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ABSTRACT

We present the results of long-baseline interferometric observations of the classical Cepheids Polaris and δ Cep in the near infrared
K′ band (1.9−2.3 µm), using the FLUOR instrument of the CHARA Array. Following our previous detection of a circumstellar
envelope (CSE) around � Car (Kervella et al. 2006), we report similar detections around Polaris and δ Cep. Owing to the large data
set acquired on Polaris, in both the first and second lobes of visibility function, we have detected the presence of a circum-stellar
envelope (CSE), located at 2.4±0.1 stellar radii, accounting for 1.5±0.4% of the stellar flux in the K band. A similar model is applied
to the δ Cep data, which shows improved agreement compared to a model without CSE. Finally, we find that the bias in estimating
the angular diameter of δ Cep in the framework of the Baade-Wesselink method (Mérand et al. 2005b) is of the order of 1% or
less in the K band. A complete study of the influence of the CSE is proposed in this context, showing that at the optimum baseline
for angular diameter variation detection, the bias is of the order of the formal precision in the determination of the δ Cep pulsation
amplitude (1.6%).

Key words. stars: variables: Cepheids – stars: circumstellar matter – stars: individual: Polaris (α Ursae Minoris) –
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1. Introduction

Using low resolution interferometry (e.g. small baselines at
which the star is under resolved) in the near infrared and mid-
infrared, we recently reported the discovery of a circumstel-
lar envelope (CSE) around the 35 day period Cepheid � Car
(Kervella et al. 2006). The presence of this feature may disturb
the application of the classical Baade-Wesselink (BW) method,
which aims at determining distances by measuring simultane-
ously the variations of angular and linear diameters.

Stellar interferometry has demonstrated a capability to mea-
sure precise Cepheid distances and the calibration zero point
of the their Period-Luminosity relation (Kervella et al. 2004a).
With the recent calibration of the BW method, thanks to the
direct p-factor measurement by interferometry (Mérand et al.
2005b), it is now mandatory to study the Cepheid center-to-limb
darkening (CLD) and the possible presence of CSEs in order to
constrain two of the last sources of possible bias in the interfero-
metric BW method. A morphological model is required in order
to derive the angular diameter from a single baseline visibility
measurement. If the assumed CLD differs from the actual one,
or if the circumstellar emission is present, the derived angular
diameters can be biased, possibly leading to a biased distance
estimation in the BW method.

Following our recent study of � Car, we present in this
work near infrared observations of Polaris (α UMi, HR 424,

� Table 4 is only available in electronic form at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/453/155

HD 8890) and complementary observations of δ Cep (HR 8571,
HD 213306) using the FLUOR (Fiber Link Unit for Optical
Recombination) beam combiner installed at the CHARA (Center
for High Angular Resolution Astronomy) Array. Polaris is the
brightest Cepheid in the northern skies and offers the best op-
portunity to measure the CLD and detect the presence of a CSE.
A great amount of data was collected, 65 calibrated data points
using 4 different baselines (projected length from 19 to 246 m),
to disentangle the CLD and CSE characterization from the pos-
sible close companion and radial pulsation detection. We show
that these two latter effects have not been detected in our dataset,
whereas the presence of a CSE is mandatory to explain a visibil-
ity deficit observed at V2 ∼ 50%, as in � Car.

We also present complementary observations of the Cepheid
δ Cep with medium baselines (B ≈ 150 m), following our deter-
mination of its p-factor using very long baselines (Mérand et al.
2005b). The final characteristics of the CSEs detected around
Polaris and δ Cep are qualitatively in agreement with what has
been found for � Car.

Finally, we present a formal analysis of the bias introduced
to the BW method in presence of the CSE.

2. Observational setup

2.1. CHARA/FLUOR

Observations were undertaken in the near infrared (K′ band,
1.9 ≤ λ ≤ 2.3 µm) at the CHARA Array (ten Brummelaar
et al. 2005) using FLUOR, the Fiber Linked Unit for Optical
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Recombination (Coudé du Foresto et al. 2003). The FLUOR
Data reduction software (DRS) (Coudé du Foresto et al. 1997;
Kervella et al. 2004b), was used to extract the squared modulus
of the coherence factor between the two independent apertures
from the fringe pattern.

