“The universe is full of magical things, patiently waiting for our wits to grow sharper.”

Eden Phillpotts
What We Will Learn Today

• How do astronomers learn from light?
• How does light help us determine the temperature and composition of objects?
• What are the different types of observational astronomy?
Astronomy is the Study of Light

- Light travels through vacuum
- Light travels far without tiring
- Light interacts with matter
- Light carries clues about the emitter
- Light carries clues about the medium it passes through
All Objects Emit Light

- Light = Entire electromagnetic spectrum
- Wavelength (or frequency) identifies the energy level
 - Radio wave → Gamma rays (RIVUXG)
 - Red → Blue (ROYGBIV)
- Remember \(c = \lambda \nu \) \(E \propto \nu \)
- Hotter objects emit higher energy light
 - Higher frequency or lower wavelength
- Hotter objects emit more light per unit area
 - At every frequency or wavelength
 \[L \propto AT^4 \propto R^2T^4 \]
- Intensity of light falls off with distance
 - Inverse square law, like gravity
 - Jupiter receives 1/25 of the sunlight Earth receives, per unit area
 - Light per unit area = Flux \(F_d \propto \frac{1}{d^2} \)

\(L = \) Luminosity
\(A = \) Surface Area
\(T = \) Temperature
\(R = \) Radius

\(F = \) Flux
\(d = \) distance from light source
Thermal Radiation

- Idealized blackbody radiation curve
 - Spectrum: Light across wavelength

![Graph showing thermal radiation spectrum](image)

- 15,000 K star
- The Sun (5,800 K)
- 3,000 K star
- 310 K human

Fig 5.19
Peak Indicates Temperature

Wien’s Law

\[T_{\text{in}K} = \frac{2,900}{\lambda_{\text{peak, inmicrons}}} \]

- \(\lambda_p = 193 \text{ nm, } T = 15000 \text{ K} \)
- \(\lambda_p = 9355 \text{ nm, } T = 310 \text{ K} \)
Temperature Scales

Temperature is the measure of the *average* kinetic energy of particles in a substance.

- **Fahrenheit**
 - Based on freezing (32 °F) and boiling (212 °F) points of water

- **Celsius**
 - Based on freezing (0 °C) and boiling (100 °C) points of water

- **Kelvin**
 - Based on “absolute zero” (0 K), the point at which molecules stop moving
 - T (K) = T (°C) + 273.15

Will not use in this course.
Types of Spectra (Kirchoff’s Laws)

- **Continuous Spectrum**
 - Ideal blackbody radiation
 - Smooth

- **Emission Line Spectrum**
 - Light pumps up electrons
 - Electrons emit specific light when they jump down

- **Absorption Line Spectrum**
 - View light source through medium
 - Electrons absorb specific light to jump up
 - All stars are seen like this
 - View hot, dense core through cool, sparse “atmosphere”
Spectra Are “Fingerprints” of Matter

- Transition levels in atoms correspond to very specific energy levels
- The wavelength of absorption or emissions lines tell us about the matter the light passed through

![Spectra Diagram](image-url)
Let’s Play Detective!

We see
- Two humps
 - Right one peaks at 12.9 microns
 - Left one at 0.5 microns
- Emission lines in UV
- Absorption lines in infrared
- Absorption band in UV

This is the spectrum of Planet Mars

We conclude
- Object looks red
 - Absorbs more blue than red
- Absorption lines are from CO$_2$
 - Atmosphere is principally CO$_2$
- Emission lines in UV
 - Hot upper atmosphere
- Right hump corresponds to 225K
 - Temperature of the object
- Left hump corresponds to 5800K
 - Reflected light from the Sun

Fig 5.20 This is the spectrum of Planet Mars
Doppler Shifts

- A Complication, but also a Clue
 - Lines move along wavelength
 - Towards longer wavelengths (redshift)
 - Source moving away from observer
 - Towards shorter wavelengths (blueshift)
 - Source moving towards observer

Fig 5.20
Uses of Doppler Shift

• Measure rotation of stars
• Measure orbits of stars
 – Detect planets around other stars!

Fig 5.24
Other Methods

• Photometry
 – Measure of the amount of light
 – In total, or at specific wavebands
 – Study variations with time, eclipses etc.

• Astrometry
 – Precise position of stars, objects
 – Parallax, i.e. distance
 – Binary orbits

• Interferometry
 – Combine light from multiple telescopes
 – Very high precision

• Polarimetry
 – Study of magnetic fields

GSU’s CHARA Array, Mount Wilson, CA
Exam 1 Review

• Bring #2 pencils!
• 40 Multiple Choice questions
 – 6 points each
• 20 True/False questions
 – 3 points each
• 2 bonus questions
 – 10 points each
• Emphasize topics covered in Class
Exam 1 Topics

- Chapters 1 – 5 & S1
 - Our place in the universe
 - Size & Scale of the universe
 - History of the universe
 - Light travel time
 - The universe as viewed from Earth
 - Path of Sun & stars in our sky
 - Special latitudes
 - Seasons
 - Phases of the Moon
 - Moon’s position in the sky
 - Solar & Lunar eclipses
 - Geocentric Model
 - The scientific method

- Chapters 1 – 5 & S1
 - The Copernican Revolution
 - Kepler’s Laws
 - Motion: speed, velocity, acceleration
 - Mass & Weight
 - Momentum, Force
 - Newton’s Laws
 - Conservation Laws
 - Newton’s Law of Gravity
 - Tides
 - Light: wave nature
 - Light, matter interaction
 - Doppler effect