INSERT Your Full Title Here

insert Your Name Here ${ }^{1}$
${ }^{1}$ Planetary Sciences Spaceship
Earth's Solar System
Atlanta, 30303, USA

Received INSERT due date for this level of paper, e.g., 29 NOV 2022 for final paper
Submitted to PSJ
ABSTRACT
INSERT your abstract here

Keywords: Astrobiology (74) — Jupiter (873) — Europa (2189)

1. INTRODUCTION

INSERT your text here
INSERT a footnote like this ${ }^{1}$
INSERT a list of items like this:

- You Should Really Care About These Things
1.INSERT one thing here
2.INSERT another thing here
3.INSERT another thing here

INSERT some more text here

2. NEXT THING WE CARE ABOUT

INSERT your text here

3. ANOTHER THING WE CARE ABOUT

INSERT your text here

4. TABLES

Tables can be constructed with LaTEX's standard table environment or the AASTEX's deluxetable environment. The deluxetable construct handles long tables better but has a larger overhead due to the greater amount of defined mark up used set up and manipulate the table structure. The choice of which to use is up to the author.

Additional details are available in the AASTeX guidelines at http://journals.aas.org/authors/aastex.html

4.1. Column math mode

Corresponding author: INSERT Your Name Here
INSERT your.email.here
${ }^{1}$ five toes on most human feet

Table 1. Fun facts about the first 5 Messier objects

Messier	NGC/IC	Common	Object	Distance		V
Number	Number	Name	Type	(kpc)	Constellation	(mag)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
M1	NGC 1952	Crab Nebula	Supernova remnant	2	Taurus	8.4
M2	NGC 7089	Messier 2	Cluster, globular	11.5	Aquarius	6.3
M3	NGC 5272	Messier 3	Cluster, globular	10.4	Canes Venatici	6.2
M4	NGC 6121	Messier 4	Cluster, globular	2.2	Scorpius	5.9
M5	NGC 5904	Messier 5	Cluster, globular	24.5	Serpens	5.9

Note-The Distance is centered on the decimals. Note that when using decimal alignment you need to include the \decimals command before \startdata and all of the values in that column have to have a space before the next ampersand.

Both the LaTEX tabular and AASTEX deluxetable require an argument to define the alignment and number of columns. The most common values are "c", "l" and "r" for center, left, and right justification. If these values are capitalized, e.g. "C", "L", or "R", then that specific column will automatically be in math mode meaning that $\$$ s are not required. Note that having embedded dollar signs in the table does not affect the output.

4.2. Decimal Alignment in Columns

Aligning a column by the decimal point can be difficult with only center, left, and right justification options. To address this $\mathrm{AAST}_{\mathrm{E}} \mathrm{X}$ introduces the \decimals command and a column justification option, "D", to align data in that column on the decimal. In deluxetable the \decimals command is invoked before the \startdata call but can be anywhere in $L^{2} T_{E} X$'s tabular environment.

An important thing to note when using decimal alignment is that each decimal column must end with a space before the ampersand, e.g. "\&\&" is not allowed. Empty decimal columns are indicated with a decimal, e.g. "." Do not use deluxetable's \nodata command.

The " D " alignment token works by splitting the column into two parts on the decimal. While this is invisible to the user one must be aware of how it works so that the headers are accounted for correctly. All decimal column headers need to span two columns to get the alignment correct. This can be done with a multicolumn call, e.g \multicolumn2c $\}$ or $\backslash m u l t i c o l u m n\{2\}\{c\}\}$, or use the new \twocolhead $\}$ command in deluxetable. Since LaTEX is splitting these columns into two it is important to get the table width right so that they appear joined on the page. You may have to run the $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ compiler twice to get it right.

4.3. Automatic Column Header Numbering

The command \colnumbers can be included to automatically number each column as the last row in the header. In a LaTEX tabular environment the \colnumbers should be invoked at the location where the author wants the numbers to appear, e.g., after the last line of specified table header rows. In deluxetable this command has to come before \startdata. Note that when using decimal alignment in a table the command \decimalcolnumbers must be used instead of \colnumbers and \decimals.

Table 1 provides some basic information about the first five Messier Objects and illustrates how many of these new features can be used together. It has automatic column numbering and decimal alignment of the distances. This table also uses tablenum to number the table.

5. FIGURES

Authors can include a wide number of different graphics with their articles, but for this class we use only portable
 side-by-side Figures.

Subscription and author costs

Figure 1. The subscription (squares) and author publication (asterisks) costs from 1991 to 2013. Subscription cost are on the left Y axis while the author costs are on the right Y axis. All numbers in US dollars and adjusted for inflation. The author charges also account for the change from page charges to digital quanta in April 2011.

Figure 2. The subscription (squares) and author publication (asterisks) costs from 1991 to 2013. Subscription cost are on the left Y axis while the author costs are on the right Y axis. All numbers in US dollars and adjusted for inflation. The author charges also account for the change from page charges to digital quanta in April 2011.