2.2. Baselines

The baselines were chosen according to the Polaris and δ Cep
angular sizes (approximately 3 and 1.5 mas, respectively), wave-
length of observation and desired spatial resolution. Polaris must
be observed at i) low spatial resolution (V2 ∼ 50%) in order to
detect the CSE and the possible faint companion, ii) high resolu-
tion (in the first lobe of the visibility profile, near the first null) in
order to detect the pulsation with optimum sensitivity and iii) at
the top of the second lobe in order to measure the CLD. This led
to the choice of CHARA baselines i) S1-S2 (b = 33 m), E1-E2
(b = 66 m), ii) W2-E2 (b = 156 m) and iii) W1-E2 (b = 251 m).
Concerning δ Cep, the only requirement for the complemen-
tary data was to reach V2 ∼ 50%, where the CSE is believed
to be easily detectable. This criteria led to projected baselines
of roughly 150 m, corresponding to W2-E2 and S2-W2 at the
CHARA Array. These latter baselines were chosen with similar
length but different orientation, in order to investigate possible
asymmetry in the CSE, if present.

2.3. Calibrators

Calibrator stars were chosen in two different catalogs: B02
(Bordé et al. 2002) for stars larger than 2.0 mas in diameter
and M05 (Mérand et al. 2005a) for stars smaller than 2.0 mas
using criteria defined in this latter work (see Table 1). We used
calibrators from B02 for baselines smaller than 100 m, while for
larger baselines we used calibrators from M05. The two cata-
logs are very similar by their characteristics: M05 is an extension
of B02 using the very same procedure to estimate angular diam-
eters. Therefore no trend is expected when using data calibrated
with stars coming from these two catalogs.

3. Observations of Polaris

3.1. Context

Polaris has the largest angular size of all northern population I
Cepheids. This star is therefore the best candidate for CLD mea-
surements using an interferometer.

Because Polaris lies near the North celestial pole, the pro-
jected baseline remains almost constant in length while varying
in position angle during the night (see Fig. 1).

3.2. Expected hydrostatic CLD profile

Claret (2000) tabulated limb darkening coefficients from hy-
drostatic ATLAS models. If we use the following parameters
Teff = 6000 K, log g = 2.5 and solar metallicity, we get in the
database the following LD coefficients for the K band:

a1 = 0.6404, a2 = −0.1182, a2 = −0.2786, a4 = 0.1802

describing the center to limb variations:

I(µ)/I(1) = 1 −
4∑

k=1

ak

(
1 − µk/2

)
. (1)

Table 1. Calibrators used for the observations. “SP” stands for spec-
tral type. Uniform Disk diameters, given in mas, are only intended for
computing the expected squared visibility in the K band.

SP UD diam. Baseline Notes
HD 5848 K2 II-III 2.440±0.064 S1-S2 B02, 1
HD 5848 K2 II-III 2.440±0.064 E1-E2 B02, 1
HD 81817 K3 III 3.260±0.085 – –
HD 139669 K5 III 2.890±0.035 – –
HD 222404 K1 III-IV 3.290±0.051 – –
HD 83550 K2 III 1.160±0.015 W2-E2 M05, 1
HD 91190 K0 III 1.330±0.018 – –
HD 118904 K2 III 1.411±0.018 – –
HD 176527 K2 III 1.721±0.024 – M05, 2
HD 218452 K5 III 2.080±0.024 – –
HD 162211 K2 III 1.598±0.020 S2-W2 M05, 2
HD 165760 G8 III 1.500±0.020 – –
HD 207130 K1 III 1.331±0.017 – –
HD 217673 K1 II 1.411±0.020 – –
HD 9022 K3 III 1.050±0.014 W1-E2 M05, 1
HD 42855 K3 III 0.803±0.010 – –
HD 217673 K1 II 1.411±0.020 – –
HD 206842 K1 III 1.214±0.016 – M05, 2

Notes: B02 refers to Bordé et al. (2002) catalog; M05 to Mérand et al.
(2005a) catalog; 1 refers to Polaris observations and 2 refers to δ Cep
ones.
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Fig. 1. u−vmap, in meters. Up is north and right is east. Each data point
lies on a circle corresponding to the baseline because of the near-polar
position in the sky of Polaris.

It is necessary to take into account the bandwidth smearing.
Once the monochromatic visibility v(σ, b) is computed from the
intensity profile I(µ)/I(1) for a given wavenumber σ = 1/λ
and baseline b, the wide-band squared visibility is obtained by
computing:

V2
FLUOR(b) =

∫
T 2

r (σ) (B(σ)/σ)2 v2(σ, b) dσ∫
T 2

r (σ) (B(σ)/σ)2 dσ
(2)

where B(σ)/σ is the black body Planck function, in number of
photons per unit of time, frequency and surface area for the ef-
fective temperature of the star (since FLUOR uses a detector that
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Table 2. Best fit model parameters for Polaris and its CSE. θ� is the
stellar angular diameter (mas), α the CLD coefficient, θs the shell an-
gular diameter (mas), w the shell width (mas) and Fs/F� the relative
brightness (Fig. 3). Last column tabulates the reduced χ2. Only param-
eters with error bars (lower scripts) have been fitted. The first line is the
hydrostatic model; the second line is the adjusted CLD; the model of
the last line includes a shell.

