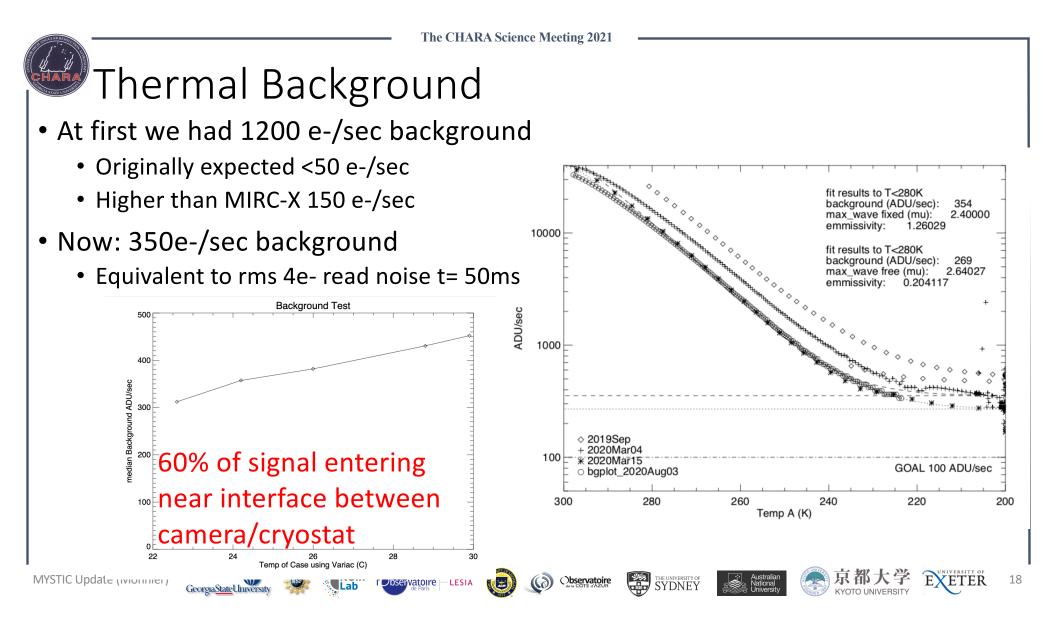
- Gluing v-groove to integrated optics chip
- Gluing beam-shiping micro-lens arrays to output of chip
- Robust packaging and mounting for shipping and cryogenic shrinkage



14

System is fully tested end-to-end (WARM) All 6 beams



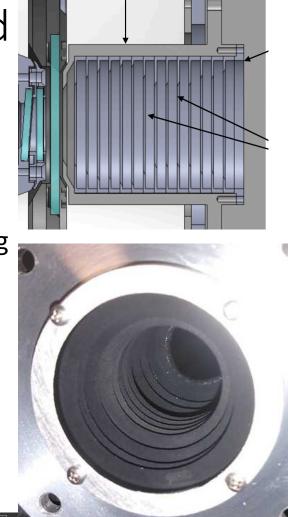

Software is mature, based on MIRC-X

The CHARA Science Meeting 2021

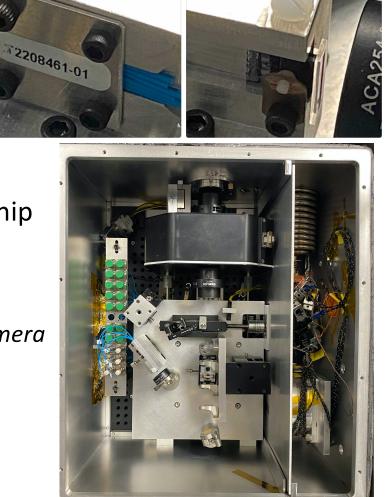
MYSTIC Update (Monnier)

17

Interventions to lower background


- New Sapphire window
- Added cold cutoff filter to remove flux >2.38 microns
- Custom "Singularity Black" Baffle
- Custom-designed Baffling w/ Singularity Black Coating
- Extensive cryostat baffling of warm entry points
- Remaining options to get last factor of 2 in noise
 - Carefully clean sapphire window
 - Optimize size of cold stop in camera
 - Cool camera body (problem with vacuum sensor)
 - Take window out completely

GeorgiaStateUniver



Remaining Steps

Test science combiner cold

- There is risk something will break igodot
- First cryo Test next week 🙂
- Finish mounting then install/test GRAVITY chip
- GRAVITY OAP Periscope Subsystem
- IR guider with new "STS" (stretch goal)
 - Need enw funding for decent commercial IR camera
- Carefully ship/drive to CHARA and install
 - Best case 2021 June (??)

GeorgiaStateUniv

Huge Acknowledgment to the amazing TEAM EFFORT to build MYSTIC

• Looking forward to moving out of lab and getting on-sky as soon as we can!

Preliminary Design Review Lookback (marked in red have indeed impacted development)

Warm Optics Risk Matrix

Cold Optics Risk Matrix

Risk	Impact	Probabil ity	Mitigation	Risk	Impact	Probability	Mitigation	
Tolerance analysis insufficient	medium	Low	Lose some spectral resolution; crosstalk	Equalisation of fibre length	Medium	High	We will use 3-sections of fibres. Second mitigation: glass plates	
Cryogenic mounting	medium	Low	Gravity experience	Image quality of parabola	Medium	-	Buy better quality parabola. Make stiff mount of fiber.	
Poor thermal baffling for	medium	Medium	Detector placed as close to dewar					
camera			as physically possible	Vignetting in the warm optics	Medium	High	Help CHARA to control the pupil shear	
Gluing lenslets	high	Medium	Extra prototype work	All the worm optics				
OTS optics fail when cold	medium	Medium	Custom optics and mounting					
Alignment strategy difficult	low	Medium	Many warm/cooling cycles; add cryomotors	Impact on CHARA beams (vignetting, heat)	High	Low	Motor do not dissipate heat when not moved. Vignetting will be avoided by design.	
Accumulation of delays	high	High	Prototype with MIRCx, meet schedule	Vibration from cryostat	High	Medium	Pre-sale discussion with provider.	
MYSTIC Update (Monnier) 《 《 《 》 》 《 》 》 》 》 》 》 》 》 》 》 》 》 》								