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ABSTRACT

The Sydney University Stellar Interferometer (SUSI) at Narrabri N.S.W. oper-
ates at optical wavelengths and has a baseline of up to 640m. In order to form
fringes with this instrument the distortion introduced into the wavefront by the
atmosphere must be corrected. In SUSI this is done by restricting the aperture
to rg or less, thereby sampling a basically flat but tilted wavefront. Adaptive
optics are then used to adjust for angle of arrival.

The tilt correction servo consists of a ‘pyramid’ detector system and piezo-
electrically controlled tilt mirrors. With a sample frequency of 1000 Hz the
system measures image position and re-centres the star image. The system
holds the two beams of the interferometer parallel with a standard deviation of
0.164 £ 0.025 arcseconds which, with an aperture size of 0.06 metres, implies
less than a 2% loss in the visibility measurements made by SUSI. The system
has been used up to magnitude 6.5 stars and is predicted to have a limiting
magnitude of 7.5 and possibly as high as 8.5.

By investigating the mirror positions required to centre the image a direct
measurement of the first order Zernike polynomial expansion of the wavefront
is obtained. Using this data it is possible to investigate atmospheric turbulence
theory, and in particular the tilt power spectra. The system therefore not only
corrects for the tilt introduced by the atmosphere but will supply a good estimate
of seeing conditions using the same optical path through the atmosphere as the
visibility measurements of the interferometer.

A preliminary investigation of seeing at the Narrabri site was undertaken,
resulting in a median ro value of 7.1X1.3cm at a wavelength of 500nm. This value
is consistent with similar seeing studies on other observatory sites. As well as
collecting this seeing data, predictions based on Kolmogorov turbulence for the

power spectra and behaviour of wavefront tilt were tested and confirmed.

v
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Chapter 1

INTRODUCTION

The effects of the atmosphere on astronomical seeing have been documented
since the time of the ancient Greeks; scintillation was a phenomenon mentioned
by Aristotle in his treatise on ‘The Heavens’. As soon as the telescope was
invented, the variable appearance of stars and planets was of great concern.
Newton, in his treatise on optics ( Newton (1730 (Re-printed 1952)), Book I,
Part I, Prop VIII) wrote:

If the theory of making Telescopes could at length be fully brought into
Practice, yet there would be certain Bounds beyond which Telescopes could not
perform. For the Air through which we look upon the Stars, ts in perpetual
Tremor ... The only Remedy is a most serene and quiet Air, as may perhaps be

found on the tops of the highest Mountains above the grosser Clouds.

Newton also goes on to point out that the time scale of these ‘trembling
motions’ is beyond the time response of the human eye and observes that differ-
ences in behaviour exist between large and small aperture telescopes. While his
suggested strategy for telescope sites has been followed, and it has been found
being ‘above the grosser clouds’ can improve telescope performance, the moun-
tains themselves can introduce shear winds and cause more turbulence than one
will find at ground level. Furthermore, it is common for the domes or buildings
housing the telescopes to cause as much disturbance to observation as the entire
atmosphere. Much more work remains to be done in these areas; as Coulman
(1987) points out, the effects of a turbulent atmosphere are still of major concern

in astronomical observations.

The best way to avoid such atmospheric interference problems is to place
the instrument completely outside of the atmosphere, that is, place it into orbit.

While one will have no atmospheric trouble with such devices, their cost is



2 CHAPTER 1. INTRODUCTION

beyond the budget of most research institutes at present and they are expensive

and difficult to repair in the event of a failure.

1.1 Active and Adaptive Optics

It is a well known fact that the effects of image blurring are a function of aper-
ture diameter, and for small telescopes ( D < 10cm) the image is essentially
diffraction limited. Thus, the simplest method of avoiding atmospheric turbu-
lence is to limit the aperture size of the telescope so it is sampling a relatively
undistorted wavefront. This has the obvious disadvantage of reducing the light

gathering power and resolution of the instrument.

Another method is to employ an optical system to correct for any wave-
front aberrations. These systems are known as active or adaptive optics. The
distinction between these two types is unclear in the literature. In the context of
physical optics, a system is said to be adaptive if it contains negative feedback
while an active system is open loop. In astrophysical circles the distinction is
based on bandwidth, an adaptive system having a larger bandwidth than an
active one; active systems are used for relatively static corrections. As the tilt
servo described in this thesis is adaptive under both definitions this term will

be used herein.

While the first pratical suggestion for an adaptive optics system for use
in astronomy was some forty years ago (Babcock, 1953) and the other forms of
adaptive optical systems have been studied for some years (for example the work
by Rhodes and Goodman (1973), Muller and Buffington (1974) and Buffington
et al (1978)) it has only been in recent times that prototype systems have been
built and shown to produce diffraction limited images ( Merkle et al (1990) and
Roddier et al (1991)). The book by Tyson (1991) contains an excellent review

of adaptive optic techniques.

1.2 Stellar Interferometry

In order to achieve higher sensitivity astronomers have been constructing larger
and larger aperture telescopes. Telescopes of the 4-5 metre class exist on many
sites and the next generation of 8-10 metre class telescopes are being designed
and constructed now. These new telescopes are being built with very large aper-

tures not only to increase sensitivity but also to achieve higher resolution. While
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larger apertures normally imply greater resolution, the atmosphere will always
impose a limit. Although these new instruments are to be built in locations
known for excellent seeing conditions and will employ active and adaptive op-
tics, it is thought they will achieve diffraction limited images only in the infrared.
Even with apertures of up to 10 metres, telescopes will not be able to resolve

most stellar objects or even match the resolution of the larger radio telescopes.

Instead of making a telescope (or telescopes) of very large aperture, using
several small aperture telescopes to form an interferometer allows much greater
resolution. A small telescope will be less affected by seeing than a large one, for
example, the wavefront entering a telescope of aperture less than 20cm can be
assumed to be essentially flat but tilted. Adaptive optics, such as those to be
described in this thesis, can be used to remove this tilt. With the tilt removed
the beams from two telescopes can be combined to form fringes. Recording the
visibility of these fringes over a range of baselines is equivalent to sampling the

Fourier transform of the brightness profile of the source.

The telescopes making up the interferometer can be placed far apart to
form baselines bigger than any existing or proposed telescope aperture. With
such a device the techniques developed for radio interferometry can be used,
resulting in very high resolution measurements and images. A number of in-
terferometer experiments have been performed using non-redundant masks (for
example the MAPPIT project (Bedding et al, 1992) and the work by Wilson
et al (1992)) demonstrating that phase closure can be achieved and diffraction
limited images produced. Even with a single baseline many useful astronomical

results can be obtained.

Early attempts at constructing stellar interferometers, for example the
work by Michelson in the 1920’s, while having some success in resolving large
diameter stars, were abandoned due to instabilities in the instrument structure
and atmospheric distortion of the wavefront. A number of years later it was
found one could bypass atmospheric turbulence effects by measuring the corre-
lation of light intensity, as the Narrabri Intensity Interferometer did, instead of
light amplitude. This instrument successfully measured the diameters of thirty
two stars (Hanbury Brown et al, 1974). Unfortunately intensity interferometry
implies an extremely poor sensitivity compared to amplitude interferometry, so
large apertures (albeit low quality optics) are required. A review of these and

other early developments in stellar interferometry can be found in Tokovinin

and Shcheglov (1979).

The advent of modern lasers, piezo electric actuators and computer con-
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trol systems, along with a better theoretical understanding of the nature of
turbulence, means a large baseline amplitude stellar interferometer has now be-
come possible. In 1975 the Chatterton Astronomy department began a feasibility
study for constructing such a device which resulted in a prototype instrument
with a baseline of 11.4m (Davis and Tango (a), 1985). The prototype success-
fully redetermined the angular diameter of Sirius (Davis and Tango, 1986) and
led to a proposal to construct a long baseline Michelson interferometer called the

Sydney University Stellar Interferometer (SUSI) (Davis and Tango (b), 1985).

1.3 The Sydney University Stellar Interferom-

eter

SUSI is a Michelson stellar interferometer operating at optical wavelengths. At
present a north/south baseline with 12 fixed siderostats provides baselines rang-
ing from 5 to 640 metres and provision has been made for a future east/west
baseline. Refer to figure (1.1) for a diagram of the main optical components of
SUSI. Starlight is steered into the optical system by flat mirrors of 20cm diam-
eter using an Alt/Azimuth mount. These mirrors, called siderostats, are placed
upon large concrete piers that go several metres into the ground to the underly-
ing bedrock. The aperture diameter is chosen to be small so the light entering
the system can be assumed to be basically flat, although tilted. The wavefront
tilt servo described in this thesis is then used to remove this tilt. There are
twelve siderostats distributed along the baseline. Since the worst air turbulence
is located at ground level the light enters a vacuum system immediately after
the siderostat and is directed into the enclosure containing the rest of the in-
terferometer optics. A more detailed description of the components relevant to
the tilt correction servo is given in Chapter (3); here we just give an overview
of the interferometer layout. A description of the design of SUSI can be found
in Davis et al (a) (1992) and Davis et al (b) (1992).

Once inside the enclosure the beams are sent through the beam reducing
telescope (BRT) to bring their diameter down to a size suitable for use with
standard optical components. The BRT reduces the diameter by a factor of
three which also multiplies any tilt error by a factor of three. The beams then
pass through an atmospheric refraction corrector (ARC), similar to those often
used on standard astronomical telescopes, and on to the 70m long optical path
length compensator (OPLC). The OPLC is required since the vector pointing to

the star will not always be normal to the baseline and the optical path lengths in
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Figure 1.1: A diagram (not to scale) of all the major optical components,
except the laser metrology system (LMS), of SUSI. After being guided
into the vacuum system by the siderostats and passing through the beam
reducing telescope (BRT) the star light is corrected for atmospheric dis-
persion (ARC) and then either enters the optical path length compensator
(OPLC) or is diverted towards the star acquisition camera. The coarse
carriage of the OPLC (not yet commissioned) is set once before an obser-
vational run to correct for gross phase error while the fine carriage moves
in order to track the fringes. The adaptive tilt mirrors are at either end
of the OPLC enclosure. Since the path length compensation is performed
in air the longitudinal dispersion corrector (LDC) is added to the optical
chain after the OPLC. The light is then directed onto the optical table
where polarising beamsplitters divert half the light to the quadrant de-
tectors of the tilt servo and the other half towards the main beamsplitter.
The two beams leaving the beam splitter are sent through spectrometer
prisms and then imaged onto slits and photomultipliers. Note that one
of these beams can be diverted to the reference quadrant detector for
interferometer alignment.
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the two beams will therefore be different. The coarse carriage (not commissioned
at time of writing) will only be used for the large baselines and will be set once
at the beginning of an observational run. The fine carriage (Gilliand, 1992)
moves continuously throughout a run to track the fringes. Stepper motors are
used to move the fine carriage along the OPLC track while the reflectors used
are cat’s eyes which can be adjusted by piezo electric actuators. The adaptive
tilt mirrors are placed at either end of the OPLC and are used to correct for

wavelront tilt in the two beams.

Having passed through the OPLC and tilt mirrors, the two beams are in
phase and parallel. However, since the path length compensation is performed
in air while the ‘real” path length difference is in the vacuum beyond the atmo-
sphere, the beams are sent through a longitudinal dispersion corrector (LDC)
before reaching the optical table (Tango, 1990) where they are combined to form
fringes. The first of these tables uses optical components from the prototype in-
strument and is optimised for blue light. Only a subset of the optical components
on this table is shown in figure (1.1), however most of those left out are used for
interferometer alignment and not astronomical observation. Provision has also

been made for a future red light table.

After reaching the optical table, beamsplitters are used to divide each
beam into two orthogonally polarised parts. One polarisation is sent to the tilt
servo quadrant detectors while the other goes on to the main beamsplitter in
which fringes are formed. Three quadrant detectors are placed on the optical
table. Two are used for tilt correction in the north and south beams while the
third, reference, detector is used for interferometer alignment. One of the beams
leaving the main beamsplitter can be diverted towards the reference quadrant
detector. The other two detectors can be remotely motor driven in order to
ensure they are optically superimposed onto the reference detector. It is also
possible, during optical alignment, to insert a spatially filtered blue laser into

the beamsplitter and to autocollimate using the siderostats.

At present, a simple narrow bandwidth spectrograph arrangement con-
sisting of prisms, lenses, slits and photomultipliers is used for fringe detection.
It is planned to use array photon counting systems in the near future to allow

simultaneous measurement of visibility over a larger bandwidth.
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1.4 Tilt Servo Requirement Specification

The basic function of the tilt correction servo is to keep the interfering beams
of the two arms of SUSI parallel. If the difference in beam tilt is too large,
losses in signal to noise ratio will occur in the visibility measurements of the
interferometer. The r.m.s. visibility loss caused by tilt error when the beams

are combined is given by Buscher (1988) as
n=1-1.8((0/6p)) (1.1)

where 6 is the differential tilt error and 6, is the angular radius of the Airy disc
formed by the stellar image. Thus in order to ensure these losses are less than
5% the tilt servo must keep the two beams to within 0.167 the size of the Airy
disc radius. Assuming the positions of the two beams at any given time are
independent variables with a normal distribution (see section 5.1), each beam
needs to be stable to within 0.118 of the size of the Airy disc. At present, the
aperture diameters available for visibility measurement in SUSI range from 3cm
to 12cm. The largest apertures will only be used whenever seeing conditions are
good and for faint objects, while the smaller apertures are used to reduce the
effect of residual wavefront errors on visibility measurements. For example, to
keep visibility losses due to tilt less than 5% for an aperture diameter of 6cm,
the tilt servo must keep the beams parallel to within 0.31”7, which requires a
single beam stability of 0.22”7. The analysis in Chapter 4 will demonstrate that

the tilt servo exceeds this criterion.

The servo must track a star image to this precision with a large enough
bandwidth to cover the spectrum of tilt caused by the atmosphere. The servo
should not be sensitive to frequencies higher than this as the only tilt changes
it will be responding to are those caused by photon noise. Choosing a servo
bandwidth is a compromise between complete coverage of the tilt spectra and the
amplification of photon noise. A method for estimating the required bandwidth
must therefore be found. As will be demonstrated in Chapter 2 the range of
frequencies required is of the order of tens of hertz extending as far as perhaps
100 hertz. The sample time of the tilt servo must therefore be quite small, at
least 10ms or less, although longer sample times will be possible during times of
relatively good seeing. This requirement of high speed has implications for the
detectors used, the electronics and the computational hardware and algorithms.

Chapters 3 and 4 will cover these and other related issues.

A further requirement of the tilt servo is that its limiting magnitude

should be as large as possible. If the tilt servo fails, the entire interferometer will
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fail; the tilt servo defines the limiting magnitude of SUSI (see section (3.3.1)).
The tilt correction system must also operate in the optical waveband of the rest
of the instrument. Both these criteria have implications for the glass, coatings,

detection system and electronics to be discussed in Chapter 3.

The final requirement of the tilt servo is being capable of logging mirror
and detector positions for analysis of seeing conditions and atmospheric turbu-
lence. This is a function of the computer control system. Some results obtained
by the tilt system while tracking stellar sources and methods for data reduction

are presented in Chapter 5.



Chapter 2

ATMOSPHERIC
TURBULENCE THEORY

The atmosphere appears to be in an unpredictable and complex state of turbu-
lent low. The usual approach, first formulated by Reynolds, is to describe these
flows using ensemble averages rather than in terms of individual components.
He defined a nondimensional quantity, now known as the Reynolds number, that
characterises a turbulent flow. It is defined

UL

)
Vmol

R (2.1)

where U and L are the typical velocity and length for the flow and 1y, 1s the
kinematic molecular viscosity. A low Reynolds number indicates the flow is
laminar, that is regular and smooth in space and time, while a large Reynolds
number signifies a highly turbulent flow. Between these extremes the fluid will
undergo a series of unstable states. The atmosphere is difficult to study because

it has a Reynolds number of the order of 10°.

In the classical theory, proposed by Lev Landau, the number of the un-
stable states between laminar and fully turbulent flow would be very large, even
infinite. Recent work in the area of chaos theory shows, however, that the final
state of full blown turbulence can arise after only a few such transitions. To use
this chaos theory in experimental practice, the strange attractor, the curve in
phase space toward which the system evolves, must be of small dimension. It
is also easier to analyse a system which contains temporal, rather than spatial,
chaos. New experimental evidence exists (Jorgenson et al., 1991) of a strange
attractor for wavefront tilt with a dimension of approximately 5, and it has been
suggested (Jorgenson and Aitken, 1992) that wavefront tilt could be predicted

over small time periods using neural network methods. While this should en-
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able adaptive optics systems to predict wavefront shape and thereby improve
performance, the theory is new and undeveloped. Furthermore, as the sample
time of the wavefront tilt correction system described herein is small (1ms), and
consequently the inherent delay of the servo is also small, we do not require

prediction of tilt evolution. Chaos theory has not been investigated further.

In order to establish bandwidths for the tilt servo we must gain an un-
derstanding of the temporal properties of the wavefront entering a telescope.
To do this we will use the normal approach of studying the spatial properties
first and then moving to the temporal domain by using the Taylor Hypothesis of
frozen turbulence. The Taylor hypothesis means we assume that a frozen piece
of turbulence is blown past the aperture by the prevailing wind. The temporal
characteristics of the wavefront entering the telescope will therefore be a func-
tion of the spatial distribution of turbulent cells, the speed of the prevailing wind

and the size of the aperture.

The description of atmospheric turbulence theory to follow is largely
based on the review by Coulman (1985), which contains an excellent discussion of
the meteorology of seeing and observational work, and the more mathematically
detailed review by Roddier (1981). Both papers feature large and comprehensive
reference lists. Another extensively referenced summary of turbulence theory as
it applies to astronomical seeing and adaptive optics can be found in Tyson
(1991). The article by Frisch and Orszag (1990) is a good introduction to the
concepts involved in turbulence theory in general, while a review of turbulence
theory as it applies to imaging systems in particular is given by Fried (1979).
The book by Stull (1991), while not specifically concerned with astronomical
application, is a good standard text on the meteorology of the boundary layer
and basic turbulence theory. The final section dealing with the power spectra

of the Zernike expansion coefficients (section (2.3.2)) is original to this thesis.

2.1 Basic Formulation of Turbulence Theory

Simply stating that the atmosphere is turbulent does not imply it will affect
optical propagation. It is possible to have a fluid in which strong mechanical
turbulence will affect optical propagation very little, for example, an incompress-
ible fluid. It is changes in the refractive index of the air, and not turbulence
in itself, that causes changes in optical propagation. Hence the requirement
to relate atmospheric turbulence to refractive index changes. We will model

this coupling as temperature fluctuations driven by temperature differentials
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throughout the atmosphere. Mixing of ‘parcels’ of warm and cool air comes as
a result of the turbulent nature of the atmosphere. While the exact pattern of
temperature distribution varies enormously with location, season and time of
day, it is reasonable to suppose that if we can understand the velocity distri-
bution, we can say something about the temperature distribution. Simple gas
law theory states that the temperature is inversely proportional to density, and
therefore to refractive index. In this way, knowledge of the temperature distri-
bution will lead us towards an understanding of wave propagation in a turbulent

atmosphere.

2.1.1 Turbulence and the Inertial Subrange

The standard model for atmospheric turbulence, first published by Taylor (1921)
and Richardson (1922) and later expanded ( Taylor (1935), Kolmogorov (b)
(1941) and Kolmogorov (c) (1941)), states that energy enters the flow at low
spatial frequencies as a direct result of the non-linearity of the Navier-Stokes
equation governing fluid motion. This forms eddies of large size which have a
scale length Ly and spatial frequency k1, = 27/ Lg. This outer scale length varies
according to local conditions, ranging from the distance to the nearest physical
boundary when close to the ground up to the thickness of the largest turbulent
eddies, that is about 100m. Measurements of Lo range from 2m (Nightingale
and Buscher, 1991) to the controversial figure of greater than 2km (Colavita et
al, 1987).

These large eddies are unstable and break up into smaller eddies, corre-
sponding to a different scale length and a higher spatial frequency. These ‘second
generation’ eddies are also unstable and will break up into still smaller eddies.
Since the scale length associated with these eddies decreases the Reynolds num-
ber associated with the flow defined in equation (2.1) must also be decreasing.
When the Reynolds number is low enough, the turbulent break up of the eddies
stops and the kinetic energy of the flow is lost as heat via viscous dissipation.
This imposes a highest possible spatial frequency on the flow beyond which little
or no energy is available to support turbulence. We shall denote this, the inner
scale length, as [ and its corresponding spatial frequency as k;, = 27/ly. The
inner scale length varies from a few millimetres near the ground up to about
1 em high in the atmosphere. This turbulent cascade is neatly described by
Richardson (1922) in the couplet:

Big whirls have little whirls that feed on their velocity

And little whirls have lesser whirls and so on to viscosity.
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All of the analysis to follow assumes we are working between these two
scale lengths, that is if r is the vector between two points of interest then the
magnitude of r, written r, must be such that Iy < r < Lg. This is known
as the inertial subrange and is of fundamental importance to all the work to
come. We can say nothing about higher spatial frequencies than k;, as there
should be little or no turbulent behaviour in this range. Secondly, as we have
defined a strict lower bound of k1, we can know nothing about very low spatial
frequencies. It is therefore impossible to calculate the contribution of these
very low frequencies to the velocity, or refractive index, distribution. Thirdly,
while we will assume that all distances we work with will be within this inertial
subrange, we cannot know what the relevant scale lengths really are at any one
time or location. The air inside a dome, just above the ground or near some
other kind of obstacle will not have the same inertial subrange as the rest of
the atmosphere, although the general effect would be to reduce the upper scale
length Ly and add higher spatial frequency components to the flow. While it is
possible to derive useful predictions for turbulence within the inertial subrange,
it is important to remember these assumptions have been made, and that the

results derived only hold within the inertial subrange.