θ� α θs w Fs/F� χ2

3.152±0.003 0.16 – – – 4.5
3.189±0.005 0.26±0.01 – – – 2.5
3.123±0.008 0.16 7.5±0.2 0.5 1.5±0.4% 1.4
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Fig. 2. Results of fit for different models. Squared visibility with respect
to baseline. Solid line is the hydrostatic CLD from Claret (2000), dotted
line is a fitted power law CLD while the dashed line is the hydrostatic
model surrounded by the shell (see Table 2 for the models parameters).
Note that solid and dotted line overlap in the main panel, the S1-S2 and
E1-E2 small panels.

measures the flux as a number of photons); Tr is the chromatic
instrumental transmission, which has been measured internally
(a standard atmospheric transmission model is also applied).

The only parameter adjusted in the fit is the angular diameter
of the star, which is found to be θ� = 3.152 ± 0.003 mas. The
corresponding reduced χ2 is 4.5 (Table 2). Note that we take
into account the correlations between error bars of different data
points. These correlations come from the multiple use of a single
calibrator in the dataset. They are properly treated according to
the formalism developed by Perrin (2003).

In Fig. 2, we display the data points and the models. The
solid line corresponds to the hydrostatic CLD model for Polaris
from Claret (2000). It appears that the model fails to reproduce
the data in the second lobe (see W1-E1 baseline) and marginally
intermediate baselines (E1-E2), where V2 ∼ 50%.

3.3. Adjusted center-to-limb variation

Because the second lobe is not well reproduced by the hydro-
static model, a simple way to improve the model is to adjust
the strength of the CLD. Indeed, the CLD profile changes the
scale of the first lobe (not its shape) and the height of the second

lobe. For this purpose we chose a single parameter CLD law, the
power law: I(µ)/I(1) = µα (Michelson & Pease 1921; Hestroffer
1997). The hydrostatic model computed from Claret coefficients
for Polaris corresponds to α = 0.16. Even using a single pa-
rameter CLD model compared to the 4-parameters Claret’s law,
corresponding V2 only differ at most by 10−3 (relative) in the
first two lobes. We therefore prefer to use a single parameter
CLD law (the power law), for the sake of simplicity.

The best fit, adjusting α as a free parameter, leads to θ� =
3.189±0.005 mas and α = 0.26±0.01; the reduced χ2 is then 2.5
(Table 2, second line). Based on the χ2, the fit is significantly bet-
ter: the hydrostatic CLD led to χ2 of 4.5. The CLD is stronger
than predicted by hydrostatic models and the corresponding an-
gular diameter is thus larger, as expected. However, before trying
to interpret this result in terms of photospheric characteristics,
one should notice that this model still fails to fit the mid-first
lobe (see E1-E2 panel in Fig. 2, dotted line, which actually over-
laps with the solid line). The measured V2 data are lower than
computed for a limb darkened disk. A change in CLD affects
primarily the second lobe (higher spatial frequencies), and only
the scale of the first lobe. In order to change the shape of the
first lobe, one has to invoke something larger that Polaris itself
to disturb the lower spatial frequencies. Thus, we think that this
strong CLD is not realistic.

3.4. Companion and pulsation

When seeking possible explanations for the departure
around V2 ∼ 50%, two obvious possibilities must be con-
sidered before invoking a CSE: Polaris is a pulsating star and a
spectroscopic-astrometric binary as well (Wielen et al. 2000).
We shall now show that neither of these two hypotheses can
explain the discrepancy in the first lobe.

If the departure detected at V2 is believed to be due to the
companion, it should vary with the position angle angle of the
projected baseline. Our sampled range in projection angle is
quite large and densely populated for E1-E2 (Fig. 1). However
the departure does not change significantly with respect to pro-
jection angle of the baselines. As seen in Fig. 2: the V2 recorded
using E1-E2 are consistent within their errors. Because our typi-
cal V2 precision is of the order of 3%, the companion must be as
faint as 1.5% of the main star flux, or less (in the K band), in or-
der to remain undetected by CHARA/FLUOR. Moreover, based
on non detection in UV and X-ray, Evans et al. (2002) estimate
that the companion mass is between 1.7 and 1.4 solar masses.
Thus, this star is most likely a main sequence star of similar spec-
tral type (but lower luminosity) to Polaris. Wielen et al. (2000),
in their study of the astrometric orbit, conclude that the differ-
ence in magnitude between the two components is ∆V = 6.5
from which we deduce, because of the similarity in spectral type,
∆K ≈ 6.5. This corresponds to a flux ratio of 2.5 × 10−3 which
translates into an interferometric V2 modulation twice as large,
5 × 10−3 or half a percent.