The most common mathematical symbols and formulas are in the amsmath package. AASTEX requires this package so there is no need to specifically call for it in the document preamble. Most modern LaTEX distributions already contain this package. If you do not have this package or the other required packages, revtex4-1, latexsym, graphicx, amssymb, longtable, and epsf, they can be obtained from http://www.ctan.org
Equations can be displayed in the text, e.g., $E=m c^{2}$, where you need to surround the math by dollar signs (\$). Alternately, you can create an equation on a separate line with begin and end commands:

$$
\begin{equation*}
E=m c^{2} \tag{1}
\end{equation*}
$$

INSERT your acknowledgments here
Facilities: CTIO:0.9m, CTIO:1.5m, HST(STIS), AAVSO
Software: somethingcool (Henry et al. 2018)

REFERENCES

Henry, T. J., Jao, W.-C., Winters, J. G., et al. 2018, AJ, 155, 265. doi:10.3847/1538-3881/aac262
Paredes, L. A., Henry, T. J., Quinn, S. N., et al. 2021, AJ, 8_{80} AJ, 161, 63. doi:10.3847/1538-3881/abcc74 162, 176. doi:10.3847/1538-3881/ac082a
Vrijmoet, E. H., Tokovinin, A., Henry, T. J., et al. 2022,
AJ, 163, 178. doi:10.3847/1538-3881/ac52f6

APPENDIX

A. APPENDIX INFORMATION PART A - JUST A LITTLE SOMETHING

Appendices can be broken into separate sections just like in the main text. The only difference is that each appendix section is indexed by a letter (A, B, C, etc.) instead of a number.

B. APPENDIX INFORMATION PART B - ROTATING TABLES

To place a Table in a landscape mode start the table portion with \begin\{longrotatetable\} and end with } \end\{longrotatetable\}. }
A handy "cheat sheet" that provides the necessary LaTEX to produce 17 different types of tables is available at http://journals.aas.org/authors/aastex/aasguide.html\#table_cheat_sheet.

Name	$\mathrm{V}_{\max }$	Date	t_{2}	FWHM	E(B-V)	N_{H}	Period	D	Dust?	RN?
	(mag)	(JD)	(d)	$\left(\mathrm{km} \mathrm{s}^{-1}\right)$	(mag)	$\left(\mathrm{cm}^{-2}\right)$	(d)	(kpc)		
CI Aql	8.83 (1)	2451665.5 (1)	32 (2)	2300 (3)	0.8 ± 0.2 (4)	$1.2 \mathrm{e}+22$	0.62 (4)	6.25 ± 5 (4)	N	Y
CSS081007	. . .	2454596.5	\ldots		0.146	$1.1 \mathrm{e}+21$	1.77 (5)	4.45 ± 1.95 (6)	\ldots	
GQ Mus	7.2 (7)	2445352.5 (7)	18 (7)	1000 (8)	0.45 (9)	$3.8 \mathrm{e}+21$	0.059375 (10)	4.8 ± 1 (9)	N (7)	\ldots
IM Nor	7.84 (11)	2452289 (2)	50 (2)	1150 (12)	0.8 ± 0.2 (4)	$8 \mathrm{e}+21$	0.102 (13)	4.25 ± 3.4 (4)	N	Y
KT Eri	5.42 (14)	2455150.17 (14)	6.6 (14)	3000 (15)	0.08 (15)	$5.5 \mathrm{e}+20$...	6.5 (15)	N	M
LMC 1995	10.7 (16)	2449778.5 (16)	15 ± 2 (17)		0.15 (203)	$7.8 \mathrm{e}+20$	\ldots	50		
LMC 2000	11.45 (18)	2451737.5 (18)	9 ± 2 (19)	1700 (20)	0.15 (203)	$7.8 \mathrm{e}+20$	\ldots	50	\cdots	\ldots
LMC 2005	11.5 (21)	2453700.5 (21)	63 (22)	900 (23)	0.15 (203)	$1 \mathrm{e}+21$		50	M (24)	
LMC 2009a	10.6 (25)	2454867.5 (25)	4 ± 1	3900 (25)	0.15 (203)	$5.7 \mathrm{e}+20$	1.19 (26)	50	N	Y
SMC 2005	10.4 (27)	2453588.5 (27)	\ldots	3200 (28)		$5 \mathrm{e}+20$. .	61	\ldots	\ldots
QY Mus	8.1 (29)	2454739.90 (29)	60:		0.71 (30)	$4.2 \mathrm{e}+21$	\cdots	- ${ }^{\text {- }}$	M	\ldots
RS Oph	4.5 (31)	2453779.44 (14)	7.9 (14)	3930 (31)	0.73 (32)	$2.25 \mathrm{e}+21$	456 (33)	1.6 ± 0.3 (33)	N (34)	Y
U Sco	8.05 (35)	2455224.94 (35)	1.2 (36)	7600 (37)	0.2 ± 0.1 (4)	$1.2 \mathrm{e}+21$	1.23056 (36)	12 ± 2 (4)	N	Y