2.1.2 Structure Functions and Passive Additives

Since the method we are using is one of studying ensemble averages rather than
detailed properties, the natural approach would be to try and find a correlation
or covariance function of refractive index. Unfortunately, the effect of estab-
lishing a lower bound to spatial frequencies is that the unknown contribution
of the very low frequencies allows the variance to rise towards infinity. This
is a mathematical problem rather than a physical one as there are no observ-
able consequences of an infinite variance. It is for this reason that it is normal
to use structure functions, which do not suffer from this problem, rather than

correlation functions. The velocity structure function is defined as

Dy(r) = ([v(p +1) = v(p)*) (2.2)

where v(r) is the flow velocity at position r and the angular brackets denote
an ensemble average over the repeated parameter p. Structure functions are

related to the covariance function via
D,(r) = 2[B,(0) — B,(r)] (2.3)
and the covariance is defined

Bu(x) = (v(p)u(p+1)). (2.4)
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To obtain an expression for this structure function a few more assump-

tions need to be made (Kolmogorov (a), 1941):

1. Within the inertial subrange average quantities are invariant, while de-

tailed structures need not be.

2. Motions on a small scale are locally isotropic, thus the vector notation
can be replaced by a scalar one. Many expressions need only contain the

magnitude of the displacement r rather than the vector r.

3. The rate of production of turbulent energy is equal to the rate of viscous

dissipation ¢g.

4. The velocity of motions of scale length r is a function of r and ¢, of the

form V o €dr?.

Dimensional analysis! then yields
13
Vo eyra. (2.5)

Noting that the structure function has the same dimensions as V? we see the
velocity structure function D,(r) must be proportional to the distance between
the points r to the power of two thirds. Adding a constant of proportionality
C2, referred to as the structure constant, we find the structure function can be
written

D, (r) = C*r7, (2.6)

v

where r is the magnitude of the vector r. This implies that there is no charac-

teristic scale length within the inertial subrange.

Up to this point we have only discussed the velocity distribution. We
need to couple this to the refractive index distribution via temperature, density
and water vapour variations. In order to perform this operation the idea of a
conserved passive additive ( Tatarski (1961) and Tatarski (1971)) is required.
A passive additive is a quantity that does not affect the dynamics of the flow.
A conserved additive will not disappear through some chemical reaction in the
flow. Any conserved passive additive will also follow the two thirds power law

derived above for the velocity structure function. While temperature is not

!Dimensional analysis is the process of ensuring that both sides of an expression have the
same physical dimensions. In this case € has the dimensions M L?T~3 (where M stands for
mass, L for length and T for time), V has the dimensions L7~! and r has dimension L. If we

assume the mass component is incorporated into the constant of proportionality, the values

of a and b must both be 1/3.
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strictly a passive additive, since a temperature gradient can affect the flow,
Tatarski argued that it is still reasonable to consider temperature variations

to be a conserved passive additive. Thus the temperature structure function

defined as
Dr(r) = (|T(p+1) - T(p)|*), (2.7)

can be written

[N

Dr(r) = C2r (2.8)

where C?% is the temperature structure constant. Many experiments ( Coulman
(1969), Wyngaard et al (1971), Coulman (1974), Hartley et. al. (1981), Walters
and Kunkel (1981), Forbes (b) (1983), Forbes et al (1985), ten Brummelaar
(1985) and Lopez (1991)) confirm this two thirds power law in the atmosphere.
The temperature structure constant C7 is proportional to the local vertical
temperature gradient and is not related to the velocity of the flow. Hence,
even if the local wind velocity is quite large C7 can be small, even zero; that
is, the two structure constants are not strongly coupled. As we are dealing
with small perturbations in the absolute temperature, and since density and
therefore refractive index are inversely proportional to temperature, we write

the refractive index structure function, defined

Dn(r) = {|ln(p +r) — n(p)[*) (2.9)
Dy(r) = C3rF, (2.10)

where the refractive index structure constant is CJQV and is a basic measure of
the optical strength of atmospheric turbulence. The temperature and refractive

index structure constants are related via (Coulman, 1985)

80 x 10~6P?
02 = lXT] c2 (2.11)

where the air pressure P is in millibars and the temperature 7" is in kelvin.

2.1.3 The Kolmogorov Spectrum

It will also be necessary to find an expression for the spatial spectrum of tur-
bulence. We require an expression for the energy E(x)dx between spatial fre-
quencies £ and & 4+ dk which can be obtained from the dimensional analysis

performed earlier. This energy must be proportional to the velocity squared
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and the spatial frequency is inversely proportional to r. Combining this with

equation (2.5) we get, in one dimension

ol

E(k)dk x &~ (2.12)

or

|

E(k) x k75, (2.13)

To convert the three dimensional spectra E(&) to its one dimensional equivalent

E(k) we integrate over all directions. Since we have assumed local isotropy we

find that F(x) = 4rk*E(&) and therefore
E(k) x k73 (2.14)

This is known as the Kolmogorov Spectrum and holds for any conserved passive
additive including refractive index. The three dimensional spectrum of refractive

index changes @y (k) is then
& (2.15)

The constant of proportionality can be found by relating this spectrum to the
structure function defined in equation (2.10). The structure function Dy(r) is
related to the covariance function By(r) via equation (2.3) and the covariance

is the three dimensional Fourier transform of the spectrum ®y(x) (Roddier,

1981). In this way Tatarski (1961) showed that

On(k) =0.033CHK" 7 (2.16)
This is the Kolmogorov spectrum for refractive index changes for a given struc-
ture constant C%. It is only valid within the inertial subrange (kz, < k < ki)
and for a ‘block’ of atmosphere throughout which the structure constant is in-

deed constant.

2.2 Application to Astronomy

Now that an expression for the spectrum of refractive index changes due to a
single turbulent layer has been derived, we must consider the atmosphere as
a whole. It was Tatarski (1961 and 1971) who first published a treatment of
the problem from an astronomical point of view. A further set of simplifying
assumptions need to be made in order to understand seeing at ground level.

First of all we shall use a phase screen approach (Lee and Harp, 1969). Each
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turbulent layer will only introduce a phase change into the propagating wave-
front, or in other words, scintillation will be largely ignored. A treatment of
the problems of scintillation can be found in Coulman (1985), Roddier (1981),
Young (1970), Young (1969) and Young (1967). Secondly, most of the work will
be done assuming vertically propagating monochromatic waves of wavelength
A, wave number k& = 27/ and polarisation will be ignored. This means the
statistics of the atmosphere will depend only on the height above the ground
h. Generalisation to stars away from zenith and other wavelengths will then be
given. Thus at the position (x, %) the complex amplitude of the light field is

written
Wh(x) = [Wn(x)] explipn(x)] (2.17)

where ¢, (x) is the phase. Thirdly, the complex amplitude will be normalised
such that it is unity outside the earth’s atmosphere (¥, = 1) and phase will

always be measured with respect to the average value ({¢n(x)) = 0).

2.2.1 Temporal and Spatial Properties of Structure Con-

stants

The structure ‘constants’ are only constant within a given layer of the atmo-
sphere and are assumed to be a function of height above the ground z. Before
moving on to the derivation of structure functions for single and multiple lay-
ers it is important to understand the behaviour of the structure constants with
height and time. Techniques used for measuring the behaviour of the atmosphere
at different heights include microthermal studies, radar soundings, balloon ex-
periments, aircraft experiments and acoustic soundings ( Coulman (1969) and
Coulman (1974)). Both the review papers by Coulman (1985) and Roddier
(1981) contain many references to these measurements, although the paper by

Coulman covers the meteorology of seeing in more detail.

The behaviour of the refractive index structure constant with height, as

derived experimentally, can be broken up into four zones:

1. Purely local effects. This includes the local terrain, the telescope dome (if
there is one) and so on. The primary effect of local objects is to change the
inertial subrange and introduce temperature differentials. The significant
scale lengths in this zone depend very much on the objects nearby while

. _2
the refractive index structure constant scales as z73.

2. The surface boundary layer or troposphere. This is the first few kilometres
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of atmosphere and, along with local effects, contains three quarters of the
atmosphere. The dominant source of turbulence in this zone is wind shear,
the significant scale lengths are roughly constant while the refractive index

_4
structure constant scales as z73

3. Above the troposphere is the stratosphere. In this zone the scale lengths
are height dependent. It appears, from balloon experiments, that the

turbulence in this zone is concentrated into thin (100-200m) layers.

4. In the rest of the atmosphere the turbulence is due to wind shear and
stable temperature gradients dominate. This zone has little effect on seeing

conditions.

A plot of average refractive index structure constant values with height is given in
figure (2.1). It should be remembered that this model is for nighttime conditions
only since during the day the effect of the ground, having been heated by the
sun, becomes very significant. As we are interested in nighttime conditions here

no further discussion of daytime seeing behaviour will be undertaken.

This model, while not reliable for short term experiments, gives very
good order of magnitude predictions. Thus, while the refractive index structure
constant does not hold the same value through the entire atmosphere and can
undergo large short term changes, experimental evidence indicates that a theory

based on the summation of several thin layers is reasonable.

2.2.2 Contribution of a Thin Layer

Given the stratification and phase screen approximations, in combination with
basic turbulence theory, we are now in a position to calculate the effect of the
atmosphere on an initially flat wavefront. To do so, we will follow the method
set out in the review by Roddier (1981) and first calculate the effect of a single

turbulent layer and then move on to a summation of many such layers.

Consider a layer of turbulent air of thickness 6k and height h above the
ground. The thickness 6k is chosen so that it is large compared to the scale of
the turbulent eddies but small enough for the phase screen approximation to

remain valid. We then write the phase shift introduced by this thin layer as

on(x) = k /hhm dzn(x, ). (2.18)
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Figure 2.1: This plot (taken from Roddier (1981)) shows the long term
average refractive index structure constant profile with height for night-
time conditions. Note that over short time periods the real behaviour
may be very different, for example, in the troposphere very large short
term fluctuations have been measured.
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Therefore if the complex amplitude before passing through the layer is unity,
after the layer it is

U(x) = explie(x)]. (2.19)

The coherence function of the complex amplitude (¥ (x)U5 (€ + x)) is then

Bi(x) = (expi[p(&) — ¢(& + x)]). (2.20)

Roddier (1981) points out the similarity of this equation to the Fourier transform
of the probability density function of the expression in square brackets at unit
frequency. He then shows that due to equation (2.18) this quantity can be
considered to be the sum of many independent variables and therefore have

Gaussian statistics and uses a statistical argument to show that
1
Bu(x) = exp [—iDq,(X)] (2.21)
where D, (x) is the structure function of the phase defined by

Dy(x) = (l¢(&) — o (€ +x)[). (2.22)

The coherence function Bj(x) is now seen to be a function of the phase
structure function, which is dependent on the refractive index fluctuations. If

we define the covariance of phase to be

By(x) = (¢(&)p(€ +x)) (2.23)

the phase structure function can be written, using the relationship defined in
equation (2.3), as
D,(x) = 21B,(0) — B,(x)], (221)

Combining equations (2.23) and (2.18) we find

9 h+6h h+6h—z
B,(x) = k /h dz /h d¢ By(x, () (2.25)

—Zz

where By(x, () is the three dimensional refractive index covariance

By(x,¢) = (n(&; z)n(§ +x,2)) (2.26)

and ( = z/ — z. We take the integration over ( to be from —oc to +o0 since we
have assumed that the thickness of the layer is large compared to the correlation

scale of the turbulence. This yields

B,(x) = k%h/dg By(x,() (2.27)
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Substituting this into equation (2.24) gives
Do(x) = 2k26h / d¢ [Bn(0,¢) — By (x, ()], (2.28)
Re-writing the refractive index structure function defined in equation (2.10) as
Dy(x,() = CR(z* + ¢*)* (2.29)

and using the relationship defined in equation (2.3) equation (2.28) can be inte-
grated and yields
D,(x) = 2.91k* C% 6h a? (2.30)

which, using equation (2.21), means that
1 5
Bi(x) = exp—§(2.91k2 Cf 6hx?). (2.31)

Finally, using the Fresnel approximation Roddier (1981) shows that By(x) =
Bj(x) and therefore the covariance of the phase at ground level due to a thin

layer of turbulence at some height off the ground is
1
Bo(x) = exp [— §Dw(x)] . (2.32)

It is, however, not strictly true that D,(x) is the same at ground level. This is
because for high altitude layers the complex amplitude will vary in both phase
and amplitude. The turbulent layer acts like a diffracting screen and strickly
we should use diffraction theory to determine the effect at ground level. These
effects are small, however, so we make the phase screen approximation and take
the phase structure function at ground level to be the same as that inside the

thin layer.

2.2.3 Addition of Many Thin Layers

Now the contribution of a single turbulent layer has been found it remains to
find the sum of many such turbulent layers which we shall number from 1 to J.
Each layer is at height #; and has a thickness of 6/;. The effect of each turbulent
layer will be to introduce a phase change ;(x) to the complex amplitude of the

wavefront. Thus the complex amplitude after passing through layer j is
W, (%) = Wh,psn, (X) explip;(x)] (2.33)

and the coherence at the output is

By (x) = (Wi, 1on, (§) Un, +on, (€ + X)) X {expilp;(€) —wi(§ +x)]).  (2.34)
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The second expression inside angular brackets is the same as the coherence
function defined in equation (2.20). Substituting the expression for that given
in equation (2.31), and noting that for each layer the coherence function is

multiplied by such an expression, we find at ground level the coherence function

is given by
al 1 5
Bo(x) = Hexp—§[2.91k2012v(hj)5hjxi] (2.35)
7=1
1 5 O
= exp—3 2.91k%*23 Y CR(h;) 6h; | . (2.36)
71=1
(2.37)

For a star at an angular distance of v away from zenith viewed through a con-

tinuous turbulence distribution this expression can be generalised to be
1
Bo(x) = exp—5 2.91k*(cosy)™! P /dz Cy(z ] (2.38)

Thus, using the relationship between the coherence function and phase structure
function given in equation (2.32), the phase structure function at ground level

can be written

D,(x) = 2.91k*(cosy)™" g/dZCN (2.39)

Equations (2.38) and (2.39) are the fundamental results of this section

and will be used to represent astronomical seeing at ground level.

2.2.4 Fried’s Coherence Length

The final step in the application of turbulence theory to astronomical seeing is
to achieve some sort of single parameter measurement of seeing. Following the
work of Fried (1965) we use the parameter ro, known as Fried’s coherence length,

as this measure. This coherence length has many useful interpretations:

e The wavefront across an aperture of diameter ro has an rms phase distor-

tion of about 1 radian (see section (2.3.3)).

e The resolution of a long exposure using a telescope affected by atmospheric

turbulence can be no better than one using an aperture of ro (see below).

e The optimal aperture size for a short exposure image is approximately

3.8rq (Fried, 1966).
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Other interpretations and references are listed in Fried and Mevers (1974). In
order to derive an expression for ro we once again follow Roddier’s methodology

and define the resolution of a telescope to be
R = / df B(f)T(f) (2.40)

where f is the spatial frequency vector with magnitude f, B(f) is the second
order moment of the complex amplitude at the aperture given by? By(Af) and
T(f) is the optical transfer function of the telescope. A small telescope with an
unobscured circular aperture of diameter D (that is D << r,) will be diffraction
limited and its resolving power will only depend on the optical transfer function

of the telescope:
1
Rp = /df T(f) = $7(D/A). (2.41)

A large telescope’s resolving power will be dominated by turbulence effects so
Roo = / df B(f) (2.42)

where B(f), using equation (2.38), is given by
B(f) = Bo(M) = exp —% [2.91k2 (cosm) (AN [ dz c}’v(z)] L (243)

The integration in equation (2.42) results in

o]t
oo

Reo = (67/5) (% [2.91k2 (cos 7)™ A /dzCJQV(Z)D_ r(6/5).  (2.44)

We are now in a position to derive an expression for rg if we define it as
the diameter for which Rp = Ru. So, placing D = rg in equation (2.41), we

find equation (2.43) can be written in the form
B(f) = exp —3.44(\f /ro) "% (2.45)

which leads to
Bo(x) = exp —3.44(x/ro) 5. (2.46)
Comparing this to equation (2.38) yields an expression for rg in terms of the angle

away from zenith and an integral over the refractive index structure constant:

ro = [0.423k* (cos )™ /dz C’JQ\,(Z)] o (2.47)

2The function Bp(x) has the input variable x, which is a spatial vector, while the function
B(f) has as its input variable the spatial frequency f. One can therefore move from one

function to the other using the relation x = Af.
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Now that we have a way of relating ro to the wave number k, the zenith
angle 7, and the refractive index structure constant C%;, it is useful to express
all of the important functions describing atmospheric turbulence in terms of ry.
Combining equation (2.46) with equation (2.32) gives us an expression for the

phase structure function across the telescope aperture
D, (x) = 6.88(z/ro)?. (2.48)

This relationship has been experimentally confirmed by a number of authors
including O’Byrne (1988) and Nightingale and Buscher (1991). Using the fact
that the structure function is related to the power spectrum via (Noll, 1976)

Do(x) =2 / dk®,,(K)[1 — cos(2rk - x))] (2.49)

the power spectrum of phase fluctuations due to Kolmogorov turbulence at the

telescope aperture is
11

P, (r) = <0.023/r§) ¥ (2.50)

Fried’s coherence length, apart from giving us a useful physical measure
of seeing with immediate application to optical astronomy, also yields simplified
expressions for the coherence function (equation (2.46)), the phase structure
function (equation (2.48)), and the phase power spectrum (equation (2.50)) at

the input of an unobscured telescope with a circular aperture.

2.3 Wavefront Analysis using Zernike Polyno-

mials

To apply turbulence theory to the performance of an optical telescope we now
introduce a normalised set of orthogonal polynomials defined over a unit cir-
cle known as the Zernike Polynomials. The phase across the aperture can be
expanded in terms of these polynomials and the temporal behaviour of the ex-
pansion coefficients can then be studied. The work in this section is largely
based on the work by Noll (1976) using a modified set of Zernike polynomials
while a more general description can be found in Born and Wolf (1987) section
9.2. A very good discussion of the polynomials along with some pictorial rep-
resentations and numerical methods for coefficient determination can be found
in Wang and Silva (1980) while methods for experimental determination can be
found in Lawrence and Chow (1984).
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2.3.1 Zernike Polynomial Definition and Properties

Using polar coordinates p and 6, normalised for an unobscured aperture of radius

R, the phase of the wavefront across the aperture can be written
p(Rp,0) =3 a;Z;(p,0) (2.51)
j

where Z;(p, 0) is the Zernike polynomial of order j, a; are the expansion coeffi-

cients given by

aj = [ dp W (p) @(Fp.0) Z;(p,0) (2.52)
and the weighting function
I/ p<1 o x
W(p) = { J (2.53)
p>1

is added so that the integral can be taken over all space. The Zernike polynomials

themselves are given by

V2cosmf m #0, jeven

Zi(p,0) =vVn—+1RMp)x {3 V2sinmf m#0, jodd (2.54)
1 m =0
where
i (~1)(n )
R™( ) = : ne2s, 2.55
LR Dl Sy Y B gy e (2:55)
The constants m and n are integers such that m < n and n — |m| is even.

The index j is used to order the modes, the first eight of which are shown
in table (2.1). The low order modes have a direct correspondence to common
aberration terminology and, most importantly in the context of this thesis, to
that of wavefront tilt (modes 2 and 3).

Zernike polynomials follow the orthogonality relation
/ deW (1) Z;(r) Zis(r) = 6:;1. (2.56)

The only other property of the Zernike polynomials that will be required for an
analysis of turbulence is their Fourier transform @Q;(k, ¢) defined by

W(p)Zi(p,0) = [ dQ;(k,8) exp(~2rik - p) (2.57)
and written as (Born and Wolf, 1987)
I (onk (—=1)(r=m)/25m /2 cosmp m # 0,even j
Q;(k,¢) :\/n—|—1M X (=1)=m2im\/2sinme m #0,0dd j

7wk
(—1)”/2 m=20
(2.58)
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mode j | Common name

1 Constant/Piston
X Tilt/Lateral Position
Y Tilt/Lateral Position

Defocus/Longitudinal Position

m Zernike Polynomial
0 Z1=1

1 Zy =2pcosb

1 Z3 = 2psinf

0 Zy=/3(2p* - 1)
2

2

1

1

Ly = \/6p2 cos 20

Jg = \/ép2 sin 26
Z7 = /8(3p% — 2p)sin 0
Zs = V/8(3p® — 2p) cos 0

Astigmatism (3rd order)

Astigmatism (3rd order)
Coma (3rd order)
Coma (3rd order)

| T || =W
WlWI NN N |~ B

Table 2.1: The first eight Zernike polynomials. The mode numbering is
such that even j values represent the symmetric (cos) modes while odd
values of j represent the antisymmetric (sin) modes. There is a direct
correspondence between these polynomials and the kinds of aberrations
traditionally discussed in optics.

With this set of polynomials defined we will now proceed to assume that
in optical telescopes of small (R < rg), unobscured circular aperture, such as
those used in SUSI, the wavefront is well approximated by the first three polyno-
mials. This approximation will be shown to be valid for Kolmogorov turbulence
in section (2.3.3). In SUSI, only the modulus of the visibility is measured;
consequently measurements are insensitive to the piston mode, as long as the
characteristic time for piston mode fluctuations exceeds the sample time of the
fringe detecting system. It is the job of the tilt correction servo to remove the re-
maining tilt modes. The angle of tilt in either axis is related to the corresponding

Zernike expansion coefficient via

A
Pup = 235 (2.59)

where ¢, ;, are the vertical and horizontal wavefront tilt respectively.