According to the latest radial velocity surveys, the radial pul-
sation of Polaris is of the order of 0.4% in diameter (Moskalik
& Gorynya 2005). In the case of FLUOR, for which the rela-
tive error in squared visibility (σV2/V2) is almost constant, the
most effective baseline to search for diameter variations maxi-
mizes the following criterion: for a given baseline b and angular
diameter θ, a diameter increase of δθ should lead to the max-
imum relative increase in squared visibility δV2/V2. Thus, the
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optimum baseline maximizes (in absolute value) the dimension-
less quantity Af , which we call the amplification factor:

Af =
∂V2(b, θ)
∂θ

θ

V2(b, θ)
· (3)

If the angular diameter θ increases by the very small amount δθ,
then, the visibility increases by δV2/V2 = Af × δθ/θ. If we com-
pute Af for the four projected baselines for which Polaris has
been observed, we get −0.1, −1, −11.5 and −3.7 for S1-S2,
E1-E2, W2-E2 and W1-E2 respectively. Note that Af is neg-
ative in the first lobe: an increase in diameter leads to a de-
crease in visibility, a well known effect of the Fourier transform.
Our best baseline to detect the pulsation on Polaris is W2-E2
with an amplification factor of −11.5. Our relative average cali-
brated V2 uncertainty is of the order of 3.5% for this baseline,
thus we should be able to detect a 0.3% pulsation amplitude
within one sigma (respectively 1% within 3 sigmas), assuming
good phase coverage. In our case, data were recorded on three
nights within a week. Because the pulsation is almost a multiple
of 1 day (P ≈ 3.97 days), it was not possible to explore more
than three different epochs, one quarter phase apart. Fitting a
uniform non-pulsating disk to W2-E2 data leads to a reduced χ2

of 1.05, which means the pulsation was not detected due to poor
phase coverage or because its amplitude was slightly shallower
than expected (0.5%).

3.5. CSE model

We demonstrated that neither the companion nor the pulsation
can be detected in our dataset. These phenomena cannot explain
the visibility departure we observed at V2 ∼ 50% and can be
therfore neglected.

Following the study on � Car, we shall now explore the pos-
sible presence of a CSE around Polaris. We will adopt a ring-like
model for the CSE. The image of the object, as seen by the in-
terferometer, is supposed to be a limb-darkened star, surrounded
by a ring. Note that the ring does not represent a flat disk, it
is the two dimensional projection of the surrounding shell. This
model contains five parameters (see Fig. 3): the star angular di-
ameter (θ�), its limb darkening coefficient (α), the ring mean
diameter (θs), its width (w) and the flux ratio between the two
components Fs/F�. Apart from a star surrounded by a ring, this
model can reproduce a single star (Fs/F� = 0) or a star with an
uniformly bright environment (θs − w = θ�).

3.6. Results

The number of parameters (5) is too large compared to our
dataset. Not that we do not have enough data points, but be-
cause these data points are bundled in four sets, one for each
baseline. This is due to the particular position of Polaris in the
sky (near the pole) and because our model is centro-symmetric.
We choose to fix the center to limb darkening coefficient to the
value predicted by hydrostatic models (α = 0.16). Moreover,
we also realized that the ring width does not play a significant
role in the minimization: we fixed this parameter to different
values, from 0.01 mas (very sharp ring) to 1 mas (diluted ring)
and always obtained results for the other parameters within one
sigma error bar. This is probably due to our lack of spatial res-
olution, which prevented us to actually resolve the ring width.
Finally, only three parameters were adjusted: the stellar angular
diameter, the shell angular diameter and its flux ratio. The best
model is a CSE accounting for 1.5 ± 0.4% of the stellar flux and

Flux ratio
α

w

sθ

*
θ

Fig. 3. Our simple CSE model: a star and a ring, as seen by the interfer-
ometer. The star (in the center) is characterized by its angular diameter
θ� and CLD coefficient α (darker means brighter), whereas the shell is
characterized by its angular diameter θs, width w and flux ratio.