To proceed with the design of the tilt servo, it is necessary to know the
expected temporal power spectrum and variance of these coefficients. Before
deriving these spectra in the next section, a brief discussion of the definition
of wavefront tilt may be in order. A number of possible definitions exist. We
shall use the relationship defined in equation (2.59). Another, similar, definition
is the angle of a plane fitted to the phase profile of the wavefront in a ‘least
squares’ sense. One could also define the tilt in terms of an average phase angle
taken over the entire aperture (Tango and Twiss, 1980), or equivalently (Merrill,

1991), the optical analogue of the Ehrenfest theorem from quantum mechanics.
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A conflicting definition is the difference in phase of one side of the aperture
to the other, or, in an interferometer, of one aperture to the other divided
by the aperture diameter or the interferometer baseline. While not invalid,
this definition does not correspond to the sorts of measurements made by the
detectors used in the SUSI wavefront tilt correction servo. Authors who have
investigated the power spectra of expansion coefficients in the past (for example
Clifford (1971)) using this definition do not achieve results relevant to tilt servo
design. The statistics of this definition of tilt are exactly the same as for piston
phase, and therefore contain no new information about the wavefront. Care
should be taken to ensure that the particular definition of wavefront tilt, and
its measurement, are kept in mind when reading the literature on this subject.
Further discussion of tilt definition and measurement techniques can be found
in sections (3.1) and (5.2).

2.3.2 Temporal Power Spectra of Wavefront Distortions

In order to derive the power spectra due to Kolmogorov turbulence of a given
mode 7 we will use a similar method to that used by Greenwood and Fried
(1976), Clifford (1971), Hogge and Butts (1976) and Tango and Twiss (1980).

We first calculate the temporal autocorrelation defined
Coy (1) = (a;(t)aj(t + 7)) (2.60)

where the angular brackets denote an ensemble average. The power spectrum
is then given by the Fourier transform of the autocorrelation function via the

autocorrelation theorem (Bracewell, 1986)
Wa,(f) = / Co, (1) exp(—=2mi fr)dr. (2.61)

In order to find the temporal autocorrelation function we will need to invoke
the Taylor Hypothesis of frozen turbulence (Taylor, 1937). This states that,
since the time scales of eddy motion are smaller than the frequencies of interest,
we may move from the spatial to the temporal domain by assuming that a
basically ‘frozen’ piece of turbulent air is being moved through the wavefront by
a wind with a perpendicular velocity of v;. Thus the knowledge of the spatial
characteristics of air turbulence derived in the previous section can be used
to study temporal behaviour. The component of wind velocity parallel to the
direction of propagation will be assumed not to affect the temporal statistical
properties of the wavefront entering the aperture. Unlike most of the previous
work in this area, and following the method described by Noll (1976), most of
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the calculations will be performed in Fourier space rather than in real space.
This has the effect of introducing a number of delta functions, thereby making

many of the integrals much easier to calculate.

Combining the definition of the expansion coefficients given in equation
(2.52) and explicitly adding the time dependence of the phase across the aper-

ture, the temporal autocorrelation in equation (2.60) can be re-written in the

form
Co,(r) = [dp [ dp'W(p)Z;(p) CulRp, Rp', 1Y W(0) Z,(8)  (2.62)
where the integral now contains the autocorrelation function of phase
Co(Rp, Rp',7) = (p(Rp,t)p(Rp', 1 +7)). (2.63)

Using the power law (Bracewell, 1986) on both the p and p’ variables, equation

(2.62) can be written in Fourier space as
Coy(r) = [ dk [ ' Q3() 0k, K, 7) Q5(K) (2.64)

where ®(k, k', 7) is the spatial Fourier transform of C,(Rp, Rp’, 7) with respect
to both p and p’. Denoting this transform by a solid line above the function
and following Noll (1976) we obtain

Colp p/0) = b, (k)5(k — k') = 0.023 (i) LTSk (269)

T'o
This is a direct consequence of equation (2.50) and the auto-correlation theorem
described in equation (2.61). If the two spatial wave numbers k and k' have
the same value, C,(p, p’,0) is the spatial autocorrelation of the phase across
the aperture whose Fourier transform is the spatial power spectrum given by
equation (2.50). If the spatial wave numbers are not the same, turbulence theory
gives us no information about C,(p, p’,0) and we therefore introduce the delta
function shown in equation (2.65). Any other model for turbulence could be
used at this point as long as it supplies an expression for the spatial power
spectrum for phase at ground level. More complex models for these spectra
have been published ( Tyson (1991), Tatarski (1961) and Tatarski (1971)) and
could be substituted for the Kolmogorov spectra used here. The assumption
of the inertial subrange means the Kolmogorov spectra will not produce the
correct results for very high frequencies. As we are primarily interested in the
low frequency behaviour, to aid in servo design, the Kolmogorov spectra will be

used in this analysis.

By the similarity theorem (Bracewell, 1986) we find that

R 5 11
C.(Rp, Rp’,0) = 0.023(—)% k™ 8(k — k). (2.66)

To
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We now invoke the Taylor hypothesis by assuming that the temporal autocorrela-
tion function is related directly to the spatial autocorrelation function assuming

an average perpendicular wind speed v, via

(p(Rp,t)p(Rp',t + 7)) = (p(Rp,t)p(R(p' — vi7/R),1)). (2.67)

Note that, as we have assumed local isotropy, we have dropped the vector nota-
tion for p and p’. By using the shift theorem of Fourier transforms (Bracewell,

1986) we can now write the required transform

5
RN\? .
o(k,k',7) =0.023 (—) ) exp(—2miv, 7k/R) k™% §(k — k). (2.68)
T'o
Combining equations (2.58), (2.64) and (2.68) we arrive at an expression for the
temporal autocorrelation function of the jth mode of the Zernike polynomial
expansion of the wavefront across the aperture due to Kolmogorov turbulence.
Due to the delta function in equation (2.68) the integral over k' becomes trivial,

as is the integral over the angular part. The final expression becomes

_0.046

s

Jns1 (27K)

Ca,(7) (%) ’ /dk exp(—2miv, 7k/R) L5 — (2.69)

Note that the effect of the Taylor hypothesis is to introduce a periodic envelope
function to the transform, whose frequency depends on the aperture radius R,

the average wind speed v, and the time 7, and is given by v, 7/R.

It remains to perform a Fourier transform of this expression to find the
power spectrum of the selected mode. As the only part of equation (2.69)
containing a time dependence is the periodic exponential function, by swapping
the order of integration we need only consider the transform of this part. Noting
further that the power spectrum must be real and is undefined for negative

frequencies, we write

[df exp(—2miv Tk/R)exp(—27ifr) = 6(f —vik/R)

Substituting equations (2.69) and (2.70) into equation (2.61) we find that

Wa,(f) = 0.092 (27) % (%) ' g (n+1) (%)_g % (2.71)

where fo = v, /(27 R). This equation is the main result of this Chapter and
will be used in later sections to establish ry estimates by fitting this equation to

experimental data. Note that no integrals remain and that C% does not appear

in this expression, in contrast to similar work by Hogge and Butts (1976). The
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Figure 2.2: The power spectra for the first eight Zernike expansion co-
efficients for Kolmogorov turbulence. Note that most of the power is
contained in the first three modes and that in all modes the majority of
energy is contained in the low frequency range. The ‘knee frequency’ is
marked in each plot with a dotted vertical line and increases with increas-
ing mode number. In the high frequency end of all modes the oscillatory
behaviour is not properly displayed due to the numerical nature of the
calculations. Each minimum should reach zero.
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first ten modes are plotted in figure (2.2). This figure demonstrates the main
properties of these spectra. To begin with, the shape of the power spectrum
depends only on the value of the azimuthal frequency (n value) of the given
mode and not on the radial degree (m). This, though little else, is in agreement
with the results derived by Hogge and Butts (1976). This paper seems to have
become a starting point for many other works in this area, although the results
are in conflict with the work contained in this thesis and of other workers ( Tango
and Twiss (1980) and Greenwood and Fried (1976)). Another discrepancy is
the simple power law relationships often used to model these spectra. Given
that the Bessel function in equation (2.71) can be approximated by (Palmer et
al, 1990)

r(vlw (%"ﬂ) for 0<z<<vw
Jl/(:c) ~ 32/231-‘(%)1/_1/3 for T =V (272)

Zeos(x—Ltvn —Z) for = >>v
T 2 4 ?

the power spectra given in equation (2.71) can be approximated by the following
power laws:
fO=85 for f << (n+1)f

Wa, () o { fYB 0 for f >> (n41)fo. (2.73)

Thus, the ‘knee’ frequency, which will always be a harmonic of fy, increases
with increasing mode. For low frequencies the slope of the power spectra in
the log domain will depend on the azimuthal frequency, for piston phase this
will be —%, in agreement with Greenwood and Fried (1976), Tango and Twiss

(1980), Hogge and Butts (1976), Clifford (1971) and Greenwood (1977). For

tilt spectra the power law for low frequencies will be —%. This is the same as
that predicted by Tango and Twiss (1980) and Greenwood and Fried (1976)
but is in conflict with Hogge and Butts (1976) who also predict a —% power law
for tilt spectra. As will be shown in Chapter 5, experimental evidence indicates
the —% power law prediction best fits the data collected by the tilt correction
servo. Hence, the formulae given by Hogge and Butts (1976) will not be used.
For high frequencies the amount of power will drop very quickly with increasing
frequency, that is, with a power law of —13—7. There is some argument in the
literature about the correct slope for the high frequency part of the spectrum,
however, as the total amount of power in this range is so small, this difference
in models should have little or no effect on the data analysis to follow. A more
complex turbulence model than the Kolmogorov spectra used herein would be
required to model the high frequency behaviour correctly. The work by Tango

and Twiss (1980) uses a different definition of tilt, an average phase gradient
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11
3

(5.2) the —% value agrees most closely with the experimental evidence.

across the aperture, and predicts a slope of — As will be shown in section

A number of other points of interest concerning these power spectra
should be mentioned. Firstly, the knee frequency depends on the perpendicular
wind velocity v, . Secondly, the total power in a spectrum (or the variance), as
will be shown in the following section, depends only upon rg. Fitting equation
(2.71) to experimental data, by adjusting the values of v, and rq, makes it pos-
sible to obtain an estimate for both of these parameters. The wind speed value
is not generally of great interest to the astronomer except for high wind speeds
which produce large bandwidths of aberration fluctuations. Generally, an esti-
mate of rq is useful as a measure of seeing and, in the case of SUSI, aids in the
selection of appropriate aperture sizes during an observational run. Finally, the
power spectra derived show that the tilt servo need not have a bandwidth larger
than a few tens of hertz. A bandwidth larger than the knee frequency defined
above may prove to be disadvantageous, as such a servo bandwidth would only
result in noise amplification. In the tilt servo system for SUSI the bandwidth of
the feedback control system will be tuned to the knee frequency measured for a

particular observation.

2.3.3 Variance of Wavefront Distortions

The variance of any Zernike coefficient is given by the total power in its spectrum,
that is,

o? :/Oo df W, (f). (2.74)
J 0
Substituting equation (2.71) and using the variable change k& = Rf/v, the

variance of any given Zernike coefficient will be

04 3 %0 o J2, . (27k
g2 = 2040 (5) (n—l—l)/ dk k=% % (2.75)
0

@ s To

This is in exact agreement with the more general expression for the covariance
of the expansion coefficients derived by Noll (1976) and later corrected by Wang
and Markey (1978):

226 (B)*\f(n + D' + 1)
% (—1 (n+n'—2m)/25mm, .
(aja;) = (=) o 12 (2nk) o (2.76)
X [dkk™s 2ta— for (7 — j') even

0 for (7 — ') odd

which will reduce to equation (2.75) when j = j'.
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From inspection of equation (2.76) it is clear that the modes are not
decoupled. The measurement of one coefficient may affect the measurement of
another. This modal cross-coupling, however, only becomes a problem when
higher order modes are being used or estimated (Herrmann, 1981). Work by
Cubalchini (1979) has also shown that by minimising the number of modes
estimated and only working with modes less than astigmatism (j < 6) the
overall variance of the estimates will be as small as possible. As both of these
criteria apply to the wavefront tilt servo of SUSI, this mode coupling will be

ignored.

A final check of equation (2.75) can be performed by looking at the total
power, or variance, of the wavefront tilt. By equation (2.59), angle of arrival
scales as A/Rw. This means the power spectrum of tilt will scale as (\/Rx)?
and putting j = 2 or 3 in equation (2.75) we can write the total power in the

tilt spectrum as

ot = SRR (VR (R[ro) [5° dkk=5 T2, (2mk) /R

5 S (2.77)
= 0.183(D/r¢)® (A\/D)"rad

where D = 2R. This is in excellent agreement with equation (70) in Greenwood
and Fried (1976) and equation (B.13) in Tango and Twiss (1980). The variance
expressed here can be related to the seeing disc, an expression often used by
astronomers. If we define the seeing disc Oseeing as the full width half maximum

of a Gaussian function fitted to a histogram of image position in radians, we

find that

A 5
m:L%M%Q.D) (2.78)
seeing

which shows that rq depends upon the wavelength to the power of % Com-
paring this expression with equation (2.47), shows that the seeing disk size is
independent of wavelength. This expression can also be interpreted to say that
the coherence length, rg, depends on the ratio of the Airy disc formed in the
telescope to the size of the seeing disc. When these are the same the coherence
length is equal to the diameter of the telescope. For larger wavelengths the size
of the airy disk increases, therefore one expects seeing to be better at longer
wavelenghts. The dependence of ry on the aperture diameter is much smaller
than wavelength or Airy disc size, indeed for apertures of the order of one metre

this expression can be approximated by

A )8
g ~~ <Hseeing) . (279)

So at a wavelength of 500nm, a seeing disc of 1”7 corresponds to an ry value

of around 10cm. We will be using the wavelength of 440nm in most of the
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calculations to follow as it is the reference wavelength used for all alignment
of interferometer optics. At this wavelength, and for the aperture sizes used in

SUSI, a 17 seeing disc corresponds to a coherence length of only 9.0cm.

With the expression for variance of a given mode, two other useful predic-
tions can be made. Firstly, equation (2.75) will yield an alternative estimate of
ro to that given by equation (2.71) and will serve as a test of the measurements
proposed in the last section. Secondly, equation (2.75) will allow us to estimate
the amount of residual wavefront distortion once the lowest order aberrations
have been corrected. Once again following the work of Noll (1976), we define

the correction of the first J modes of the wavefront to be
J
Yo = Z a; Z]‘. (280)
7=1

We then define the mean square residual error to be

A= [ doW(p)(p(Rp) — wo(Rp)) (2:81)

and remembering that (a;) = 0 and substituting equation (2.80) we find that

Ay ={g*) = 3 (la;), (2.82)

J=1

where (©?) is the phase variance. While this variance is infinite for Kolmogorov
turbulence, due to the assumption of an inertial subrange, Noll (1976) shows
that this is contained within the first, piston phase, term. All other terms are

finite and easily calculated. The first ten values are given in table (2.2).

The same results were originally derived by Fried (1965) via a much more
complicated technique. The implication of the residual errors given here is that
if piston phase and both vertical and horizontal tilt are corrected for, only a
small amount of wavefront distortion remains. We see then, that if the aperture
is restricted to rg or less the wavefront can be considered to be well approximated
by the first three Zernike coefficients: piston phase and horizontal and vertical
tilt.

2.4 Implications for SUSI

The design of SUSI takes many of the problems of atmospheric turbulence into
account. To begin with, the site chosen is on a plain, on which grass is en-

couraged to grow, thus reducing the number of nearby obstacles; the buildings
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Mode | Residual error
Ay | 1.0299 (2)
A, | 0.582 (2)
As | 0.134 (2)
Ay |0.111 (2)
As | 0.0880 (2)
As | 0.0648 (2)
A | 0.0587 (2)
As | 0.0525 (2)
Ay | 0.0463 (2)
Ao | 0.0401 (2)

Table 2.2: The residual errors after correcting for the first ten modes are
tabulated for Kolmogorov turbulence. D is the telescope diameter. The
numbers in the table clearly show that, for a telescope of diameter rg
or less, only the first three modes need be corrected to achieve a large
improvement in optical quality. To gain much better improvement, many
more modes need to be corrected for.
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containing the OPLC, being of cylindrical design, contain no external sharp
boundaries. Furthermore, the siderostats are positioned several metres above
the ground and the beams enter a vacuum system as soon as is practicable,
thereby saving them from the worst of the lower air turbulence. The prevailing
winds at the site are from the east. All the buildings have therefore been placed
on the western side of the baseline thereby further reducing their impact on local

seeing.

As previously stated, in order to avoid many of the problems associated
with seeing, the apertures in SUSI are restricted to rg or less and the first
three Zernike modes, that is phase and both axes of tilt, are corrected. The
residual wavefront phase error due to Kolmogorov turbulence during the final
visibility measurements will then be of the order of 0.134 radians squared, or
less. The aperture size used for visibility measurements will usually be less than
ro implying even smaller phase errors. If larger apertures are used, higher order
adaptive optics systems would be required and/or longer wavelengths would

have to be used.

The temporal spectra derived above will help set limits on sampling times
and bandwidths of the various devices and control systems in SUSI. The min-
imum sample time has therefore been set at 1ms, thereby ensuring that these

devices, especially the tilt correction servo, will have the required speed.



Chapter 3

HARDWARE

The wavefront tilt correction servo is a digitally controlled negative feedback
loop. A diagram of its major components can be found in figure (3.1). Each

cycle the system performs the following functions:

e Measures the image position.
e Calculates a new mirror position that will centre the image.

e Places the mirror in this new position.

Systems like this are also referred to as tip/tilt servos, fast tracking, or wobblers.
In order to meet the requirement specification set out in section (1.4) both
the detectors and mirrors must have resolutions of a fraction of an arcsecond.
Furthermore, to track an analogue phenomenon such as image position with
a digital system the cycle time of detection, calculation and correction must
be less than the time constant of the tilt fluctuations. The characteristic time
of atmospheric turbulence ¢y is of order 10ms (Roddier, 1981) and has been
measured to be as small as 3ms (Roddier et al, 1990). Therefore a minimum
cycle time of 1 millisecond has been chosen. Sample times which are multiples

of this minimum are also available.

The detectors used are called optical pyramids which are a type of quad-
rant detector. An optical pyramid splits the focussed image into four parts or
quadrants with the light in each quadrant being separately detected. The image
position is by definition centred on the detector when these four signals are equal
in intensity, while an imbalance implies a centring error. The number of photon

events registered in each quadrant is counted and latched by electronics and read

36
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Figure 3.1: A block diagram of one tilt correction servo. The solid ar-
rows indicate the flow of position information. Each box represents one
functional part of the servo hardware.
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every cycle. From these the image position is calculated and the appropriate

signals are sent to the adaptive mirrors to re-centre the image.

The adaptive mirrors are normal flat mirrors mounted on three piezo-
electric actuators arranged at the vertices of an equilateral triangle (see figure
(3.9)). Moving the bottom two actuators in opposition tilts the mirror about a
vertical axis, while moving these two actuators in parallel and in opposition to
the top actuator results in a tilt about an horizontal axis. Calculations for the
three piezo control voltages are performed electronically using two voltages; one

representing vertical tilt and the other horizontal tilt.

3.1 The Optical Pyramids

The optical pyramids split the image of the star into four parts by focusing the
stellar image onto two separate knife edges, one vertical and one horizontal. Each
knife edge is created by a prism made from two optically contacted rhombs and
constructed from BK-T7 glass. Two lenses are also required to image the vertical
edge of the detector onto the horizontal edge. The prisms, lenses and mounts
were originally designed by Dr. W.J. Tango! and constructed for the prototype
instrument (Davis and Tango (a), 1985). Refer to figure (3.2) for a drawing of
the detector optics.

The entire optical pyramid is mounted on an x/y or vertical/horizontal
platform which can be remotely motor driven. The motor drives have been in-
stalled on the two detectors used in the tilt servos for the north and south beams
while the third ‘reference’ detector is in principle fixed and defines the optical
axis of SUSI. An aluminium box houses the prism containing the horizontal edge
and is screwed directly onto the x/y platform. This box has three small holes
in the front, two for the beams issuing from the vertical edge and a central one
for use during detector alignment. The back of the box has four output holes in
a 70mm square. It is the light issuing from these holes that represents the four

quadrants of the detector.

The prism containing the vertical edge is held in a kinematic mount which
in turn sits on a block clamped to the x/y platform. In this way the vertical
edge can be correctly aligned with the horizontal edge. The two small lenses that

image the vertical edge onto the horizontal edge are held in bracket between the

!The pyramid design was based on the pyramids used in an interferometer which was
originally built by R Q Twiss at the National Physics Laboratory (UK) and later rebuilt at
the Italian outstation of the Royal Observatory, Edinburgh
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two prisms. Figure (3.3) contains some pictures of a completed optical pyramid.

There are a number of reasons for choosing a photomultiplier based quad-
rant detector. First of all, as little light is available, the system has to have the
highest quantum efficiency possible. This means photon counting array detec-
tors, such as the PAPA camera (Papaliolios and Mertz, 1982), would not be
suitable. In a quadrant detector the light is split into only four pixels, thus
ensuring the maximum illumination, and therefore signal to noise ratio, in each
pixel. Secondly, systems like optical pyramids use knife edges ensuring a minimal
dead zone on the detectors, which can be a severe restriction to other quadrant
cell systems (Tyson, 1991). Furthermore, the system must be fast, due to the
very short (1ms) cycle time. This rules out CCD based systems due to their
comparatively long readout time. Silicon avalanche photodiodes can now achieve
high quantum efficiency in the red (Nightingale, 1991), so they would be good
candidates for use on the red light optical table.

The thesis by Buscher (1988) contains an excellent discussion of these
problems. In particular he shows in Chapter 5 that a quadrant cell detector is
the optimal linear estimate for image position given a noisy input signal. He goes
on to show, via a number of numerical simulations, that the knife edge criterion
used by the quadrant detector performs as well as the centroid criterion which
equates the centre with the centre of gravity of the image. Atmospheric noise,
that is, the remaining Zernike coefficients of the wavefront after tilt has been
corrected, is also discussed and tested by numerical simulation and is shown to
contribute no more than 30% to the error of beam tilt measurement. As the
analysis in section (2.3.3) shows, this error is never large and we may therefore

neglect this effect.