7.6 ± 0.2 mas in angular diameter, whereas the stellar angular
diameter is 3.123 ± 0.008 mas. The reduced χ2 is 1.4 (Table 2).

Interestingly, though the CLD has the same as before (α =
0.16, solid line in the same figure), the second lobe is lower than
in the model without an envelope: the shell lowers the second
lobe. This can be explained easily: since the shell is completely
resolved at these baselines (its own visibility is extremely low), it
only contributes as an uncorrelated flux and reduces the visibility
by a factor F�/(Fs + F�) where F� and Fs are the total fluxes of
the two components (star and shell respectively).

3.7. Influence of the CLD

The CLD cannot be constrained from our data, not because they
are not sensitive to it (we do have data in the second lobe),
but rather owing to the limited number of free parameters the
u − v coverage authorizes. In terms of least square minimiza-
tion, the reduced χ2 is already close to its reasonable minimum.
Adding a free parameter does not improve the fit – worse, it
complicates the minimization algorithm and the error bar esti-
mations. The only thing allowed, is to explore changes in the
fixed value for the CLD parameter.

The χ2 does not change much but it is still interesting to
watch the behavior of the free parameters. The main effect of
changing the CLD is to change the stellar diameter accordingly.
Indeed, this is just a well known effect of the limb darkening, as
the equivalent uniform disk diameter remains the same. The sec-
ond lobe changes slightly, as expected: increasing the strength
of the CLD lowers the second lobe. More interestingly, the flux
ratio between the CSE and the star changes significantly. We
previously noted that the shell would lower the second lobe. If
the CLD lowers it too, the shell does not have to be as bright to
compensate the effects of a shallow CLD. Yet it is not possible
to let the shell disappear completely: the V2 deficit still has to be
fitted. Furthermore, the size of the shell does not change, since it
is not constrained by the second lobe but by the position (in term
of baseline) of the deficit at low spatial frequencies.
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Therefore it is not possible to draw conclusions regarding
Polaris’ intrinsic CLD. We chose not to constrain this parame-
ter and fixed it to a plausible value. Firstly, the quality of the fit
is good enough (as judged by χ2) to conclude that this value is
compatible with our data set. Secondly, our model is not realistic
enough that we can hope measuring the CLD with good accu-
racy. However, we suggest that the CLD of Polaris is probably
consistent with the value expected from hydrostatic simulations.

3.8. Nature of the ring

We tested our best fit geometry with a physical model, such as
the one used by Perrin et al. (2004) for Mira stars: this model
is a simple radiative transfer calculation for a single layer shell
surrounding a star. The shell is a self emitting black body, like
the star itself. This type of model and our ring model lead to
similar geometries for the object, as seen by the interferometer.
In the model described by Perrin et al. (2004), the shell tem-
perature can be computed using a simple radiative equilibrium
model, such as presented in Ireland et al. (2005). Using silicate
opacities (Suh 1999) and a black body spectrum for the Cepheid
(Teff ≈ 6000 K), we found an equilibrium temperature of the
order of 2500 K at 3 stellar radii, which does not allow silicate
dust grains to survive. Based on this test, the observed circum-
stellar emission is unlikely to be due to thermal emission from a
silicate dust shell. This conclusion does not apply to Mira stars
(Teff ≈ 2800 K), for which the equilibrium temperature is much
lower for a shell at the same distance.

3.9. Conclusion

A model consisting in a limb darkened star surrounded by a shell
is an important improvement compared over the simple darkened
disk model. The first lobe visibility deficit, for E1-E2 baseline,
is understood to be due to the presence of a CSE consisting of
a dim ring 2.4 ± 0.1 times larger than the star itself. The width
of the ring is not known, and can be either thin or extended.
However, the flux ratio between the CSE and the star is accu-
rately known and does not depends on the width of the adopted
ring: 1.5 ± 0.4%. It is not possible to well constrain the intrinsic
CLD of the star. However, our choice of a CLD computed from
hydrostatic model (Claret 2000), combined with a CSE lead to a
model consistent with the interferometric data.

4. Observations of δ Cep

4.1. Additional observations

In a recent study, we observed δ Cep (Mérand et al. 2005b)
and applied the Baade-Wesselink (BW) method to the interfer-
ometric V2 measurements. These measurements were obtained
at very long baselines, between 235 and 315 m where 0.02 ≤
V2 ≤ 0.15. This range was chosen from among the whole dataset
because it maximized the amplification factor criterion. The re-
maining data, acquired at medium baselines, did not contribute
significantly to the angular diameter determination; moreover,
their phase coverage was poor.