3.1.1 Initial Optical Alignment of the Quadrant Detec-

tors

The alignment procedure of the optical pyramids must ensure:

e The image is properly focussed onto both knife edges. If the image is not

correctly focussed the detector sensitivity will be reduced.

e The optical axes are normal to the prism surfaces. Since the knife edges
are within glass, dispersion will result in the image being spread across

the knife edge if the light is not incident normally. This will also reduce
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Photo of detector in light

Photo of detector in the dark

Figure 3.3: An assembled optical pyramid shown with full lighting (top)
and in operation (bottom). The quadrant detectors or ‘pyramid’ prisms
break the star image up into four sections. The image is centred when
the amount of light in each quadrant is equal.
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detector sensitivity.

e The horizontal edge is parallel to the optical table surface and at the
correct height.

e The vertical edge is normal to the horizontal edge.

A detailed description of the alignment procedure can be found in Appendix A.
The optical alignment of the detectors was performed with the detectors on the
optical table in the positions in which they would eventually be clamped and
used in the interferometer. As the detector response is wavelength dependent,
the alignment was performed using blue light from the reference laser. Once the
alignment procedure was completed with blue light the detectors were tested
using a white light source. No measurable difference could be found between

the two light sources.

3.1.2 Alignment of the Optical Axes

The quadrant detector alignment procedure outlined above need only be per-
formed once, while the alignment of the optical axes of the interferometer must
be checked prior to, and during, each observational run. Unless the two beams of
the interferometer are correctly aligned it will not be possible to observe fringes.
This procedure is not essential to the tilt servo described in this thesis but as
the quadrant detectors play an important role it will be briefly described here.
Refer to the optical layout of SUSI presented in figure (1.1). The blue laser is

once again used as a reference light source.

The axes alignment procedure begins by ensuring that both beams are
parallel to the rails of the OPLC and at the correct height to enter the OPLC
fine carriage. If this is not the case the entry holes of the carriage can cause
vignetting, which will vary as the carriage moves along the rails. This part of
the alignment is tested by inserting a target into the beam at various locations
along the OPLC track and is corrected by adjusting the mirrors on the optical
table side of the OPLC.

In the second stage the alignment of the two beams with the BRT is
checked. The initial adjustment of the mirrors in the vacuum system, performed
when they were installed, ensures that if the beams are correctly entering the
BRT they will reach all the way out to the siderostats. Once again targets are
used, one at the output to the BRT and another at the beginning of the vacuum
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system. The beams are adjusted by moving the mirrors on the BRT side of the
OPLC until they are centred on both targets.

Once the two beams are parallel to the OPLC rails, passing through
the carriage and BRT without vignetting and entering the vacuum system a
large mirror is placed in front of the BRT to autocollimate both beams. The
OPLC carriage is moved so that high contrast tilt fringes can be observed at
the beamsplitter and the mirrors nearest the BRT adjusted to minimise these
fringes. This ensures that the images formed are optically superimposed on the
optical table. An iterative process is sometimes required to satisty all alignment

criteria as this adjustment can disturb the previous two stages of alignment.

These three procedures ensure that the two beams are correctly aligned
with the OPLC, the BRT and each other. At this point the position of the refer-
ence quadrant detector is checked. After attenuating the laser light the quadrant
detectors are switched on and the position of the two beams on the reference
detector is monitored. Occasionally the reference detector needs to be moved
slightly to ensure both beams are centred on the optical pyramid. The north and
south detectors are also aligned with the laser light. This completes the setup
alignment and, after removing the autocollimating mirror, the interferometer is

ready for a night’s run.

It is also necessary to check beam alignment periodically throughout the
night. This is done by checking each of the two beams against the reference
detector. With the tilt servo locked onto a star, the position of each beam is
measured on the reference detector, one at a time. If a beam is not correctly
centred the motor drives on the optical table are used to move the appropriate
optical pyramid to re-centre it. Since the tilt servo locks the stellar image onto
the optical pyramid, moving the detector amounts to moving the entire beam.

In this way any drift in the system can be corrected.

3.1.3 Response of Detectors

When viewed from the direction of the incoming beam the quadrants are labelled

as shown in figure (3.4). We therefore define the normalised image position as

(NA -I-NB) — (Nc -I-ND)
(N4 4+ N+ Ne + Np)
(NA -I-ND) — (NB -I-NC)

b = VAT N NG + D) (3.1)

O
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Figure 3.4: Definition of quadrant detector channels as viewed from the
front of the quadrant detector.

where N4 p are the weighted number of photon events detected in the four
quadrants (refer to section 3.3.1 for an explanation of weighting factors) during
the last sample period and 6, and 6, are the normalised horizontal and vertical
image positions. If there are no photons detected the position is defined to be

zero in both axes.

As this detector system has identical geometry in both the vertical and
horizontal axes we shall only consider the response of the vertical axis. The
results for the horizontal follow in an identical manner. After passing through
a defining aperture of radius R the beam is focussed onto the optical pyramid
prisms. Treating the star as a point source, so Fraunhofer diffraction conditions
will apply, results in an Airy disc on the prism surface. Following Born and Wolf
(1987), section 8.5.2, we write the intensity distribution of this Airy disc as

I(v) = Iy (%(U))Q 32)
where . (Wijljn)Q (3.3)
and LB (3.4)

S

In this expression Ji(x) is the first order Bessel function, k is the wavenumber
(A/2x), f is the lens focal length, r is the distance from the optical axis and A is
the light amplitude in the lens plane. If there is no tilt in the beam this pattern
should be centred on the quadrant detector resulting in an output of zero. If
the beam is tilted at an angle 6 the centre of the Airy disc will be displaced by

an amount ff which, after substituting for r in equation (3.4), results in
v=FkRo. (3.5)

Note that the position of the Airy disc is independent of the focal length of

the lens. A long focal length was therefore used to minimise aberrations due
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to refractive surfaces of high curvature. These lenses were optimised for use at
approximately 440nm?. Taking the Airy disc centre as (xq,yo) in the plane of
the detector, in which the origin (0,0) is the detector centre (ie, v = yo), the

total intensity above the x-axis for a given value of yo will be

00 00 4J2 \/I2—|—(’y—y0)2)
Itotal('yo) 2/_ d$/0 dyly . ( . (36)

2?4 (y — yo)?

We now re-write the detector output 6, defined in equation (3.1) as

0 (9) _ ]total(kae) - ]total(o)
’ Itotal(()) ’

(3.7)

which is the theoretical detector response 8, for a given wavefront tilt §. Note
that the intensity of light in the beam cancels and the result depends only on the
wavelength of the light, the aperture radius and wavefront tilt. Unfortunately
the integral defined in equation (3.6) cannot be easily performed analytically;
however, for specific cases of aperture size, wavelength and beam tilt, a numerical
calculation can produce the desired result. Such a numerical calculation, based
on the Romberg Integration method (Palmer et al, 1990)®, was performed for the
reference laser wavelength of 442nm and for a range of aperture sizes available

on SUSI. These calculations are displayed in figure (3.5).

Figure (3.5) clearly demonstrates that when the position of the star image
is close to the origin the response of the detector is very linear. The linearity of
the function decreases as the image moves further away from the origin. When
the servo is working one can assume the image must remain close to the origin,

thus all calculations involving detected positions will be of the form
o, = K40, (3.8)

where ¢, is the beam tilt in arcseconds and Kj is a calibration constant. Under

these conditions, the integrand in equation (3.6) can be expanded and solved to
give (Tyler and Fried, 1982)

3T A
2R

For example, with an aperture radius of 17.5mm on the optical table and a

K, (3.9)

wavelength of 442nm the resulting calibration factor is Ky = 1.53 arcsec. This
equation yields the slope of the functions plotted in figure (3.5) near the origin.

Due to photon noise and inevitable servo errors, the detectors will not always be

?R.J. Thompson and W.J. Tango, unpublished internal report.
3Since this integral is two dimensional, these calculations took very long times to complete.

Several months of computer time was used in producing these results.
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Aperture Radius | Cutoff Point Ky

10.0 mm 1.85 arcsec | 2.90 & 0.02 arcsec
12.5 mm 1.60 arcsec | 2.37 4 0.02 arcsec
15.0 mm 1.40 arcsec | 2.00 & 0.02 arcsec
17.5 mm 1.20 arcsec | 1.71 4 0.02 arcsec
20.0 mm 1.00 arcsec | 1.48 4 0.02 arcsec
Average 2.1 £ 0.4 arcsec

Table 3.1: Using the detector response curves in figure (3.5) calibration
constants are tabulated above for a range of aperture sizes at a wavelength
of 442nm. These numbers are the result of a linear regression on the
central, linear, part of the detector response curves. The average value
shows that the calibration constant Kz should be of order 2. Note that
these values apply to the detectors on the optical table. Due to the BRT,
to get an equivalent value for measurements on the sky one must divide
these numbers by three.

operating very close to the origin at all times. An estimate more appropriate for
experimental situations can be found by performing a regression on the ‘linear’
part of the detector response curves. The results of such fits are shown in table
(3.1). The servo analysis presented in Chapter (4) will show that the final fitted

value for K, is very close to this predicted value.

In order to test the detector response, the same optical configuration as
that used to align the detectors (see Appendix A) was used. With neutral density
filters in place to reduce the light intensity so that the photomultipliers could
be switched on, the image position as defined in equation (3.1) was monitored
while a low level sine wave was sent to the tilt mirrors. The frequency of the
sine wave was 1 Hz and the amplitude was set so the signal stayed well within
the range of the detectors. A sample of the results is shown in figure (3.6) along
with a least squares fit of the data. The RMS residual after fitting was 0.05
which corresponds to 0.17. This same experiment was performed on all detectors
and axes with similar results. These fitted sine waves allow the estimation of
the calibration constants if the mirrors have been calibrated (see section 3.2.2).
The results are shown in table (3.2) and display an average detector calibration
constant of 2.54+0.2 in good agreement with the theoretical prediction of equation
(3.9). While a precise calibration of the detectors is not required for the tilt servo
to work or for meaningful results to be obtained, this rough calibration will be

of benefit for the noise analysis to follow and for the servo analysis in Chapter 4.
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Figure 3.5: The theoretical response of one axis of a ‘perfect’ quadrant
detector for aperture radii 10, 12.5 15, 17.5 and 20mm, all available sizes
on SUSI. Inside the centre of the range the response is very close to linear.
It is this linear range near the origin that is used for the image position
servo. It is also possible to see the effects of the inner rings of the Airy
disc, as they cross the defining edge. The data were calculated using
equation (3.7) by numerical methods.
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Figure 3.6: Measured response of one axis of a quadrant detector given
a 1Hz sine wave input. The smooth line is a least squares fit of a sine
wave to the data. It is clear the response of the detector is very close
to linear, as predicted. The noise represents an angular variation of less
than 0.1”7. The large spikes in the plot above were due to software timing
errors which have since been corrected.

This rough calibration also confirms that the optical alignment of the detectors

is satisfactory since any alignment error would show up as a reduction in detector

sensitivity.

3.1.4 Detector Signal to Noise

The error associated with angular position measurements using quadrant detec-

tors, as well as for other optical detectors used for adaptive optics, has been

well studied ( Tyler and Fried (1982), Dyson (1975) and Walkup and Good-

man (1973)).

The expression for the error term associated with the quadrant
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Detector Axis

Ky

North Vertical

2.30 £ 0.02 arcsec

North Horizontal

2.25 4+ 0.02 arcsec

South Vertical

2.56 & 0.02 arcsec

South Horizontal

2.68 £ 0.02 arcsec

49

Average 254+0.2

Table 3.2: After sending a sine wave of known amplitude to the mirrors
the resulting detector output using a 35mm diameter aperture was fitted
with a sine wave in the least squares sense. The amplitude of the fitted
sine wave could then be compared to the mirror movement amplitude to
produce the detector calibration constants listed above. Comparison with
equation (3.9) indicates that these results are in good agreement with the
theoretical predictions.

detector, as derived by Tyler and Fried (1982), is

9\ 2 217 (2
SOOI o0
where n is the angular subtense of the object divided by the diffraction angle
(A/ D) of the optical system, D is the aperture diameter and SNR is the signal
to noise ratio of the four detectors summed to act as a single detector. In the
system under discussion here the star is unresolved and we therefore say n < 1.
The signal to noise ratio of the four detectors summed is primarily dependent

upon the Poisson statistics of the photon events so we can write the error in

angular position measurement of the quadrant detectors as

2 (%)
VN

where N is the total number of counts received in all four quadrants. Using

(3.11)

0'¢=

highly attenuated laser light this expression was tested with the same system
used to align the detectors (see Appendix A). By varying the aperture size, neu-
tral density filters and sampling rates, several two second samples were taken
of detector response for a range of light intensities. The resulting data were
Fourier transformed, the low spatial frequencies attenuated, and inverse trans-
formed back to the spatial domain. These operations were performed in order
to filter out any underlying motion of the beam due to internal thermal and
turbulent effects. Once filtered, the variance of each sample was calculated and

compared to a prediction using equation (3.11) (See figure (3.7)). This plot
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Figure 3.7: The solid line in the plot above represents the theoretical
variance of detected position in a quadrant detector as stated in equation
(3.11). The points plotted are measured values with the error bars repre-
senting the uncertainty in detector calibration. Correspondence is good,
giving us confidence in the analytical expression.
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demonstrates that equation (3.11) can be used to estimate the error in angular

position detection of the quadrant detectors.

3.2 The Adaptive Mirrors

To correct wavefront tilt in an incoming collimated beam adaptive mirrors are
required which can be set to any angular position under computer control. As
with the pyramids, the mirrors were originally made for the prototype stellar
interferometer. The adaptive mirror system consists of a normal flat mirror
mounted on three piezo-electric actuators arranged at the vertices of an equi-
lateral triangle. By sending the correct signals to these piezo-electric actuators
the mirror can be tilted in any direction desired. A plate with three vertical ad-
justable screws holds the entire mirror assembly so the central mirror position
can be correctly aligned with the rest of the optical system. Small ball bearings
are glued to the end of the actuators which in turn are glued to the back of the

mirror. A photograph of a completed adaptive mirror is given in figure (3.8).

The relationship between mirror position and the position of the star in
the sky is given by
2
QSkY - eaverage = g X emirror (312)

where 0, is the position of the star in one axis on the sky, O,yerage is the average
position of the star in that axis (including sidereal rate tracking) and Omirror is
the position of the mirror. The factor of 2 arises because the reflected beam will
be shifted by twice the angle of the mirror movement, while the factor of % is due
to the BRT. The vertical and horizontal axes of the mirrors will correspond with
the altitude and azimuth axes of the siderostats only during transit. At other
times they will rotate slowly with respect to these coordinates as the star moves
across the sky. Since the tilt servo is used to supply star guidance information
for the siderostats (refer to section 4.3) rotation matrices will be calculated by

a separate programme to map the tilt servo axes to those of the siderostats.

If we assume that under bad seeing conditions the seeing disc of a star is
27, then by equation (3.12) these mirrors must have a range of at least 3”. Since
a seeing disc is a statistical measure of image motion, a larger range is really
required. Furthermore, the tilt servo needs to cope with small guiding errors due
to the siderostats. The mirrors used in this system use piezo-electric actuators
to move mirrors with a range of approximately +107. This range has been found
to be sufficient for use in SUSI. The frequency response bandwidth of the mirror

movement is largely determined by the high-voltage amplifiers required to drive
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Figure 3.8: One of the adaptive mirrors with a protective cover removed.
The three piezo-electric actuators can be seen behind the mirror flat. The
whole assembly is mounted on three vertical adjustment screws.
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Mirror

Figure 3.9: The axes used to define mirror response are defined in the
diagram above. The position of the mirror can be represented as a vertical
and horizontal tilt (V and H) or as the positions of the three actuators

(X,Y and 7).

the piezo-electrics.

3.2.1 Response of Mirrors

Figure (3.9) contains a diagram of a tilt mirror and the three actuators whose
change in length with respect to their average size are written X, Y and Z.
The vertical and horizontal tilt axes are labelled V and H respectively. The
actuators are laid out in an equilateral triangle with side length L such that all
three points X, Y and Z are equidistant from the origin. In the current system
L =~ 40mm. The equations relating the vertical and horizontal tilt with the

positions of the three actuators are

X+7Z
X
Z—-X
H =
V3
0 = X+Y+Z (3.13)
which, solving for X, Y and Z gives
X = _lv_ﬁ
3 2
2
- Iy

3
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1 3
7 = —V+-H (3.14)

“[%

These calculations, except for the multiplication by /3, are performed by the
electronics using a simple operational amplifier circuit (see Appendix B), thus
the response of the horizontal axis should be /3 different to that of the vertical
axis, given the same input voltage. This difference in response is accounted
for in the servo software. All that the servo electronics needs to supply is two

voltages, one representing vertical tilt and one horizontal tilt.

3.2.2 Mirror Calibration

This adaptive optics system is a zero seeking servo and therefore the absolute
calibration factors for the detectors and the mirrors need not accurately be
known. However, to use mirror positions to study atmospheric turbulence the
mirrors need to be calibrated. Using the mirrors to calibrate the detectors will

also help in selecting appropriate servo parameters.

Since the angles involved are so small it was decided to use the interfer-
ometer itself for these measurements by sampling tilt fringes. Not only is this
method very precise but it also means the mirrors are calibrated in situ using
exactly the same electronics and optics as will be used during an astronomical

observation.

Refer to figure (3.10) for a diagram of the optical layout of the calibration
system for the tilt mirrors. The blue reference laser beam is passed through a
spatial filter to the main beamsplitter on the optical table of the interferometer
and subsequently the two output beams are autocollimated using a mirror placed
in front of the BRT. Since the HeCd reference laser has a coherence length of
only a fraction of a metre, the OPLC carriage was moved until high visibility
tilt fringes could be seen on the CCD monitor which imaged the aperture plane.
This optical layout is the equivalent of a standard Twyman-Green interferometer
( Born and Wolf (1987) section 7.5.5). Tilt fringe images could then be sampled
using the CCD and a frame grabber attached to a computer and stored for later
processing. Although the video CCD used is not the perfect instrument for this
kind of data collection it was found that it was very linear when used within
its rather small dynamic range ( Hrynevych (1992) Chapter 4). Furthermore,
as the only part of the fringe pattern of interest here is fringe spatial frequency,

any non-linear effects introduced by the camera should not be important.

The relationship between the spatial frequency of the tilt fringes wq and
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Figure 3.10: The optical layout used to calibrate the adaptive mirrors.
The laser light, after passing through an optical spatial filter, enters the
beamsplitter and then is sent down each arm of the interferometer. The
autocollimating flat then reflects both beams back through the entire
optical system to the beamsplitter where they are recombined and imaged
onto the CCD array. The optical path length difference in the two arms
was cancelled out by adjusting the optical path length compensator. In
this way the system operates as a standard Twyman-Green interferometer
and tilt fringes were observed.

)
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the mirror position fpirror 18
)\(.()0

O = 2 (3.15)
where ) is the laser wavelength (442nm). The resulting fringe pattern sampled
by the CCD and frame grabber was modelled using the equation ( Born and
Wolf (1987) section 7.1)

I =1, + I, cos*(rwo(x cos ¢ + ysin @) + 6). (3.16)

The angle ¢ represents the rotation of the fringes, the intensities [; and I
are for the background light and fringe amplitude respectively and the ¢ term
incorporates any fringe phase offset. Sampled data was fitted to equation (3.16)
in the least squares sense. An example of sampled tilt fringes and the resulting
fit can be found in figure (3.11).

To calibrate the CCD, a series of flat fields were sampled with the same
optical setup for each beam. The resulting images were diffraction patterns
caused by the aperture. The number of CCD pixels per millimetre in the aper-
ture plane and the location of the centre of the aperture were found using the
fact that the intensity of light is at one quarter of the average intensity across
the aperture at the diffracting edge ( Born and Wolf (1987) section 8.7.3). These
data, combined with the known aperture size of 35mm, were sufficient to cali-

brate the CCD images.

The measurements of mirror position were also affected by the air mass
inside the interferometer enclosure. This was minimised by allowing the enclo-
sure to settle for a number of hours before any measurements were made and
averaging over a number of readings. As would be expected, this internal ‘seeing’
affected the measurements of the smallest angles most severely. For this reason
each run on a mirror axis was set up so that the mirror range had zero tilt at
one end of the run rather than in the centre, halving the number of small angles

in the measurements.

Two separate experiments were performed for each axis of each of the two
mirrors. Both covered the entire range of the digital to analogue converters in
the electronics which supplied the control voltages for the piezo drives. Results
of both experiments are shown for one mirror axis in figure (3.12). In one run,
referred to as the static run, the mirrors were set to a given voltage, allowed to
settle and a measurement was taken with the mirror at rest. This experiment
confirmed that the positioning of the mirrors was linear. The second experiment
tested the dynamic response of the mirrors. Each axis in turn was driven by a

1Hz sine wave with samples being taken at various phase positions. The results
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Figure 3.11: An example set of sampled tilt fringes (top) and the resulting
fit (bottom). The circular ring pattern in the sampled data is the result
of diffraction and is not modelled. The spatial frequency of these fringes
is a measure of mirror tilt and can be read straight out of the fitted data.
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Figure 3.12: The response of one axis of one of the tilt mirrors for the
static case (top) and the dynamic case (bottom). Both plots cover the
entire range of movement of the mirror. The solid line in the lower graph
represents the 1Hz signal used to drive the mirror. Some small angle posi-
tions are missing from this plot as the results of these measurements were
badly affected by turbulence inside the instrument enclosure. A fit to
these two plots results in a calibration constant of —3.84 £ 0.08 milliarc-
seconds per DAC unit for the static case and —3.2 & 0.1 milliarcseconds
per DAC unit for the dynamic case. The dynamic result has been used
throughout the rest of the calculations.
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Axis K,,

North Vertical | 9.06 & 0.27
North Horizontal | 9.39 4 0.27
South Vertical | 9.66 4 0.30
South Horizontal | 9.33 £ 0.33
Average 9.36 £ 0.30

Table 3.3: The final calibration constants used for the adaptive mirrors
are tabulated above. Given the ‘normalised’ mirror position, that is 41
represents maximum and —1 the minimum, the angular position of the
beam can be found by multiplying by the appropriate calibration constant.
To obtain the equivalent angular position on the sky these constants need
to be divided by 3 to account for the effect of the BRT.

showed that the dynamic response of the mirrors was slightly smaller than the
static response. This is to be expected given the mass of the mirror being moved
and the imperfections in the response of the high voltage amplifiers driving the
piezos. The amplifiers were being driven at close to maximum output and thus
with a sine wave input the % at the output could be expected to be very large
(Refer to section (3.3.2) for a discussion of the performance of these amplifiers).
It was decided to use the dynamic calibration for all further work as it most
closely simulates mirror operation when tracking seeing. The final calibration
constants for the mirrors are given in table (3.3). Based on this set of calibration

data it is possible to measure image position on the sky to within +0.17.

3.3 Electronics

While a great deal of electronics are required for the adaptive optics system to
function, most of the circuitry uses standard techniques and will not be discussed
in detail here. A block diagram showing the major parts of the servo electronics
is given in figure (3.13) and the corresponding circuit diagrams can be found
in Appendix B. The two areas that will be discussed below are the photon
counting circuitry and the high voltage amplifiers used for the piezo-electrics, as

both have a significant effect on the performance of the tilt servo.
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Figure 3.13: A block diagram of the electronics for the tilt servo system.
Note that only one set of detector and mirror electronics are shown. The
actual system contains three detector sets (north, south and reference)
and two mirror sets (north and south). Some units are discussed in more
detail in the text. The circuit diagrams can be found in Appendix B.
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3.3.1 Photon Counting Circuitry

The servo contains three separate quadrant detectors, each using four photon
detection systems. These systems have three main parts; a pre-amplifier, a pulse
detection circuit and a counting circuit. The counting circuitry is standard TTL

logic design and will not be discussed here.

Behind each quadrant detector there is a single water cooled unit con-
taining four matched photomultipliers, four pre-amps and four pulse detection
circuits with external power supply connections. The photomultipliers used were
E.M.I. 51mm diameter bialkali tubes type 9789A with maximum sensitivity in
the blue (~ 440 nm). These tubes were matched for gain by the manufacturer.
Resistor divider chains were used in the high tension supply and the resistor
values chosen so each tube operates nominally at the same gain. Each photo-
multiplier was then placed in the container behind a glass window which faces
the output of an optical pyramid. The pre-amplifier and pulse detectors were
then mounted inside the box immediately behind the photomultipliers, thereby
keeping to a minimum the length of cables used to transmit the low level, high
frequency signals. Water cooling was also used to reduce any problems with

extra turbulence caused by heat generated by the detectors.

Many commercial pre-amplifier/pulse detection systems exist, however,
due to the size and high cost of these systems, it was decided to develop circuitry
to perform this task within the department. The pulse detection circuit used
is a simple discriminator based upon the LM360 chip. While this is a simple
circuit, it was found the orientation and separation of the components affected
the performance of the device. A printed circuit board was designed to fit
all four circuits into the container and maximise performance by placing all
components as close together as possible while keeping to a minimum those
that are adjacent and parallel. Any unused part of the board is used as an
earth plane. Building a pre-amplifier that performed suitably proved to be
more difficult. A number of designs were tested, some based upon discrete
transistor circuits (Taylor, 1980) and others on specialised chips ( Palmer (1988)
and DuPuy (1981)), few of which performed well at all. A circuit based upon a
high speed operational amplifier (Radio Shack, 1988) was eventually chosen as
the components were commonly available, as well as an ‘off the shelf’ printed
circuit board. This pre-amplifier also had the best performance of all those
tested. The pre-amplifiers were built, tested and grouped in sets of four so
that their characteristics were roughly matched. Figure (3.14) shows a circuit

diagram of one such pre-amplifier/discriminator circuit.
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Figure 3.14: Circuit diagram for one preamplifier/discriminator circuit.
The preamplifier circuit was based on a commercially available device

(Radio Shack, 1988), while the discriminator was a modification of a

circuit by Palmer (1988).
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Once these photomultiplier /pulse detection boxes were completed an ex-
periment was performed to check the system’s linearity and that the number of
counts received was correct. A small light emitting diode (LED) was used as a
light source with an adjustable supply current. This current was set so that the
photomultiplier under test was producing the recommended maximum current
of 10pA. Neutral density filters were then inserted between the LED and the
photomultiplier so the anode current and number of pulses per millisecond could
be measured at different light levels. The number of pulses expected for a given

anode current is given by
I, xT
Npulses ~
ge X G

(3.17)

where [, is the anode current, 7' is the sample time (in this case lms), ¢. is the
charge of an electron and (& is the gain of the photomultiplier (in this case, 107).
Figure (3.15) shows the results of these tests for one of the photomultipliers and
clearly demonstrates that the expected number of counts was achieved and that
the system is linear. Other calculations performed by Dr. W. Tango* when the
photomultipliers were originally used in the prototype interferometer give the
expected quantum efficiency of the optical system. The results are plotted in
figure (3.16). From this graph it is clear that the median and weighted mean
wavelength is approximately 440nm. This wavelength will be used in all further

calculations as a representative wavelength of the system.

After these tests it was noticed that the response of the four quadrants
was not the same for all of the photon counting systems. If these differences in
response are constant with changing input intensity, they can be corrected by
using simple weighting factors in the servo software. To see if this effect was
consistent one of the servos was turned on and locked onto the laser beam using
the same optical set up as described in Appendix A. The amount of light reach-
ing the detectors was varied by introducing different amounts of neutral density
to the incoming beam. The number of counts reaching channels B, C, and D
compared with those reaching channel A were recorded and are shown in table
(3.4). The ratios of counts received remained essentially constant over the range
of light intensities tested indicating that this effect can easily be corrected. In
future, this should be fixed in the electronics, however, as the effect is constant,

suitable weighting factors have been added in the software such that
Na.p=Wa.pxNa. b, (3.18)

where N4 . p are the raw counts, W4 p are the weighting factors and N4 p

are the resulting weighted values used by the rest of the servo software. Refer to

4Unpublished internal report.
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Figure 3.15: These two plots show the results of a test run on one of the
photomultiplier/pulse detection circuits used in the servo system. The
test consisted of using a faint light source and measuring anode current
and pulse rates with a number of different neutral density filters in be-
tween the light source and the photomultiplier. The plot at the top shows
measured pulse rates against pulse rates predicted using equation (3.17)
and clearly demonstrates that the electronics achieve the desired sensi-
tivity. Due to dead time in the counter circuits (1us) the measured rate
drops below the predicted value at high count rates. The lower plot shows
measured pulse rates against the neutral density filter used, showing the
system is linear.
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Detection Efficiency

400 500 600
Wavelength (nm)

Figure 3.16: The data displayed above shows the expected quantum effi-
ciency of the optics and photomultiplier tube combination. Note that the
maximum sensitivity is near 440 nm and is of the order of 0.06.

WIn] % | & [ &=
4.3 | 2877 0.629 1.01 0.630
4.4 | 2889 0.664 1.00 0.670
5.0 | 1485 0.637 1.04 0.632
5.1 | 1026 0.589 0.98 0.595
5.3 450 0.649 1.02 0.669
5.4 378 0.602 1.00 0.619
6.0 155 0.651 0.98 0.638
6.1 94 0.644 1.03 0.618
6.3 66 0.647 1.03 0.673
6.4 16 0.615 1.00 0.615

Mean | N.A. | 0.63£0.02 | 1.01£0.02 | 0.64£0.03

Table 3.4: Count rates of the four channels of one of the photon counting
sets for varying light intensity. The column at the left shows the neutral
density filter used for each run. It is clear that the ratio of counts received
remains constant with changing intensity.
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Appendix (C) for a description of the procedure used to measure and set these

weighting factors.

A final test of the photon counting system was performed after the system
had been installed in the interferometer to check count rates received from a
number of stars of known magnitude. The amount of energy radiated from a
star reaching the outside of earth’s atmosphere in the blue is given by ( Allen

(1973) section 94)
my = —2.5log (/ BAfAd)\) 12,97 (3.19)

where mp is the blue magnitude and [ B, fyd) is in erg cm™2 s™!. As a rough
approximation, we assume we can model the blue light as a number of photons
of average wavelength 440nm, that is, if Npp is the number of photons arriving,
A is the aperture area in cm? and 7' is the sample period and A, is the average

wavelength then

1 he
Byfrdh = Nyp——. 3.20
[ Budd ~ N (3.20)
By combining equation (3.19) and equation (3.20) we obtain
TP "
N = DL2 AT x 10 (3.21)

where 57 is the quantum efficiency of the total system incorporating losses due
to the atmosphere 74, interferometer and quadrant detector losses 5y and the

quantum efficiency of the photon counting system itself np such that
nr = NANIP- (3.22)

The factor of two in equation (3.21) is present because only half the light reaching
the optical table is directed towards the detector system. A number of stars of
varying magnitudes were observed and tracked with the tilt correction servo
and the count rates logged. A sample of the data collected is given in table
(3.5). The results showed the total quantum efficiency of the northern system
to be 0.0051 £ 0.0007 and that of the southern to be 0.0067 4 0.0007. These
results are an order of magnitude below the quantum efficiencies predicted and
displayed in figure (3.16). Count rates in the visibility measurement system have
also been found to be much less than predicted, indicating that the problem
probably lies in some part of the optics other than the optical table. One of the
factors contributing to this low efficiency is the rather poor surface quality of the
adaptive mirrors. These mirrors were originally constructed for the prototype
interferometer and the coatings have degraded visibly. Another factor would be

the atmosphere, which can cause losses of up to the equivalent of a magnitude
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Star | mp nr | Spectral Type

a Eri | 0.30 | 0.005 Bs Vp
a Pav | 1.24 | 0.005 B25V
a Psa | 1.25 | 0.008 A3V

a Dor | 3.17 | 0.004 A0 IlIp Si
0 Eri | 3.54 | 0.005 A5 111

§ Cap | 4.00 | 0.008 Am
7 Phe | 6.26 | 0.019 KO 111
¢ Tuc | 6.25 | 0.019 G5 111

Table 3.5: A sample of the data used to estimate the total quantum
efficiency of the south arm of the tilt correction servo photon counting
system. The seeing during the observational run did not allow fainter
objects. The magnitudes are taken from the Bright Star Catalogue (Horrit
and Jaschek, 1982) and the quantum efficiencies were calculated using
equation (3.21). The two largest values of 0.019 in the table apply to
stars of spectral types K and G while the rest of the stars in the table
are class A or B. Using mp to calculate the efficiency does not take into
account the different spectral shapes of these stars. The photomultiplier
sensitivity is centred at 450nm with a bandwidth of 200nm. It is to be
expected that the count rates are higher for G and K class stars, as their
spectra contain more energy in this waveband than the A or B class stars.

67
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of intensity. The coating stability of the siderostat mirrors and other internal

optical surfaces may also contribute to this low figure.

We are now in a position to estimate the limiting magnitude of the system.
A night with very good seeing allows the use of the largest aperture size of 12cm
and a sample time of 50ms. In order to track the star and meet the specifications
set out in section (1.4) the detector error must be less than 0.17. By equation
(3.11) we therefore require at least 40 counts per sample. It has also been found
experimentally that counts below this figure result in unstable servo behaviour.
By equation (3.21) the system could in theory go to a magnitude of 7.0 before
failing. This is in agreement with earlier estimates ( Davis and Tango (b) (1985)
and Tango (1979)). If the reason for the low light levels measured could be
found and quantum efficiencies closer to those predicted achieved, the limiting

magnitude would become 8.5.

3.3.2 High Voltage Amplifiers for Piezos

The maximum frequency response of the tilt servo as a whole can be no greater
than that of the tilt mirrors themselves. Large voltages are required to drive
the piezo-actuators and the piezos can be considered as a capacitive load of
approximately 20nF. This means the amplifiers will start to fail at high frequen-
cies when the high amplitude voltage shifts over small time periods imply large
currents. Furthermore, several strong resonances occurred in the piezos and the
physical system which needed to be repressed in the high voltage amplifiers. In
order to test the amplifier performance a sine-wave generator was connected to
the input of one of the high voltage amplifiers and the output voltage measured
with the piezo connected to and loading the amplifier. Measurements were taken
at a number of frequencies and amplitudes in order to determine the frequency
response of the amplifier/piezo combination. The results are shown in figure
(3.17), which shows a —3dB frequency of 160 4+ 10 Hz. This frequency response
is sufficient to cover the power spectrum of any Zernike coefficient as defined
in equation (2.71) and, as will be shown in section (4.2.4), largely determines
the maximum bandwidth of the tilt servo as a whole. These measurements also
showed the amplifier/mirror combination to suffer from hysteresis. Modern piezo
control electronics now available are capable of reducing the effects of hysteresis
and should in future be incorporated into the system. The effects of hysteresis

are further discussed in section (4.2.3).
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Figure 3.17: Frequency response of the high voltage amplifiers used to
drive the piezo-electric actuators on the tilt mirrors. Each set of points
represents different output voltage amplitudes: triangles 20 volts, squares
40 volts, pentagons 200 volts and hexagons 400 volts. The solid lines are
spline fits to each data set while the dashed line shows the position of the
—3dB position of 160 £ 10 Hz.



Chapter 4

SERVO AND
PERFORMANCE ANALYSIS

Since the tilt correction system can be described as a zero seeking servo, its
behaviour is subject to linear control theory. Before the data gathered by the
system can be used, the reliability and the functional properties of the system
need to be known and understood. Furthermore, in order to adjust the feedback
parameters of the digital servo, a mathematical model of the system’s perfor-

mance must be developed. Such a linear model is described in this Chapter.

Before developing this model basic linear control theory will be outlined
in the first section, covering Laplace transforms, Transfer functions, Z trans-
forms and Negative feedback. The reader is assumed to be familiar with Fourier
transform analysis techniques, which will be used as a reference point for the

discussion of Laplace transforms.

In the second section this theory will be used to generate a linear model
for the tilt correction servo. Each component will be discussed separately and
then these individual models will be put together to form a model of the entire
system. This model will be used to find optimal feedback parameters for the

operation of the tilt correction servos.

Apart from beam stabilisation the tilt correction servo is also responsible
for providing a star guidance error signal for the siderostats in the form of an
average tilt mirror position. The tilt corrector/siderostat servo will be briefly

discussed in the third section.

With the optimised parameters in place the final section contains a per-

formance analysis of the system while tracking a star.
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4.1 Linear Control Theory

If the behaviour of a system can be described by a linear differential equation
it can be analysed using linear control theory. This technique involves con-
structing the transfer function of the system which allows its analysis in much
the same way as an optical transfer function aids in the analysis of an optical
system. These techniques are described in numerous texts, for example, those
used by the author: Barbe (1963) and Dorf (1974). The book by Tyson (1991)
also contains a summary of linear control theory as applied to adaptive optics.
Most of these books concentrate on analogue models using a method related
to Fourier transform theory called Laplace transform theory. Laplace trans-
forms map a linear differential equation to a linear algebraic expression thereby
greatly simplifying systems analysis. To analyse a digital system the equivalent
sampled transform, known as the Z transform, is required. More recent texts
such as Franklin and Powell (1980) cover the theory and uses of these methods.
Laplace transform methods and the Z transform are also included in the book

by Bracewell (1986).

The frequency-domain techniques to be outlined below are limited in their
usefulness to linear, time-invariant systems. The advantage of this approach is
its direct link to Fourier analysis and the ease of interpretation of the results.
For nonlinear, time-varying or multivariable systems a time-domain formulation
is more appropriate. This method is known as state variable analysis and is
described in the references cited above. The tilt correction servo is linear and
so state variable analysis has not been used. Furthermore, a treatment in the
frequency domain better compliments the power spectrum analysis of Chapter

2 and the frequency response measurements presented in section (4.2.4).
4.1.1 Laplace Transforms
The Laplace transform maps a function in the time domain f(¢) to a complex

function F'(s) = L(f(t)) where s is a complex variable. The one sided Laplace
transform of f(t) is defined

P(s) = L(F(1) = [~ F(t)e . (4.1)

A transform of a function exists if the integral

| 1s@lear (4.2)
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Description ft) | F(s)=L(f(1))
Constant 1 %
Heavyside’s unit function | v(t) L
Proportional t S%
Delta function 6(t) 1
Exponential at siz
Trigonometric functions Smi—at) 524_#(12
cos(at) F

Table 4.1: A sample of function/Laplace transform pairs. Standard tables
of such functional pairs can be found in many mathematical handbooks
such as Beyer et al. (1979) and linear control theory texts such as Dorf

(1974).

converges for some real, positive value of o;. In almost all cases of physical

systems this integral will converge. The inverse Laplace transform is

1 o+100
t) = —/ F(s)e® ds 4.3
1= o [ () (1.3
where o is a suitable real constant chosen such that ¢ < ¢;. An important
property of these transforms is their relationship to the Fourier transform. If
the variable s is replaced with iw where w = 27 f, the Laplace transform defined

in equation (4.1) becomes
Fliw) = / T f)e It dt = / Oy (4.4)
0 0

which, by comparison to equation (2.61), is the same as the Fourier transform of
f(t) provided f(t) =0 for t < 0. Hence, once we have the Laplace transform of
a function the Fourier transform can be found by simply replacing the variable
s with ww. This allows us to use theorems from Fourier transform theory. A
few examples of function and Laplace transform pairs are given in table (4.1).
More complete tables of this kind can be found in the references listed above

or in almost any mathematical handbook, such as Spiegel (1968) or Beyer et al.
(1979).

A number of general properties exist for Laplace transforms that make the
solution and analysis of linear differential equations quite simple. For example,
consider the transform of the first derivative of the function f():

ey = [Ty
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Description f(t) F(s)
Similarity f(at) ﬁ—|F(§)
Addition fi(t) + fo(t) | Fi(s) + Fa(s)
Shift ft—a) e " F(s)
Differentiation () sF(s)
Integration [ f(t)dt LF(s)
Reversal f(=t) F(—s)

Table 4.2: Some general properties of Laplace transforms. Many other
properties exist and are listed in the references cited in the text.

= [etar)
= [fwde) - ()

= s [ e rdt - f(0)
s L(f(1))
(4.5)

provided that f(0) = 0. The differential operator %, then, maps to a multipli-
cation by s, so that linear differential equations are mapped to linear algebraic
expressions. Many other useful properties of the Laplace transform exist, some
of which are listed in table (4.2). More complete lists of general properties can
be found in the texts cited above. Using a combination of these properties and
the function/Laplace transform pairs the analysis of linear differential equations
and the physical systems they represent reduce to the solution of a set of linear

algebraic equations.

4.1.2 Transfer Functions

If the input to a linear system is ¢(¢), whose Laplace transform is I(s), and the
output of the system is o(t), with the transform O(s), the transfer function of

the system is defined as
O(s)
T =
(s) T(s)

with all initial conditions set to zero. The transfer function of the system de-

(4.6)

scribes its dynamics but contains no information concerning its internal function.

In order for a transfer function to exist the system must be stationary, that is,
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all parameters describing the system must be constant since, if the system pa-
rameters vary with time, the Laplace transform cannot be used. The transfer
function of a system allows us to find the output of a system for any given input
by finding the Laplace transform of the input, multiplying by the transfer func-
tion and performing an inverse transform on the result. For example, consider

a low pass filter described by the differential equation

o(t) = i(t) — Td‘;—(f) (4.7)

where 7 is the time constant of the filter. These systems are also known as

damped or simple lag systems. Applying the Laplace transform to this equation

gives us
O(s) = I(s) — 7s0(s). (4.8)
The transfer function of the filter is then
_0O(s) 1
Tip(s) = 1(s) = T57s (4.9)

Once the transfer function of the system has been found it is relatively
easy to calculate its complex gain by means of impulse response analysis. If the
input to a system is an impulse, that is ¢(¢) = 6(¢), whose Laplace transform
is I(s) = 1, the Laplace transform of the output O(s) will be identical to the
transfer function 7'(s). Fourier transform theory tells us that the complex gain
of a linear system is given by the Fourier transform of the output when the input
is a delta function (Bracewell, 1986). By equation (4.4) this can be obtained by
substituting 2w for s in the transfer function. If we know the transfer function

of a system we then know that the gain of the system in decibels is
Gain(w) = 20 x log |7'(ww)|dB (4.10)

and the phase shift imposed by the system will be
y Im(T'(iw))

Phase(w) = tan Re(T(iw)) (4.11)
where w = 27 f. For example, in the case of the low pass filter, the gain in
decibels will be

Gaing(w) = —10 x log(1 + 72w2) (4.12)
and the phase will be
Phasej,(w) = — tan™'(1w). (4.13)

The cutoff frequency of the filter, defined as the frequency at which the gain is
—3dB, can be found using equation (4.12) and is

1

fosap = P (4.14)
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Figure 4.1: These plots show the results of the model of a low pass or
simple lag filter expressed in equations (4.12) and (4.13). At the ‘cutoff’
frequency of f_3qp the phase reaches a 45° lag while the gain is at —3 dB.

Figure (4.1) shows plots of these functions. Plots of this kind are generally
referred to as Bode plots. Note that at the —3 dB point the phase is lagging by
45°, which will be used as a criterion for finding the cutoff frequency of other,

more complex, systems.