It was not possible to even suspect the presence of a shell
based only on the longest baseline observations. Considering
the experience with Polaris (above) and previously with � Car,
it appears the the CSE is only detectable using a combination
of several different spatial frequencies. Thus, we here combine
the sparse medium baseline data acquired on δ Cep in 2004 with
more recent observations, obtained in 2005, at baselines where

Table 3. Best fit model parameters for δ Cep and its CSE. θ� is the stel-
lar angular diameter (mas), α the CLD coefficient, θs the shell angular
diameter (mas), w the shell width (mas) and Fs/F� the relative bright-
ness (Fig. 3). Last column tabulates the reduced χ2. Only parameters
with error bars (lower scripts) have been fitted. Note that in the second
line, θs/θ�, α, w and Fs/F�, are set to the values found for Polaris (see
Table 2).

θ� α θs w Fs/F� χ2

1.480±0.002 0.16 – – – 1.9
1.476±0.003 0.16 3.54 0.5 1.5% 1.1

the CSE should show up clearly, if it exists: V2 ≈ 50%. We
shall also use the data set presented in Mérand et al. (2005b)
in order to have consistent spatial frequency coverage between
V2 ≈ 50% and the first visibility minimum. The purpose of these
observations was to detect the presence of a CSE and study the
impact on the angular diameter estimation.

4.2. Disentangling the CSE from the pulsation

In order to disentangle the presence of the CSE from the visibil-
ity time-modulation caused by the angular radial pulsation θ(φ),
we define the pseudo baseline Bθ0 as:

Bθ0 = B
θ0
θ(φ)

(4)

where θ(φ), the angular diameter variation, is known from our
previous BW study, which combined very long baseline obser-
vations with high precision radial velocity measurements. If the
squared visibility data are plotted with respect to Bθ0 , they will
match the profile of a star with an angular diameter of θ0. The
choice of θ0 is arbitrary, and does not change the conclusions
of the following discussion: we will use θ0 = 1.475 mas, the
average angular diameter we reported in our precedent work
(Mérand et al. 2005b).

4.3. CSE Model

It should be possible, in principle, to fit to δ Cep data a
CSE model similar to the one we used for Polaris. However,
we realize that the lack of data at the shortest baselines, where
V2 ≈ 90%, leads to large uncertainty on the CSE size. Indeed,
the estimation of this size relies on the determination of the
shape of the V2 departure from the single star model. Even if
the departure is obvious at V2 ≈ 50% compared to longer base-
lines, one needs data at short baselines, where V2 approaches
unity. While data collected at medium baselines compared to
long baselines determine the lower limit for the CSE size, the
comparison between short baselines and medium baselines leads
to an upper limit.

Owing of the incompleteness of the δ Cep data set, com-
pared to Polaris, we must use a simpler model, especially con-
cerning the size of the CSE. As a first approximation, we choose
to adopt the Polaris model, scaled to the appropriate angular di-
ameter. Compared to parameter values given in Table 2, only θ�
is adjusted, while θs/θ� is fixed to the value found for Polaris. In
parallel, we will fit the angular diameter using a the CLD model
adopted in Mérand et al. (2005b). The important result will
lie in the difference between the two stellar angular diameter
estimates.

The results of the fit (Table 3), as well as the visibility
data points with respect to the pseudo baseline, are presented
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Fig. 4. All δ Cep squared visibility data with respect to the pseudo base-
line Bθ0=1.475 mas. The limb darkened disk fit appears as a continuous line,
while the rescaled Polaris model appears as a dashed line. Both mod-
els are fitted to the whole data set, while the rescaling function (pseudo
baseline) only affects the longest baselines (B1.475 mas > 200 m).

in Fig. 4. The revised diameter, using the CSE model, is
θCLD+CSE = 1.476 ± 0.003 mas (χ2 = 1.1) to be compared to
θCLD = 1.480 ± 0.002 mas (χ2 = 1.93) with no CSE. The quan-
tity of interest is the diameter bias β:

β =
θCLD − θCLD+CSE

θCLD+CSE
· (5)

For our case, considering the whole data set, we found β statisti-
cally compatible with 0. This means that omitting the CSE in the
morphological model used to derive the angular diameter from
our complete δ Cep dataset does not lead to a bias.

It is interesting to note that the Polaris model fits exactly
the δ Cep data without any modifications, except for the angular
scale.