To study the dynamics of a linear physical system, one need only find
its transfer function. Using equations (4.10) and (4.11) the behaviour of the
system, in terms of its effect on the amplitude and phase of any input signal, is

easily calculated.
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4.1.3 Z Transforms

While the Laplace transform and transfer function are very useful in the analysis
of analogue devices, in order to study the behaviour of digital apparatus we
need to use a Z transform defined for digital data. Before we can use this
transform it is necessary to employ a modulation model of the analogue function
i(t) using a delta function as a sampler to produce the equivalent digital series
1*(t) = tg, 1,22, - - given by

[oe]

(1) = S i(t) 8(t — kT) (4.15)

k=0

where T is the sampling time of the digital system and £ =0,1,2,---.

Given the digital signal is ¢*(¢) we then define its one-sided Z transform
to be

I(z) = Z[i*(V)](2) = g: ipz " (4.16)

where z is a complex variable and ry < |z| < Ry with ro and Ry chosen such
that the series converges. This is the digital equivalent of the Laplace transform

as it maps real data to a complex function of a complex variable.

The Z transform has properties very similar to those of the Laplace
transform. The major conceptual differences lie in the fact that the Z trans-
form forces one to think in terms of time while Laplace transforms are easier
to deal with in terms of frequency. For example, instead of considering the

differentiation with respect to time of a signal we should deal with a time shift:

Zli(t—nD))(z) = > ig_pz"
k=0

= Zlkz_(k—l—n)
k=0

= z‘”éikz_k
O
(4.17)

Note the similarity of this relationship to that set out in equation (4.5). Some
other general properties of the Z transform are listed in table (4.3).

Transfer functions are also defined as the ratio of the Z transform of the
output to that of the input. We shall use as an example the digital equivalent
of the low pass filter discussed in section (4.1.2),

T

[ Ln — T(On_l — On_g) (418)
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Description i*(t) 1(z)
Similarity i*(at) al(z)
Addition () +3(t) | Li(2) + I2(2)
Shift i (t— kT z7F(2)
Geometric Progression | o~ %i*(t) I(az)

Table 4.3: Some general properties of the Z transform.

where once again 7 is the lag time and 7' is the sample time. If I(z) is the Z
transform of the input ¢*(¢) and O(z) is the Z transform of the output o*(¢)

the equivalent expression in the complex plane is

O(z) = I(z) — % (:710(z) — 2720(2)) . (4.19)
The transfer function is then
1
Tipe(s) = 26 _ . (1.20)

1(2) 1+ % (271 —272)

To make use of the Z transform transfer function and construct models
of hybrid systems, such as the tilt correction servo, we need to map it to its
equivalent Laplace transform. This can be achieved by using the modulation

model. Combining equations (4.15) and (4.1) it is easy to show that

L(i(t)) = Z[i*(t)] (e™) . (4.21)

So, in the case of the low pass filter, the equivalent Laplace transfer function is

Tip(s) = Tipr (GSt)

1
14+ z (e=sT — e—QST)‘
1 1
~ [T 7s when |s] << T

(4.22)
which is identical to the analogue expression in equation (4.9). With these tools

we can analyse the digital and analogue components of a system separately and

then combine them into one single linear model of the entire device.

4.1.4 Negative Feedback Models

For systems such as the tilt correction servo, it is normal to perform the analysis

using a negative feedback model. Negative feedback means that the output of a
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H(s)

Figure 4.2: The standard negative feedback loop. Note that all signals are
written as the Laplace transform of the signal and all devices are written
as the transfer function of the device. In this case R(s) is the input signal,
C(s) is the output signal, G(s) is the gain transfer function and H(s) is
the feedback transfer function. Almost all linear control systems that
involve feedback can be analysed using a diagram similar to this one.

system is subtracted from the input to create an error signal. Positive feedback

systems, where the output is looped back around and added to the input, also

exist but are, on the whole, not stable. Negative feedback systems are normally

drawn as shown in figure (4.2) and the analysis is performed in the complex

Laplace transform plane.

If the transfer functions of the gain, G(s), and feedback, H(s), are known,

the performance of the entire system can be found. If B(s) is the transform of

the feedback signal

C(s) = G(s)E(s)

The transfer function of the system is then

C(s) G(s)

b= R T TG0 Hs)

(4.23)

(4.24)

(4.25)

(4.26)
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Once the transfer function for the entire system is known, the complex gain
can be found and analysis can continue using equations (4.10) and (4.11). The
transfer function can also be used to investigate servo stability by looking for
its poles. If a pole lies on the left hand half of the s plane! the system is stable,
if it lies on the right hand side the system is either neutral or unstable. More
analysis tools using transfer functions are described in Dorf (1974) and other

linear control texts.

To illustrate negative feedback we once again turn to the low pass filter.

This filter can be modelled several ways, the most obvious being

G(s) = 1
H(s) = 7s
(4.27)

where the feedback device performs a differentiation and the gain part of the
circuit does nothing. Substituting these functions into equation (4.26) yields an
expression identical to equation (4.9). Another way of expressing the low pass

filter in terms of a negative feedback loop is setting

(4.28)

In this case the feedback system does nothing, while the gain part performs an
integration. This illustrates a general property of negative feedback systems,
that is, differentiation in the feedback loop is equivalent to an integration in the
gain part of the circuit. In Laplace transform space this translates to multipli-
cation in the feedback loop being the same as a division in the gain and wvice

VETrSsa.

4.2 Model of the Control System

With the mathematical tools of Laplace transforms, Z transform and negative
feedback, we are now in a position to construct a linear model of the tilt cor-
rection servo. In order to build this model we first draw a diagram, similar to
figure (4.2), that represents the adaptive optics system. Given this diagram-

matic representation we can then proceed to build linear models of each of the

1That is, the imaginary coefficient is negative.
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G(s)
I I
E(s) Detector Computer 0(s)
R(s) e S Km—— C(s)
D(s) F(s)
B(s) Mirror Amplifier

M(s) A(s)

| J
H(s)

Figure 4.3: The tilt correction servo analysed as a negative feedback loop.
The tilt of the incoming beam is R(s), the corrected output beam going
on to the rest of the optical table is E(s) while the output of the computer
system, which represents a measurement of wavefront tilt, is C'(s). The
‘subtraction’ is performed by the tilt mirror itself. The final multiplication
of the computer output by the calibration constant K,,, ensures that the
output of the system is in the same units as the input.

components of the system by constructing the various transfer functions of the
individual components. Combining these transfer functions we then obtain the
transfer function of the entire system, from which useful predictions can be

made.

A diagram of the tilt correction servo viewed as a negative feedback sys-
tem is given in figure (4.3). The error signal E(s) represents the resulting angle
between the beam and the optical axis of the interferometer. This is measured
by the quadrant detectors, whose transfer function is D(s), and processed by
the control computer with the transfer function F(s). The gain component of
the feedback loop is therefore

G(s) = D(s)F(s). (4.29)

The output of the control computer, 0*(t) is a number between —1 and +1
and represents a normalised measurement of the tilt of the incoming beam. If
this number is multiplied by the mirror calibration constant K, discussed in
section (3.2.2) the results can be recorded in the correct units and stored for

later processing and analysis.

This normalised beam tilt measurement is processed by the high voltage
amplifier A(s) and subtracted from the optical beam by the tilt mirror M(s).
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The feedback component of the system is therefore

H(s) = A(s)M(s). (4.30)

There are two transfer functions of primary interest. The first transfer
function describes the ability of the mirror C'(s) to track the real tilt of the beam
R(s) defined

Tirack(s) = (4.31)

We shall use this transfer function to study how well the system actually removes
tilt. The second transfer function of interest is

C(s)
R(S)

Tmeasure(s) = (432)

which describes the ability of the system to measure the incoming beam tilt.
Using an analysis similar to that used to produce equation (4.26) it can be

shown that these transfer functions are

—G(s)H(5) o
Tovack(s) = TG (4.33)

and

K, G(s)
14+ G(s)H(s)
Equations (4.33) and (4.34) will enable the determination of the usable servo

bandwidth for tracking and measurement of beam tilt.

Tineasure(s) (4.34)

The transfer function of the control computer can be directly calculated,
while those of the high voltage amplifier, detectors and mirrors need to be mod-
elled and fitted to experimental data. Once these empirical parameters and
transfer functions are known the complex gain of the adaptive optics system can

be found and its performance analysed.

4.2.1 Detector Model

The quadrant detectors measure the beam tilt 6, ,(¢) and produce a normalised
output variable ¢, ;(t) which can be read by the control computer. Once again,
as the vertical and horizontal systems are identical, we will drop the v and h
subscripts. The equation representing the response of the detectors was derived
in section (3.1.3) as ¢(t) = K40(t), so the transfer function of the detector system

can be written as

(4.35)
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This expression is correct only if the angular error of the beam is small. If
this is not the case the detectors become extremely non-linear and will no longer
be stationary, making linear analysis impossible. During operation servo errors
of this kind should only result from large amplitude high frequency changes in
beam tilt. As the theoretical analysis performed in section (2.3.2) demonstrates,
the high frequency component of the tilt power spectrum is small, so these errors
should not be significant. It is reasonable to suppose, however, that the high
frequency behaviour predicted by this linear model will not exactly match that

produced by the real system.

4.2.2 Computer System Model

The sole component of the system that can easily be adjusted is the software
running in the control computer. The programme receives a modulated and
sampled signal ¢*(¢) as input representing the normalised beam tilt ¢(¢) which

can be written, using equation (4.15), as
o™ (1) =D ¢(t)s(t — kT) (4.36)
k=0

where T' is the sample time of 1 ms. This series of samples, which we assume to
have the Z transform ®(z), must be processed in some manner by the computer
and sent out as the output signal o*(¢) with the Z transform O(z). The most
common, and general, choice for a first order processing algorithm is what is
known as a proportional, integrating and differentiating controller (PID), that
is, one whose output depends on the input signal, its integral over time and its
rate of change. The proportional term is the gain of the system, the integral
term is responsible for correction of long term drift and the differential term
represents damping. Since the star guidance servo to be discussed in section
(4.3) corrects for drift a controller algorithm was chosen that only contains
the proportional and damping components. Furthermore, as shown in section
(3.3.1), larger sample times than 1ms will be required for the fainter objects so
a running mean over a variable number of samples was added to the control
equation. The algorithm used in the control computer, using C'; as the constant
of proportionality, 'y as the damping constant and T; as the time over which

the running mean is calculated is

SVARCA
O — Ok—1 = E gbk_]‘ — CQ(Ok_l — Ok_g) . (437)

Ty

Change in output Damping term

Proportionalterm
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This equation was implemented on the control computer in the C programming
language purely using integer arithmetic. Even without floating point arithmetic
and a relatively fast processor, many problems were encountered in achieving
the necessary speed for a 1ms minimum sample time. This was overcome by a
combination of assembly code? and the distribution of less time critical calcula-
tions over several sample cycles. For example, since the total light intensity will
only change slowly, the division by the total counts in equation (3.1) need not

be performed every cycle.

The Z transform of equation (4.37) is

Ta/T
O(z) — 27'0(z) = C%f z_: z_jE(z) — Cqo(270(2) — 2720(2)) (4.38)

which means the transfer function must be

O(z) CTl—f E]'Ti/lT z7d

E(z) 1—(Ch—1)zt = Cpz?’

F(z) = (4.39)

The equivalent analogue form for this expression is found by invoking the mod-

T resulting in

ulation model and replacing z by e~
G s~ Ta/ T —jsT

kg —sTy __ Ty J=1
F(s)=F(e") = 1—(Cy— 1)e—T — Cre=25T"

(4.40)

As this part of the servo is completely implemented in software, the ability
of this transfer function to predict the behaviour of the control system could
be checked. A test programme was written including the same code used by
the control computer, to generate sampled sine waves of varying amplitudes and
frequencies, feed them through the control algorithm and record the results. The
gain and phase shift of the control computer could then be measured. The results
of a number of these tests are shown in figure (4.4) and show that equation (4.40)
correctly predicts the response of the algorithm expressed in equation (4.37).
Once again the predicted behaviour is significantly different to the measured
behaviour at high frequencies only, mostly due to the Nyquist limit of the system
being approached. As this transfer function only starts to fail at frequencies
much larger than those for which the servo is expected to operate, it can be

included in our system model without change.

ZAssembly code modifications included re-writing the multiplication, division and in-
put/output routines of the C complier used which, while very general, were not optimised

for speed.
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Figure 4.4: The theoretical (dotted lines) and the measured (solid lines)
response of the control computer algorithm. These plots were generated
by substituting equation (4.40) into equations (4.10) and (4.11). The abil-
ity of the transfer function to predict the response of the control system
is clear, except at high frequencies, where the sample time of the system
starts to play a large role in determining its behaviour, and at very low
frequencies, where the theoretical gain implies outputs larger than can be
accommodated by an integer variable in the computer.
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4.2.3 High Voltage Amplifier and Tilt Mirror Model

The behaviour of the combination of the high voltage amplifier and the tilt
mirrors is complex and difficult to measure. The measurements performed on

the amplifiers in section (3.3.2) suggest the simple low pass filter of the form

K,

H =
(S) 14+ 748

(4.41)

as a good starting point for a model of this part of the system. The mirror cali-
bration constant K, is added so the normalised output of the control computer
is correctly shifted to arcseconds and the lag time 74 will need to be found by

fitting the response of the system to measurements.

Attempts were made to measure the response of the amplifier/mirror
combination by sending sine waves of various frequencies to the amplifier input
and monitoring the response with a quadrant detector. Unfortunately, as the
linear range of the detectors is much smaller than that of the mirrors, and largely
within the range of the random angular errors generated by the internal thermal
noise of the enclosure, these measurements only represent the low amplitude
mirror response and are very noisy. An example of the results is shown in figure
(4.5) along with the ‘best fit’ low pass filter model®. While the shape of this
curve shows that a low pass filter is indeed a good starting point for a model, it

is also clear that the mirror’s behaviour is more complex.

Texts that describe the modelling of piezo controllers, such as Tyson
(1991), state that a damped harmonic oscillator is the most appropriate model,
but this resulted in fits no better than the low pass filter. Many other forms of
transfer function were tried, including quadratic lag and complex polynomials up
to order five, with no better results. As the piezos used in the tilt mirrors were
purchased for the prototype instrument some years ago, before the appearance
of specialised control electronics for driving them, they suffer from hysteresis.
Furthermore, as figure (4.5) demonstrates, the high frequency response is greater
than is predicted by a simple lag system. In an attempt to model this, a second
differential term was added to the equation describing a low pass filter. The

resulting form of the differential equation representing the combination of the

3The device used to make these, and all other similar measurements throughout this the-
sis, was a Hewlett Packard 3562A Dynamic Signal Analyser which could directly measure
histograms, frequency responses, power spectra and so on. The data were then transferred to

a computer using the GPIB data bus.
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Figure 4.5: The measured response of the tilt mirror/high voltage ampli-
fier combination. The best fit of the low pass filter response is also shown
as a dashed line. Phase (the bottom plot) fits well, but the gain pre-
dicted by a low pass filter drops below that measured at high frequencies.
Clearly, while a low pass filter model is a good first approximation to the
data, it does not successfully describe the performance of the system.
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amplifier and mirror is

db(t do(t
b(t) = Knolt) —7 —d(t) (M ‘;(t) (4.42)
Proportional W Correction
LowPassFilter
with the transfer function
K, (1
H(s) = M (4.43)

1+ 74s

This transfer function with its extra time constant 73y may seem rather ad hoc,
but it does produce better fits to the experimental data set than any of the other
functions tried, some of which have many more free parameters than the two
contained in this expression. One way of interpreting this correction factor is to
assume there is a resonance in the mirror system with a frequency greater than
a few hundred hertz. As the system contains three piezo electric actuators it is
very stiff so a high frequency resonance is to be expected. The effect of such a
resonant peak at low frequencies would be an increase in gain as the frequency
increases towards this resonance. The simple linear correction term can be seen
as a model of the tail end of this resonant peak. As no data is available for very

high frequencies a more detailed resonant model is inappropriate.

4.2.4 Frequency Response Measurements

By combining equations (4.35), (4.40), (4.29) and (4.43) with either (4.33) or
(4.34) we can derive the theoretical servo response for tracking or measuring
beam tilt. However, there are still three parameters not known to great precision.
Two of these are the time constants in the feedback circuit, 74 and 7a; and the
third is the detector calibration constant K; which, while estimated at 1 Hz in
section (3.1.3), is not accurately known. A number of adjustments have been
made to the optics, including the quadrant detectors, since the first estimate
was obtained, so it may only be considered a good first approximation to the

required value.

These free parameters can be found by measuring the complex gain of
the entire tilt correction servo for a range of values of the servo parameters C,
Cy and T and performing a least squares fit of the linear model. To be able to
measure the frequency and phase response of the servo it is necessary to be able
to introduce tilt of known amplitude and phase into the beam and compare this
with the output signal ¢(¢) of the system. The initial approach used one mirror

to introduce tilt and a second mirror to servo it out as shown diagrammatically
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R(s) Hs) —5 ) e (e

Figure 4.6: Linear feedback model of first calibration system. The first
amplifier/mirror system H(s) is used to introduce known amounts of tilt
into the beam, while a second mirror system is used to correct it. This
results in the response of the mirror system being included twice in the
measurement.

in figure (4.6). Using the methods outlined above it can be shown that the

transfer function of this calibration setup is

G(s)H(s)

) S TG

(4.44)

where, as would be expected, the transfer function of the mirror/amplifier system
is included twice. Note that, apart from a phase change of 180 degrees, this
expression is identical to equation (4.33), the transfer function for the tracking
ability of the servo. In this way we can measure the real performance of the tilt
servo. While this configuration worked well on the test bench in the laboratory,
it was not suitable for use in the instrument itself where the two mirrors are
placed 70m apart at either end of the OPLC. In this case, instead of using a
second mirror to introduce the test signals, a flat was used to autocollimate the
beam and the signals were injected directly into the feedback path as shown in

figure (4.7). The transfer function of this calibration setup is

—G(s)H(s)

Tear, (5) = 1+ G(s)H(s)

(4.45)

which is identical to equation (4.33). Other advantages of performing the ex-
periments in this manner are the ease in which these signals can be introduced
electronically into any of the four independent servos and the fact that no extra
optics or electronics are required. Probably the most important advantage of

this measurement technique is that it can be used while tracking a star.

Using the laser and spatial filter once again as an artificial star many fre-

quency response measurements were carried out on the tilt servo for a wide range
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EG) o) C(s)

B g g R(s)

Figure 4.7: Linear feedback model of final calibration system. While this
system has almost identical dynamics of the system shown in figure (4.6)
it requires no extra optics and can be used in situ in the interferometer
itself.

of servo parameters. The lowest value of C'; was the smallest possible while still
allowing the servo to function and the highest C'y value used was the largest value
possible without allowing the system to oscillate. These experiments resulted
in more than 60 000 data points. Although the air inside the optical enclosure
was allowed to settle for a number of hours before the experiment commenced,
residual air turbulence remained, causing bad signal to noise ratios in the low
frequency parts of the measurements. For this reason non-repeatable peaks in

these data were smoothed out.

The final step in producing the servo model is to perform a least squares
fit of the unknown parameters K, 74 and 7p;. Many alternatives for performing
this fit are available, each giving a different weighting on the data. For example,
one may perform the fit in the complex plane, fit magnitude or phase only, or
fit magnitude in decibels. The nature of the equipment used in data collection
was such that frequency was scanned linearly, which means that if the data is
shown on a log plot the higher frequencies are over sampled. Fitting magnitude
in decibels thus gives too high a weight to the high frequency data so it can not
be used. Two fits were performed on a sample of the data, one in the complex

plane and one to magnitude alone, the results of which are shown in figure (4.8).

It was found that the fit in the complex plane produced an excellent fit to
the phase response and not such a good fit to the gain, while the fit to magnitude
only had the reverse behaviour. In choosing between these methods we must first
decide which features of the complex gain we are most interested in predicting.

There are two applications of this model to consider. One is choosing optimal
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plane fits phase well while the fit to magnitude only fits magnitude well.
Refer to text for more discussion of these plots.
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servo parameters for a given sample time and required bandwidth (or —3dB
frequency), in which case we are most interested in the size of the resonant
peak, the cutoff frequency and, to a lesser extent, the phase response. The
second application will arise in the following Chapter when we wish to fit the
theoretical power spectrum of tilt derived in section (2.3.2) to the data collected
by the tilt correction system. In this case we are primarily concerned with the
frequency range in which the gain response is flat. Furthermore, the values found
for the unknown parameters using either fit differed only by small amounts.
The fit to magnitude alone was therefore selected and used to fit all data, as it
predicts the size of the resonant peak and the cutoff frequency well. The fit to
phase is acceptable in the low frequency range. The resulting values for the free

parameters are

Ky = 1.7420.3 arcsec

T4 = 224+02x107%s

™ = 22£02x107"s
RMS residue = 0.08 dB

where the errors quoted are the changes required to double the RMS residue
of the fit. Note that the value found for K; matches the value of 1.71 4 0.02
predicted in section (3.1.3). This gives us confidence in using the values predicted
for other aperture sizes. A sample of the raw and fitted data is given in figure
(4.9). It is interesting to note that the largest bandwidth found possible was
approximately 160 Hz, which coincides with the cutoff frequency found for the
high voltage amplifiers in section (3.3.2). Assuming there is plenty of light
available, the response of the system is restricted by the performance of the tilt
mirrors themselves. If the current mirrors were replaced with one of the newer

piezo systems available today, superior system performance could be achieved.

4.2.5 Optimisation of Control Parameters

Now that a model for the servo system is available we can proceed to find
optimal values for the two servo parameters. Given a particular sample time,
based on the amount of light reaching the detectors, and bandwidth, based
upon the measured behaviour of the atmosphere, the optimal values for the
constants C'; and Cy must be found, such that the resonant peak is as small as
possible in both height and width. We are interested in both the tracking and

measurement performance of the system. Parameters will be chosen primarily
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Figure 4.9: A sample of the raw and fitted data for the complex gain of
the tilt servo for a range of values of C'; and C3. Note that the size of the
resonant peak and the position of the —3dB point match well.
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from the tracking bandwidth they imply, however, if the measurement response

contains a peak of more than 3dB they will not be accepted.