4.4. CSE symmetry and variability

Two different aspects of the δ Cep CSE can now to be studied:
its possible asymmetry and possible relative brightness change
during the pulsation phase. The first aspect requires a study
at different baseline projection angles of the visibility deficit
at V2 ≈ 50%, whereas the second requires a good phase cover-
age. Our data set contains data at V2 ≈ 50% with a baseline pro-
jection angle range of ninety degrees and with excellent phase
coverage (considering our data were acquired at five different
epochs).

In order to estimate the possible asymmetry or variability,
we should consider the deficit between the measured visibility
and that expected from the limb darkened model: V2 − V2

CLD at
B1.5 mas ∼ 140 m (lower left sub-plot in Fig. 4). This deficit is
plotted with respect to the baseline projection angle and pulsa-
tion phase in Fig. 5. At our level of precision, the CSE seems to
be symmetric and stable through the pulsation. A more elaborate
model is thus not justified.

A similar examination of the Polaris measurements leads to
the same conclusion – the Polaris CSE appears symmetric and
constant in time.
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Fig. 5. δ Cep visibility deficit V2−V2
CLD with respect to baseline projec-

tion angle (upper panel) and pulsation phase (lower panel). The dashed
line represents a constant deficit. Neither an asymmetry nor a variability
of the CSE is detected.

5. Consequences for the Baade-Wesselink method

5.1. De-biasing the stellar diameter measurement

Interferometric angular diameter measurements are always
model dependent. In the case of stars without shells, it is nec-
essary to correct for the CLD. In the case of single baseline ob-
servations of Cepheids, if a shell has to be taken into account
the correction is no longer straightforward and depends on what
baseline is used.

To understand this, we should evaluate the multiplicative
bias introduced when measuring an angular diameter using a sin-
gle baseline and not allowing for the presence of the CSE. This
approach differs from the previous section, where we considered
the whole δ Cep data set. Most Cepheid studies have not bene-
fited from a similarly extensive coverage of spatial frequencies:
e.g. Kervella et al. (2004a) or Mérand et al. (2005b). In these
latter cases, in order to optimize the use of observing time, in-
terferometric observations were recorded over a very restricted
range of baselines.

Let us call V2
CLD(b) the squared visibility of the star without

the shell when observed at the baseline b, and V2
CLD+CSE(b) for

the star with the CSE, at the same baseline. Then, the bias β(b)
in diameter is, at the first approximation:

β(b) =
θCLD − θCLD+CSE

θCLD+CSE
(6)

=
V2

CLD(b) − V2
CLD+CSE(b)

V2
CLD+CSE(b)

× 1
Af(b)

(7)

where Af(b) is the amplification factor as defined previously.
Note that β is negative: V2

CLD > V2
CLD+CSE and Af < 0. In order
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Fig. 6. Bias introduced when determining a Cepheid angular diameter
using a single V2 measurement at a given baseline and not taking into
account the presence of the CSE, as a function of projected baseline
(solid line). The dashed line is the formal error when deriving the angu-
lar diameter from a single V2 measurement, assuming a 3% error on that
measurement. The angular size chosen for this example is the average
angular size of δ Cep and its CSE parameters (Table 3). The δCep diam-
eter measurements, which took place between 235 and 313 m baselines
(gray band), are biased at most at the 1% level, slightly lower than the
formal error.

to compare this bias with respect to the formal error in the diam-
eter estimation, we should compute the precision on the angular
diameter σθ/θ, for a given error in squared visibility σV2/V2:

σθ/θ =

∣∣∣∣∣∣
σV2/V2

Af(b)

∣∣∣∣∣∣ · (8)

Here, the V2
CLD+CSE and V2

CLD are essentially equivalent. For nu-
merical application, we will consider the typical result we ob-
tained for Mérand et al. (2005a): σV2/V2 = 0.03.

Figure 6 shows −β for the δ Cep CSE parameters reported in
Table 3. Our Baade-Wesselink observations used angular diame-
ters determined at baselines ranging from 235 to 313 m (Mérand
et al. 2005b). At such baselines, it appears that the bias is at
most of the order of −1%, whereas the diameter formal error is
slightly larger. One should notice this is not the case at the short-
est baselines, where the bias exceeds the formal error.

5.2. Distance estimation bias

It is important to take into account this bias when applying the
BW pulsation parallax method. Indeed, any multiplicative bias
in angular diameter will lead to a multiplicative bias in distance,
by the same amount. The pulsation parallax equation is (Mérand
et al. 2005b):

θ(φ) − θ0 = −2
p
d

∫ φ
0

Vrad.(t) dt (9)

where d is the distance, p the projection factor, θ the angular di-
ameter, Vrad. the radial velocity, in the spectroscopic sense – note
that we assume that the systematic velocity has been subtracted.
The fitted parameters in this equation are θ0 and d when deter-
mining the distance and assuming a given value for p (Kervella
et al. 2004a) or θ0 and p when knowing the distance and deter-
mining p (Mérand et al. 2005b). In the case of a multiplicative
bias 1 + β on the diameter, the projection factor is biased by the
same amount, whereas the distance is biased by 1/(1 + β).

In the case of δCep, the angular diameter was at most overes-
timated by a factor 1.01. Since the star appears larger than it ac-
tually is, our formal distance would have been under-estimated.

In the case of our previous study, d has been fixed to the estima-
tion of Benedict et al. (2002), d = 274 ± 11 pc. We evaluated p,
the projection factor, instead (Eq. (9)). Our value p = 1.27±0.06,
should at most be revised to the lower value of 1.26 ± 0.06.

In future high precision interferometric BW observations, it
will be necessary to determine and allow for the CSE bias. The
best choice, in terms of spatial resolution, will be to observe in
the first visibility lobe near the first minimum, in order to maxi-
mize the amplification factor. These observations will lead to the
best formal angular diameter precision and the lowest bias due
to the shell.

This conclusion relies on what we think the CSE looks like
in the near-infrared K band. However, it seems likely that the
CSE effects on the interferometric angular diameter estimation
are less important at shorter wavelengths.

6. Conclusion and discussion

After � Car, we report the interferometric detection in the
near infrared of circumstellar emission around two additional
Cepheids: Polaris and δ Cep. Polaris was studied in detail and
we were able to apply a simple CSE model consisting in a star
limb darkened according to hydrostatic models, surrounded by
a dim (1.5 ± 0.4% of the stellar flux), 2.4 ± 0.1 stellar diame-
ters CSE. This model also explains the deficit in the visibility
profile detected for δ Cep. The three Cepheids have quite differ-
ent characteristics: Polaris has a small amplitude and a short pe-
riod; δ Cep has a large amplitude, short period whereas � Car has
a large amplitude and long period. The (limited) measurements
are consistent with similar circumstellar emission geometries in
the three cases studied.

We computed the bias due to the presence of the CSE in the
Baade-Wesselink method framework. The bias, in terms of dis-
tance, is smallest when the largest first-lobe baselines are used
(V2 ≈ 3%), and is at most 1%, under the current error contribu-
tion of interferometric measurements (Mérand et al. 2005b).

The presence of CSEs, with similar characteristics, around
all Cepheids for which sufficient interferometric data are avail-
able, raises the possibility that this is a widespread phe-
nomenon. Possible mass loss from Cepheids has been reviewed
by Szabados (2003): slight infrared excesses have been detected
for almost all Cepheids observed by IRAS, independently of the
pulsating period. These observational constraints lead to a mass
loss rate of the order of 10−10 to 10−8 M� yr−1.

Mass loss is expected for Cepheids. This is a consequence of
the theoretical Cepheid mass deficit. The deficit is the ratio be-
tween two different mass estimates: the evolutionary mass and
the pulsational mass. The first, Me, is derived from the Mass-
Luminosity (M − L) relation computed from evolutionary nu-
merical codes; the second, Mp, is derived using the Period-Mass-
Radius relation (P-M-R), computed from non-linear pulsation
numerical codes. The ratio Mp/Me is known to be smaller than
unity. Even if the problem has been known for a long time and
partially solved by refinements in numerical codes (Cox 1980),
recent numerical investigations led to Mp/Me ≈ 0.9 for galac-
tic Cepheids (Bono et al. 2001). According to these authors,
this discrepancy between Me and Mp might be explained by
the fact that evolutionary codes do not take into account mass
loss in the He-burning phase (post main sequence). The phase
lasts 25 My For a 5 M� Cepheid and 2.5 My for a 11 M�, assum-
ing a 10% mass loss, a rough calculation leads to mass loss rates
of the order of what is deduced from IRAS measurements.

The direct detection of CSEs around Cepheids at distances
of only a few stellar radii is a confirmation that these stars are
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experiencing substantial mass loss. The three Cepheids are sig-
nificantly different one from another: we have three different
periods (∼4, ∼5.4 and ∼35 days), thus different masses; differ-
ent pulsation amplitude (<1% for Polaris and ∼15% for � Car
and δ Cep). This phenomenon cannot be neglected in future
Cepheid studies, presumably having implications for evolution-
ary and pulsational codes, or while determining distances using
the BW method.
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