As shown in section (3.3.1) at least 40 photon events per sample time is
required to keep the detector error to less than 0.17. This is the minimum count
allowable before the servo becomes unstable. It is recommended the smallest
sample time possible is chosen so at least 100 counts are received in each detector
per sample. Of course, larger count rates will improve signal to noise and should

be used if possible.

The bandwidth required of the servo should match the current cutoff
frequency of the tilt spectrum described in section (2.3.2). If the bandwidth of
the servo is smaller than this cutoff frequency a significant fraction of the tilt
will not be removed. Alternatively, if the bandwidth of the servo is much greater
than that of the tilt spectra the servo will only amplify the photon noise present
in the detector, with little or even detrimental effect on the stability of the image.
This cutoff frequency, derived earlier as v, /7 R, lies in the range of zero to less
than 50Hz. If the cutoff frequency is much larger than this it implies a very
large average perpendicular wind speed, under which conditions observations
are unlikely to take place. The procedure used to find this cutoff frequency is as
follows. After having chosen the sample time the servo is set to the maximum
possible bandwidth. This is likely to be undesirable for image stabilisation, but
is useful for the measurement of the tilt spectra (to be discussed in section (5.2)).
The cutoff frequency of the tilt spectra can then be used as an estimate of the
optimal bandwidth of the servo. As seeing can vary considerably with time, this
optimal bandwidth measurement should be repeated periodically throughout an

observational run.

Unfortunately, as figure (4.8) shows, it is not obvious how one should
define the bandwidth of the tilt servo. Once again using a low pass filter as
an example, the —3 dB frequency of the amplitude response is usually used to
define the bandwidth. At this frequency the power of the output response is half
that of the input and the phase of the output lags the input by 45°. The —3dB
frequency of the tilt servo does not coincide with this 45° phase lag frequency,
in fact it is always somewhat larger. Even if the amplitude response is perfect
at a given frequency, if the phase lag is too large the servo will produce little or
no improvement in image stability. The —45° frequency predicted by the model
was found to lie always slightly above the measured 45° frequency and below the
—3dB amplitude response frequency. Thus, the bandwidth of the servo will be
defined as the frequency at which the model predicts the 45° phase lag, written

as f_45o.
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Bandwidth | Cy Track | Track | Track | Measure | Measure
J-as0 Gainres | fres J-34p | Gainres J-34B
Hz dB Hz Hz dB Hz
5.0 0.007 | 0.08 | -0.13 <1.0] 5.9 -0.13 5.9
10.0 0.014 | 0.01 | -0.02 < 1.0 | 139 -0.02 14.4
15.0 0.027 | 0.28 | -0.01 <1.0] 23.5 -0.01 25.8
20.0 0.034 | 0.12 0.00 < 1.0 | 37.1 0.00 14.2
25.0 0.074 | 0.93 0.00 < 1.0 | 45.0 0.00 56.9
30.0 0.095 | 0.96 0.00 8.1 56.6 0.37 75.5
35.0 0.115 | 0.95 0.15 26.3 | 68.2 1.04 95.4
40.0 0.135 | 0.92 0.44 37.3 79.6 1.83 117.4
45.0 0.155 | 0.88 0.78 46.4 | 91.0 2.66 142.5
47.6 0.175 | 0.97 0.90 49.8 | 95.9 2.97 161.8

Table 4.4: The optimal servo parameters for a range of bandwidths are
shown here for a sample time of 1ms and an aperture diameter of 35mm
on the optical table.

The final criterion in choosing the servo parameters is the size of the
resonant peaks in the tracking and measurement responses. If either peak is
too large the servo will be adding tilt to the beam at this frequency instead of
removing it. Usually a peak of no more than 3dB is considered to be acceptable
as this is the frequency where the servo output contains twice the energy of
the input. The output of the system is then at least no worse than without
the servo. Of course, if a set of servo parameters can be found that produce a

smaller resonant peak, they should be used.

The linear model of the tilt servo was used to find values of C; and C,
fitting these criteria for a range of sample times and bandwidths. The resulting
values for the fastest sample time of lms are listed in table (4.4). A complete
set of optimal servo parameters can be found in Appendix D. Once again the
maximum f_3qg bandwidth for the servo was found to be of the order of 160
Hz. This is very close to the f_3qp frequency measured for the high voltage
amplifiers in section (3.3.2). Ultimately the response of the tilt servo can be no

better than the response of the tilt mirrors themselves.
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Figure 4.10: The star guidance servo drawn as a negative feedback loop.
The average position of the tilt correction mirrors is used as an error
signal. This is then combined with the positions and velocities generated
by the astrometric model and sent to the siderostat control computer
stdcon. The response of this system must be restricted to less than a few
hertz to ensure that it does not conflict with the tilt correction servo.

4.3 Star Guidance Servo

There would be little point using the tilt correction system to correct for small
angular errors in the optical axis of the interferometer if the siderostats were not
correctly tracking the star being observed. To track the star the siderostat must
be positioned so the unit vector normal to the mirror surface is the average of two
other vectors: the unit vector pointing at the star and the unit vector pointing
in the direction of autocollimation. The autocollimation direction is measured
before each observational run, while the position of the star is calculated using
standard techniques. A mathematical model of the siderostat pointing, including
several correction factors, has been developed (Thorvaldson, 1991) as a further
aid in star guidance. This astrometric model is used to provide an estimate of
the siderostat position as well as the velocity required to track the star every
ten seconds. The tilt correction servo is used to generate an error signal for
star guidance by passing the output of the tilt control computer through a low
pass filter. A velocity servo was then implemented as shown diagrammatically

in figure (4.10).

The frequency response of this star guidance servo should be large enough
to keep the star image near the centre of the range of the tilt correction mirrors
while being small enough not to interfere with the operation of the tilt correc-
tion servo. The siderostats are quite massive, so high frequency response, i.e.

greater than a few hertz, is not possible. We therefore require the star guidance
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servo to restrict its response to this range of frequencies. Using the techniques
just developed and used on the tilt correction servo, we will now proceed to
construct a linear model of the star guidance servo in order to choose suitable

Servo parameters .

4.3.1 Linear Model of Star Guidance System

Comparing figure (4.10) with figure (4.2) and using equation (4.26), the transfer

function of the star guidance system can be written

_ 3T (s)R(s)S1(s)S(s)
L+ 3T (s)R(s)S1(s)S(s)

Tservor(s) (4.46)

where Ty(s) is the transfer function of the tilt correction servo, R(s) is a trans-
fer function representing a running mean, Si(s) is the transfer function of the
software controlling the star guidance system, S(s) is the transfer function of
the siderostats themselves and the factor of three is due to the BRT. The as-
trometric model produces the star position used as an origin for the system and
will also be responsible for generating the rotation matrices that map the tilt
correction mirror axes to the axes of the siderostats. At the present, as these

rotation matrices change very slowly, they are loaded manually.

Tilt Servo

The frequency response of the tilt servo is much larger than the bandwidth of
the star guidance system and we therefore model it using simple gain; that is,
the gain of the tilt system is assumed not to be frequency dependent at low
frequencies. The stream of output numbers from the tilt control computer are
normalised measurements of the angular beam position. We must therefore in-
clude the mirror calibration constant K, in the transfer function. They are also
multiplied by 2096 as this is the internal format used in the control computer.

The transfer function of the tilt servo will therefore be simplified to

2096
Ttilt(s) ~ I% . (447)

Running Mean

As we are interested only in the low frequency part of mirror movement, we need

to pass the output of the tilt control computer through some kind of low pass
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filter. This filter is implemented as a running mean of the mirror position and
is performed digitally by software. However, since the sample time is much less
than the time period of the running mean an analogue model may be used. The

equation representing a running mean is

ot) = Tl—m / iTm or(1)dt (4.48)

where ¢(1) is the output, 7}, is the time period for the running mean and o;(t)

is the input. This can be written as

o(t) = i l / Con(t)dt — / o ol(t)dt] (4.49)

0

which has the transfer function

R(s) = 28 = i [1— ] (4.50)

The time period was chosen to be 64 milliseconds since it is a power of two*

multiplied by the sample time of the tilt correction system and still small enough

to track the star position.

‘Servo One’: the Star Guidance Programme

The computer that actually performs the link between the tilt correction sys-
tem and the siderostats and closes the star guidance feedback loop is called,
for historic reasons, servo one. As in the case of the tilt servo a propor-

tional /differential controller was chosen.

If the input stream of numbers is ¢, the output stream is vy and the
velocity produced by the astrometric model is vy,04,, the equation representing
‘servo one’ is

Uk = Umody + [(1Qk_1 — [(Q'Uk_l. (451)

No integral term is explicitly included here as it is included in the running mean

calculation. The model velocity can be considered to define the origin of the

system and so we put vmeq, = 0. The Z transform transfer function of the
system is therefore
S = = 4.52
12) Q(z) z+4+ K (452)
which, by the modulation model, has the analogue equivalent
Ky
S = —— 4.53
1(8) e'STSl —I— [(2 ( )

4Using a power of two means the division required for the mean calculation can be replaced

by a bit shifting operation, thereby saving valuable CPU time.
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where T, is the sample time of the ‘servo one’ software set to be 80ms. This
speed was chosen as this servo must also work with the widw field video acqui-

sition system (Seneta, 1991) which has a set frame rate of 80ms.

Siderostat

The number resulting from the calculations described above is a velocity which,
after calibration, is sent to the siderostats. The motors moving the siderostat
mirrors have high torque and the movement is geared down by very large factors,
so we assume a ‘perfect’ response from these motors. Thus if the position of the
siderostat for sample k is pi, the sample time of the siderostat is T and the
demand velocity is v, the siderostat equation can be written

Pk — Pk—1

= 2 (4.54)

where K, is the calibration constant of the siderostats and the factor of two is
included because a movement of the mirror results in double the movement of

the star image. The Z transform transfer function is then

P(z)  2T,K,

= = 4.
5() V(iz) =z-1 (4.55)
with the analogue equivalent
2T, K
=3 4.
S(e) = e (1.56)

The constant K, is set by the siderostat electronics and is 5.3644 x 10~?rads™!

and the sample time of the system, as for ‘servo one’ , is T = 80ms.

4.3.2 Optimisation of Star Guidance Parameters

By combining equations (4.47), (4.50), (4.53), (4.56) and (4.46) and using equa-
tions (4.10) and (4.11) we can proceed to investigate the behaviour of the star
guidance system and choose appropriate values for the servo parameters K; and
K;. Figure (4.11) shows examples of this calculated response for a number of
values of the servo parameters and demonstrates the effect of varying each pa-
rameter. The response is required to be as flat as possible up to about 1Hz,
then drop off quickly, have as small a resonant peak as possible and display a

good phase response.

Based on gain response only two sets of servo parameters, K; = 0.1,

Ky =1.0and K; = 1.0, K3 = 0.0, were found to be suitable, the phase responses
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Figure 4.11: Some examples of calculated star guidance servo response.
Note that as the frequency approaches the Nyquist limit of the system
(Shown as dotted line) both the gain and phase behaviour are bad. As the
tilt correction system is responsible for this frequency range this should
present no real problem. It is also interesting to note that the effect of
the damping constant K5 reverses with increasing K;. The plot at the
bottom shows the phase responses of the system with the two ‘best’ sets of
servo parameters. Clearly the parameters K7 = 1.0 and K5 = 0.0 display
the best gain and phase response.
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of which are also shown in figure (4.11). For the set where Ky = 0.1, the phase is
lagging by 45 degrees by the time the frequency reaches approximately 0.7Hz, at
which point the gain is also reducing. This we define as the cutoff frequency of
the star guidance servo for this set of parameters. The second set of parameters
displays a much better phase response and a similar gain response. The final

parameters chosen then were

(4.57)

The gain of the tilt correction/siderostat servo is flat up to about 1 Hz. Any
data coming out of the tilt correction servo below this frequency will not reflect

the true behaviour of the wavefront tilt, because the two servos are coupled.

While tracking a star it was found that the system would ‘hunt’, that
is oscillate around the desired position. This oscillation was found to occur
whether the servo was operating in closed or open loop and is therefore probably
a mechanical problem not due to the star guidance system. While this oscillation
is corrected by the tilt servo and does not affect visibility measurements, it can
affect data collected by the tilt servo itself (see section (5.1.2)).

4.4 Measured Performance

It remains to measure the real performance of the tilt servo to ensure it meets
the original specification put forward in section (1.4). Due to time constraints
on access to the interferometer the results of the analysis in the preceding sec-
tions were not available at the time when most of the measurements of servo
performance had to be made. Thus the servo parameters used were not neces-
sarily optimal. For this reason many measurements were made using a range
of servo parameters, stars, sample times and aperture sizes. Stellar magnitudes
ranged to magnitude 6 while sample times ranged from 1 to 30 ms. Once the lin-
ear servo model was available the servo parameters were checked against it and
any measurement for which these parameters implied a resonant peak of greater
than 3dB was removed from the data sample. The residual image sizes on the
north and south detectors were summed and are displayed in figure (4.12). A
Gaussian curve was then fitted to these data resulting in a standard deviation of
0.09840.013 arcseconds for the southern system and 0.132+0.010 arcseconds for

the northern system. This means that the standard deviation of the difference
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Figure 4.12: These two plots represent the residual star image size on the
north (top) and south (bottom) detectors with the tilt correction servo
going. The raw data used to generate these plots were taken from a

sample of stars and observational sessions. Each plot displays a 1.0” by
1.0” square area, with the height of each plot representing the proportion
of time spent in each area. A least squares fit of a Gaussian function
to these data yields a standard deviation of 0.098 + 0.013 arcseconds
for the south system and 0.132 £ 0.010 arcseconds for the north system.
The tilt correction system can therefore stabilise the star image to within
approximately 0.17.
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Aperture Radius | Percentage Error
on sky (cm) of visibility

due to residual tilt

0.9 0.1%

1.5 0.4%

2.3 0.8%

3.0 1.4%

3.8 2.3%

6.0 (Maximum) 5.7%

Table 4.5: The percentage error in visibility measurement caused by resid-
ual tilt for the range of aperture sizes currently available on SUSI. These
numbers are a result of the data shown in this section and equation (1.1).

in tilt between the two beams is 0.164 + 0.025 arcseconds. The resulting error in
visibility measurement for the apertures currently available on SUSI are listed
in table (4.5). Apart from the largest aperture size of 6¢m, all percentage errors
in this table are below 5%, showing that the tilt system to performs well within
the specification set out in section (1.4). Even if the first estimates for the de-
tector calibration constants (section (3.1.3)) are used, the system still matches
the requirement specifications for most apertures. On nights of good seeing and
with the largest aperture, the performance of the servo would be expected to be

better than the average figure quoted above.

These experiments also provided a very good demonstration of the effect
of aperture size on the performance of the tilt servo. While observing the star «
Car with a sample time of 2ms the residual image motion on the south detector
was measured for each possible aperture size. The results are tabulated in
table (4.6) and clearly demonstrate that reducing the aperture size results in a
degradation of servo performance. The reasons for this are two-fold and related
to the signal to noise ratio of the detector system described in equation (3.11).
By reducing the aperture size one reduces the amount of light reaching the
detector, thereby reducing its signal to noise ratio. Apart from the reduction of
light intensity, a smaller aperture means a larger Airy disc on the detector and
therefore less detector sensitivity. This is equivalent to reducing the 'y servo
parameter and results in a reduction of servo performance. The aperture size
should be the largest possible which is not much greater than the current value

of Fried’s coherence length ro. Methods for determining the value of ro will be
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Aperture Residual Tilt
Diameter | Standard Deviation

(mm) (arcseconds)

20 0.185 + 0.070

25 0.158 + 0.063

30 0.144 + 0.044

35 0.113 +0.032

40 0.104 + 0.032

Table 4.6: While observing the star a Car the residual beam tilt was
measured for a range of aperture sizes. The aperture sizes quoted above
refer to sizes on the optical table of the interferometer. Due to the BRT
they are % the size of the equivalent aperture on the sky. Clearly, the
performance of the tilt servo is coupled to aperture size.

discussed in the following Chapter.

As a final demonstration of the performance of the tilt servo, refer to
figure (4.13). Using the same configuration as that used for the servo analysis,
a square wave was tracked in autocollimation on all four axes of the system
simultaneously. A square wave signal contains many high frequency components
and is an excellent test of a servo system. The results of this demonstration
showed good tracking performance with a standard deviation of only 0.02”. It
is interesting to compare this figure with figure (8) in the paper by Clark et al.
(1986), where a similar test is performed on the tilt correction device used in
the Mark III interferometer. The tilt correction system described in this thesis
performs at least as well, if not better, than the Mark III system, for which
standard deviations no less than 0.11”7 are quoted at a bandwidth of 10-15 Hz.

It is difficult to compare these results with other adaptive optics systems
as most are for much larger apertures and are a part of larger adaptive optics
systems. A bigger aperture allows more light to reach the detector and thereby
increases the signal to noise ratio. The Airy disc formed on the tilt detector will
also be much smaller for large apertures, increasing angular sensitivity. Never-
theless, the tilt correction system for SUSI compares favourably to other image
stabilisation systems, such as the DISCO project (Maaswinkel et al, 1987), the
MARTINI device (Doel et al, 1990) and the E.S.O. adaptive optics programme
(Merkle et al, 1990).
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Figure 4.13: The mirror positions (large movement in each plot) and
detector positions (small movement in each plot) are shown for all four
axes simultaneously tracking a square wave signal with an amplitude of
approximately 2.5”. The residual error as measured by the detectors has
an average standard deviation of 0.02” across all axes.



Chapter 5

STELLAR OBSERVATIONS

To correctly track and correct for wavefront tilt the servo must move an adaptive
mirror to match the angular error of the incoming beam. With the analysis
presented in the preceding chapter, showing that the system will perform this
function to within 0.1”, we can now go on and use the mirror position data as
a measurement of wavefront tilt from which ‘seeing’ and the first order Zernike

coeflicient data are obtained.

The control software, described in section (4.2.2), will log detector and
mirror positions for later processing. A spare pair of digital to analogue convert-
ers also exists in the system hardware. A combination of these and the control
software allows the real time monitoring of signals internal to the control com-
puter. These outputs can then be connected to a signal analyser to find power

spectra, frequency response measurements and so on.

Measurements using both of these methods have been performed to es-
tablish a reliable seeing monitor system and to investigate the turbulence theory
discussed in Chapter 2. To illustrate the kind of data collected, two examples of
mirror position data are given in figure (5.1), one representing ‘bad’ seeing with
a full width half maximum of 2.0 + 0.1 arcseconds while the other represents
average to good seeing of 0.9 + 0.1 arcseconds. All the results and analysis to
follow are derived from data such as that shown in figure (5.1), which were all

collected on site at Narrabri.
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Figure 5.1: The two plots above show the mirror movement required to
track a stellar image for two separate 2 second samples. The top plot is
an example of ‘bad’ seeing conditions and corresponds to a seeing disc
size of 2.0 + 0.1 arcseconds. Note how the image moves over a large area
and has a mixture of low and high spatial frequencies. As a contrast, the
lower plot represents a seeing disc of only 0.9 & 0.1 arcseconds. In this
case the mirror position is more concentrated in one area.
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5.1 Seeing Disc Measurements

The most common form of measurement of turbulent effects on telescopes is
seeing disc size. Rather than form a diffraction-limited image in the focal plane
of a telescope, the image moves about, largely as a result of the tilt of the
incoming beam. Long exposures of these images form smeared-out discs whose
size depends on the atmospheric conditions at the time of the measurement. A
measurement of the size of this disc is a good indicator of current observational

conditions.

The tilt correction servo can be used to measure seeing disc size. Using
one of the spare digital to analogue converters the position of one axis of one
mirror can be monitored and measured using the HP dynamic signal analyser.
This produces histograms of stellar image position, two examples of which are
given in figure (5.2). The fact that a Gaussian distribution fits these data so well
indicates that the assumption made in Chapter 2, that the changes in the Zernike
coefficients are random and distributed normally, is valid. The size of the seeing
disc can be defined as the full width at halt maximum of the resulting Gaussian
function. A related parameter, the standard deviation of image position, can
then be used along with equation (2.78) to achieve an estimate for ro at a given
wavelength. Seeing measurements of this kind have now been automated and

are a regular part of the observational programme for SUSI.

As the coherence length at the observational wavelength is of more direct
relevance to the use of the tilt servo all results will be quoted in terms of the
coherence length at a wavelength of 440nm. Due to the scaling of ro with the g
power of wavelength the values found were lower than those often quoted in the
literature, in which a reference wavelength of 500nm is typical. Care should be
taken while examining references on this subject to ensure that the wavelength is
noted when accessing site performance using ro values. In this thesis the symbol
rg will be used when raw values are quoted and ry will be used for those values

for a wavelength of 500nm.

5.1.1 Internal Stability of Enclosure

Before going on to use data collected by the tilt correction system, the level
of internal seeing in the instrument enclosure should be established. If the
wavefront distortion introduced into the beam inside this enclosure is of the

same order as that produced by the atmosphere, any results derived from these
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Figure 5.2: While tracking a star, a spare digital to analogue converter
channel is set so it’s output reflects mirror position on one axis. This
signal can then be connected to a signal analyser to record the normalised
histograms shown above. Two examples have been plotted, one for ‘bad’
and one for ‘good’ seeing conditions. A Gaussian curve fits these plots
very well, allowing the measurement of the full width half maximum of
the curves, the equivalent of a seeing disc measurement, and thereby the
current coherence length via equation (2.78). These sorts of measurements
are now routine and part of the normal functioning of SUSI.
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measurements will have little meaning. Experience gained during the frequency
response measurements required for the analysis in Chapter 4 indicated that
the internal housing does not contribute a great deal to the characteristics of
measured seeing. To further check this a series of tests of seeing in the instrument

housing was performed by Prof. J. Davis!.

Using only the northern beam with the reference laser as light source, an
autocollimating mirror was once again placed in front of the BRT and the beam
aligned with the reference quadrant detector. The tilt correction servo was then
locked onto this laser beam. Since large count rates could be used because of the
high intensity of the laser light, the signal to noise ratio of the detector was much
greater than that when tracking a star. The precision of these measurements is

therefore greater than similar measurements on stellar objects.

To ensure no external effects would interfere with the experiment all
electronics, including the air conditioning, were switched off more than twelve
hours prior to the measurements. Furthermore, a minimum of time was spent
inside the enclosure during the optical alignment of the northern beam. All
measurements quoted derive from histograms such as those shown in figure (5.2).
Seeing disc size was measured for a range of conditions that might occur during
an observational run of the interferometer: with the OPLC carriage stationary
with its power both on and off; with the carriage moving at tracking rate and
slewing rate; immediately after a long slew; after someone had walked through
the internal housing; and even with a cup of hot water placed underneath the

beam. The measurements are summarised in table (5.1).

These measurements show the seeing effects caused by the instrument en-
closure not to be significant since the numbers quoted in table (5.1) are largely
dominated by noise in the detector and servo system. The only action that did
cause a measurable change in internal seeing was placing the cup of hot water
underneath the beam. Conditions settled within minutes of removing the cup.
As this is not likely to occur during a normal observation we conclude that any
seeing caused by the internal housing is not significant. Having so concluded, we
can proceed to use data from the tilt correction servo as measurements of atmo-
spheric conditions rather than a convolution of atmospheric and instrumental
effects.

!Unpublished internal report.
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Carriage Status OPLC Seeing
Power | (arcseconds)

Stationary in centre. Oft 0.07 +0.03
On 0.07 +0.03

Moving South at On 0.05 £ 0.03

tracking rate
Slewed back and forward | On 0.06 £+ 0.03

2 metres to stir air

Power left on for On 0.06 +0.03
23 hours

After walking through On 0.06 £ 0.03
housing.

Cup of hot water On 0.11 +0.03
placed under beam.

Five minutes after On 0.05 +0.03

cup is removed.

Table 5.1: A series of measurements of seeing inside the internal housing
of the interferometer. It is clear that the only thing affecting the seeing
enough to cause a measurable difference was the cup of hot water placed
underneath the beam. As this is unlikely to occur during standard ob-
servational practice we conclude that the seeing effects in the housing are
very small when compared to the atmosphere.
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5.1.2 Seeing Disc Measurements at SUSI

Although a limited amount of seeing data has been gathered for the Narrabri
site, enough is available for a preliminary investigation of seeing statistics. The
412 measurements of Fried’s coherence length using the seeing disc size method,
and corrected to equivalent zenith values®, are summarised in figure (5.3). The
data gathered so far indicate that the value of ry is not distributed normally
and so simply calculating a mean value will not be sufficient. The mode rj
value was found to be 6.5X1.2cm? for a wavelength of 440nm. At a wavelength
of 500nm, the wavelength normally used when quoting coherence lengths for
optical telescopes, this becomes 7.6X1.2cm, corresponding to a seeing disc of
1.2 £ 0.1 seconds of arc. The median values found were 6.1X1.2cm for r§ and
1.4 4+ 0.1 arcseconds for the seeing disc. As figure (5.3) shows, seeing conditions
better than this are not uncommon and coherence lengths of up to 18.5X1.4cm

have been observed.

The histogram of r§ measurements contains two obvious peaks. The
smaller peak is probably an artifact of the measurement process and not a char-
acteristic of the atmosphere above the site. When the star position requires the
siderostat to move relatively quickly in one axis, for example in the azimuth axis
when the star is near zenith, the star guidance servo causes low frequency oscilla-
tions in the tilt system. While this does not affect the visibility measurements it
can cause distortions in the seeing data such as asymmetrical and double peaked
curves. The data so affected has not been removed from this sample, however
in future seeing data will only be collected using a channel of the tilt servo not
affected by the siderostat movement. A second point to consider is that most of
the data were collected during the first half of the night and consequently the

sample is biased towards evening rather than early morning conditions.

The median value of ry measured for Narrabri can be compared to values
found in other studies (which have all been converted to their equivalent values
at a wavelength of 500nm). Using a shearing interferometer on the prototype
site in Lindfield, Sydney, O’Byrne (1988) found a mean value of 5.5X1.7cm,
which is significantly lower. This is probably due to the fact that the data were

collected on a site very close to a city. A much larger median r¢ of 10.2X1.36cm

2Zenith corrections were performed using the coss 7 relationship shown in equation (2.47)
and confirmed experimentally by O’Byrne (1988) and Walters et al (1979).
3The errors associated with ro are given as a X factor rather than the more usual +. This

is because the measurement process gives an estimate for the seeing disc size which is related
to rp via a power law. We are therefore really estimating the log of ry and not r¢ directly and

therefore the associated errors become X rather than =+.
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Figure 5.3: The seeing data corrected for zenith angle to date for the
Narrabri site. These measurements were taken over a period of less than
one year and are shown as a histogram (above) and binned into and
averaged over time slots (below), where local midnight has been marked
with a dashed line. It is clear that the mode coherence length is 6.5X1.2cm
while both the mean and median values are 6.1 4+0.6cm. This corresponds
to a median seeing disc of 1.4 £ 0.1 arcseconds, a mode seeing disc of
1.2 £+ 0.1 arcseconds and a coherence length of 7.6X1.2 arcseconds at a
wavelength of 500nm. The topmost plot also shows a fit of a log/normal
distribution (solid line) and a gamma distribution (dotted line).
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has been observed at the Kitt Peak observatory (Fried and Mevers, 1974). This
corresponds to exceptional seeing and confirms this site’s good reputation. A
similarly good result was found at the AMOS observatory in Hawaii, where the
mean ro value is quoted as 9.6cm (Miller and Zieske, 1977).  Walters (1981)
measured a large range of rg values under different conditions and found median
values of 8.2X1.4cm for mountain locations and 4.7X1.3cm above a desert in New
Mexico. The combined results show that mean ry values of greater than 10cm
are very unlikely except at the very best observational sites; indeed, Walters et al
(1979) state that such large ro values are virtually non-existent. A more recent
seeing study for the U.S. Naval observatory in Flagstaff, Arizona by Harris and
Vrba (1992) cites a median seeing disc size of 1.3 seconds of arc, corresponding
to an ro value of 7.6cm. The preliminary result for Narrabri, 7.6X1.2cm, is
consistent with these other measurements. One would not expect the seeing on
a flat, low altitude site to match the best mountain locations, and being far
from any artificial influences it should be better than that found in the O’Byrne
study.

Many of the papers cited above also discuss a log-normal probability
distribution for coherence length. There is no obvious physical explanation of
this distribution, except that as ry can never be negative a standard normal
distribution could not possibly suffice. Furthermore, a log-normal distribution
contains two free parameters. A statistical distribution function that may serve
just as well, and which only contains one free parameter, is the gamma distri-
bution. Figure (5.3) shows the result of fitting these two distributions to the
data collected so far. A Chi squared test on these data results in less than a
0.1% probability that either fit is correct. More data is required at Narrabri
before we can safely confirm or deny any such probability distribution. Data
collected by the authors cited above do, however, seem to confirm a log-normal
distribution, although it is likely that a gamma distribution would be just as
successful. Consequently, the probability of a given value for ro at SUSI can be

found using a gamma distribution with a mean value of

A 2,
Tomode ~ 1-1 X W COs?® 7. (5_1)

A more detailed analysis of site statistics should be undertaken when more data

are available.

When binned and averaged over time, the data also shows that a coher-
ence length for a wavelength of 440nm of around 6cm can be expected during
most of an observational run. The graph of r; with time contains data collected

at different times of the year, however, due to the size of the sample, seasonal
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variations have not been investigated. One obvious trend displayed in these data
is that of good seeing shortly after sunset which stabilises during the night to a
lower value. Just before sunrise the seeing quality improves and then decreases
rapidly. This can be understood in terms of changes in the vertical tempera-
ture gradient. In the late afternoon, about an hour before sunset, the vertical
temperature gradient is low and the refractive index structure constant is at
a minimum (Walters and Kunkel, 1981). While this does not mean the atmo-
sphere is not mechanically turbulent it does imply that seeing conditions will
be good early in the evening. As the night progresses the air temperature falls
below that of the ground causing a decrease in the vertical temperature gradient
and a reduction in seeing quality. Good seeing conditions return approximately
one hour before sunrise when low magnitude temperature gradients exist and
last until the sun rises. At that time the air becomes very turbulent and seeing
conditions deteriorate rapidly. The same general trend is evident in many other
studies of this kind including Nightingale and Buscher (1991), Walters (1981),
Walters et al (1979) and Miller and Zieske (1977). The paper by Harris and
Vrba (1992) contains data collected over 5 years and a discussion of seasonal

variations of seeing.

5.2 Power Spectrum Measurements

As discussed in section (2.3.3), measuring the full width half maximum or stan-
dard deviation of image position is equivalent to summing the total power in
the tilt spectrum. If there are instrumental effects at some frequencies these
will also be included in the seeing disc measurements. Since we know the star
guidance servo introduces erroneous tilt at low frequencies (section (4.3)), and
the servo has a finite bandwidth (section (4.2.5)), a better way to estimate rq
may be to use only the range of frequencies for which we know the tilt servo

reflects atmospheric effects.

The HP signal analyser was used to measure the power spectrum of the
mirror movement in an axis of one of the tilt mirrors. Most of the power spectra
data collected to date reflect the early evening seeing conditions, that is, when
seeing is usually best, although some samples reflecting bad seeing were also

examined.

In general the data supports the single turbulent layer Kolmogorov model
discussed in Chapter 2. The values found for rj and v, (the average perpendicu-

lar wind speed) are consistent with the seeing disc measurements in the previous
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section and with other values published.

5.2.1 Basic Power Spectrum Fitting Techniques

After sampling the power spectrum of the mirror movement in one axis the re-
sults were converted into their corresponding Zernike coefficients using equation
(2.59). Any data corresponding to frequencies lower than 1Hz were removed, as
the star guidance servo is active at these frequencies and can cause distortions
in the measurements. Data corresponding to frequencies above the maximum
frequency of the current tilt servo parameters were also culled. As most of these
measurements were performed on bright stars, small sample times could be used

and a correspondingly large bandwidth was available.

In order to achieve an estimate of the coherence length the data was
fitted, in the least squares sense, to equation (2.71) by varying r§ and v;. A
simple ‘power law’ fit could also be performed on the data to check the tur-
bulence model. An example of data collected for the star o Car can be found
in figure (5.4). Errors quoted are either due to the 0.1” uncertainty in mirror
position measurement or the change required to double the r.m.s. residual error,

whichever is greater.

The data in figure (5.4) once again demonstrates that turbulence theory
works well at low frequencies and fails to predict atmospheric behaviour at high
frequencies. The top-most plot shows that simple power laws can be used to
model the spectrum. Below the ‘knee’ frequency the slope is very close to the
predicted value of —%. This has also been confirmed by other studies, including
those by Nightingale and Buscher (1991) and Doel et al (1990). Although no
comment is made in the text in Colavita et al (1987) concerning these power laws,
an analysis of figures (10) and (11) in this paper also shows good correspondence

to the —% power law.

At frequencies above the knee frequency the model predicts too little
energy in the spectra. There exists a wide range of predictions for the high fre-
quency behaviour, indicated by the dotted lines in figure (5.4), ranging from —%
(Hogge and Butts, 1976), through to the —% prediction of the theory presented
in Chapter 2. The only area of agreement seems to be that all Zernike coeffi-
cients should have similar high frequency behaviour. The data collected in this

experiment indicate that the —13—1 power law? best models the high frequency

“Predicted by Tango and Twiss (1980), who use a different definition of tilt, and Fields
(1983).
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Figure 5.4: The power spectra of the ay 3 Zernike coefficients measured
for the star a Car during ‘typical’ seeing conditions of rg = 7.6X1.2cm at
440nm and an average perpendicular wind speed of 1.3 £ 0.2 m/s. The
top-most plot shows the measured spectra along with a simple ‘power law’
fit. At low frequencies the —% power law fits well. At higher frequencies
there is some argument about the correct slope (see text); A —§, a — 4
and a —% slope are all displayed. Clearly the —% slope fits best. The
other two plots show the same data fitted to equation (2.71), displayed
on log (middle) and linear (bottom) graphs. While the high frequency
part has not been fitted well, the plot on a linear scale shows that, in the
context of the tilt correction servo, it contains so little power that we may
ignore it.
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part of Zernike coefficient power spectra. Recent measurements by Acton et al
(1992) also confirm the —13—1 power law for frequencies above the knee frequency.
Their data also suggest a steeper slope above 150 Hz, beyond the response of
SUSTI’s tilt servo, which they attribute to the effect of a large inner scale length.

Other measurements of high frequency tilt spectra find that the —% power
law is more suitable. Again, one should be careful how any particular author has
defined tilt, for example, Colavita et al (1987) define tilt as the phase difference
between two small apertures divided by the baseline. Other studies use apertures
much larger than those in SUSI and are consequently measuring some average
tilt or phase difference across the diameter of the aperture. In either case the
statistics of piston phase are as important as those of tilt. It is not surprising

therefore that the piston phase power law of —% is found in these data sets.

The middle and lower plot in figure (5.4) show the same data along with
the fitted theoretical power spectra on both logarithmic and linear scales. Once
again it is clear that high frequencies are not modelled well; however, the lin-
ear plot demonstrates that so little energy is actually contained in this part of
the spectra that we may ignore this problem in the context of the tilt servo.
As the data to be presented in section (5.2.3) will demonstrate, estimates of
coherence length using this technique yield results consistent with other seeing

measurements.

While a majority of the data collected so far support the single turbulent
layer Kolmogorov model, some spectra taken showed markedly different prop-
erties. Occasionally two ‘knee’ frequencies were apparent, indicating that two
turbulent layers may be present, each with their own characteristic wind speed.
At other times no knee frequency was seen, showing that the inertial subrange
assumption had broken down and much more complex turbulence was present.
The failure of the inertial subrange is also evident in the linear plot of the power
spectrum. At low frequencies the theory predicts larger and larger amounts of
energy, corresponding to an infinite outer scale length. The real data shows that
the energy starts to go towards some asymptotic value for zero hertz. This low
frequency asymptote has also been noted by Colavita et al (1987), who use it
to estimate the size of the outer scale lengths. As the low frequency response
of any system such as this must be affected by the star guidance system, these
results are unreliable. They do, however, clearly demonstrate that some outer

scale length of turbulence does exist.

The paper by Bester et al (1992) contains a good review of recent mea-

surements and how they compare to the predictions of turbulence models. They
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conclude that the Kolmogorov-Taylor model is a good approximation during
poor seeing conditions, for very short sample times or high above the effects
of the ground. At other times models such as a random walk may be more
suitable. The data so far collected at Narrabri favours the Kolmogorov-Taylor
model, however, as with the seeing statistics, much more data is required to

definitively resolve this question.

5.2.2 Effect of Aperture on Power Spectra Measure-

ments

All of the theory and data reduction techniques used herein contain the aperture
radius explicitly. We can therefore expect the current size of aperture to have
significant effects on these measurements. Not only is aperture size coupled
with the calibration of these data, as shown in sections (3.1.3) and (3.1.4);
it also largely determines detector calibration and servo performance. Other
authors have noted the effect of aperture size on power spectrum measurements,
including Nightingale and Buscher (1991) who state that the knee frequency

depends on the aperture size. This is also clear from equation (2.71).

An experiment was performed to investigate the effect of aperture size on
these measurements. While tracking the star o Car, once again during relatively
good seeing conditions, power spectra were obtained using each of the available
aperture sizes. Power spectra were then fitted, providing the estimates of r§, v,

and seeing disc size shown in table (5.2).

While seeing conditions did vary through the run, the data in this table
show the knee frequency to be strongly coupled to aperture size, decreasing with
increasing radius. Since the Taylor hypothesis of frozen turbulence was used to
develop this model it is not surprising that smaller apertures display more high
frequency energy; the ‘frozen’ eddies are blown past a smaller aperture faster
than a larger one. The implied wind velocities and measured seeing conditions
did not show any significant correlation to aperture radius. As the frequency
depends inversely on aperture size, which we can change, and is proportional to
wind speed, which we cannot change, the advantage of using large aperture sizes
is reinforced. Not only is more light allowed to reach the detector, increasing
detector signal to noise ratio and sensitivity, the required tilt servo bandwidth

is reduced.
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Aperture Radius ro vy JTiknee FWHM Seeing Disc
(cm) (cm) m/s Hz arcseconds
3.00 10.6X1.6 | 1.7£0.3 | 18.0£2.2 0.9+0.1
3.75 10.521.6 | 2.0£0.3 | 17.0 £2.2 0.9+0.1
4.50 10.3X1.6 | 24£0.3 | 17.6 £2.2 0.8+0.1
5.25 7.8%1.4 22403 | 13.6+2.2 1.0 +£0.1
6.00 10.2X1.6 | 23£0.3 | 12.0 £ 2.2 0.8+0.1

Table 5.2: The results of measurements taken over the space of approx-
imately one hour on the same star using different aperture sizes. While
the seeing did change throughout this run, the assumption that the knee
frequency depends on aperture size, while seeing and wind velocity do
not, is supported by these data.

ro vy Jknee FWHM seeing disc
cm m/s Hz arcseconds
mean | 8.2X1.2 124403 | 146 £1.8 0.9+0.1
mode | 7.6X1.2 | 1.44+0.3 | 8.6 £2.2 0.9+0.1
median | 7.8X1.2 | 1.6 £0.3 | 8.6 £2.0 0.94+0.1

Table 5.3: While too few measurements are available for a complete sta-
tistical investigation, the mean, mode and median values of the results
are shown in the table above. These results are consistent with the seeing
disc size measurements made in the last section.

5.2.3 Power Spectrum Measurements at SUSI

Only some 44 power spectra samples have been collected to date, so an involved
statistical analysis is inappropriate. Nevertheless, the data so far collected is
consistent with similar measurements in the literature and with the seeing disc
measurements presented in section (5.1). As most of the power spectra measure-
ments were collected during the early part of the night, they favour relatively
good seeing conditions. The mean, mode and median values found are presented
in table (5.3). The total power in the spectrum was also calculated, to provide
an estimate for the current seeing disc size. The mode value of 7.6X1.2 cm for
coherence length is larger than was found in the survey based on seeing disc

size, reflecting the bias towards good seeing in the collection process. While this
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method is not as straightforward or as easily automated as measurements of the
seeing disc, it should provide more reliable results as it does not include the low
frequency parts affected by the star guidance system or the high frequency parts

where the tilt servo starts to fail.

The range of wind speeds found in these data extended from nearly zero
up to some 18m/s, with the majority lying between 2 and 10 m/s. This is
in good agreement with values quoted by Nightingale and Buscher (1991) and
with direct wind speed measurements on site. The largest, and probably most
unphysical, values tended to match those times when Kolmogorov turbulence

broke down, that is, when the power spectra did not fit the simple power laws.

While more data are required to derive more useful statistics, one fact
confirmed by the measurements to date is that the majority of tilt energy lies
in the low frequency part of the spectra, up to a few tens of hertz at maximum.
This confirms the predictions made in section (2.3.2). Regular measurements
of the tilt power spectra will be useful for choosing optimal aperture size and
servo parameters. The possible response of the tilt servo is much greater than
is required to track turbulence, but can always easily be reduced to match the
current atmospheric conditions. A larger bandwidth may be required in future
when the OPLC carriage is fully commissioned and the piezo controlled mirrors
in it are operational. Movement of these mirrors will introduce small amounts
of horizontal tilt which must be tracked and removed by the tilt correction
system. Vibrations in the carriage itself can also introduce high frequency tilt
components. It is for these reasons, apart from allowing high frequency power
spectra measurements, that the tilt servo bandwidth should be increased beyond

the bandwidth normally required simply to track atmospherically induced tilt.



Chapter 6

FUTURE WORK AND
CONCLUSION

The major thrust of the work documented in this thesis has been to construct
a wavefront tilt correction servo for use with a stellar interferometer to meet
the requirement specification set out in section (1.4). The system not only
exceeds these criteria, but is also capable of producing useful data for the study

of atmospheric seeing and turbulence.

Before describing this system in detail, a review of basic atmospheric
turbulence was undertaken in Chapter 2, where the concepts of the inertial sub-
range, structure functions, the Kolmogorov Spectrum and single turbulent layer
models were introduced. This led to the definition of a single parameter measure-
ment of seeing, rq, called Fried’s coherence length, which represents the largest
diameter telescope that will be diffraction-limited at a given wavelength. In the
final section of Chapter 2 a method is described for wavefront analysis using
an orthogonal set of normalised polynomials defined on the unit circle, called
Zernike polynomials. Noting the correspondence between the lower order Zernike
coefficients and standard aberration terminology such as piston phase and tilt, a
temporal analysis of the variation of the Zernike coefficients was performed using
the Taylor hypothesis of frozen turbulence and Fourier analysis. A number of
predictions based on this model of the power spectra for Zernike coefficients due
to Kolmogorov turbulence were then investigated, including simple power law
relationships, the relationship between seeing disc size and rg, the total power
in the tilt spectrum and spectra bandwidths. This new formulation of Zernike
coefficient power spectra was shown to correspond well to previous models in
the literature while offering simpler calculation methods. The model was also

shown to fit experimental results obtained using the tilt servo.
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The hardware and software developed for the tilt tracking system were
described in Chapter 3. The detectors used are optical pyramids, a form of
quadrant detector with high quantum efficiency and small dead zones due to its
use of the knife edge criterion. A noise analysis and rough calibration was also
presented to show that these detectors could achieve the precision and linearity
required for the tilt servo. The mirrors are flat mirrors mounted on three piezo

electric actuators and were calibrated using interferometric techniques.

With the hardware constructed, calibrated and mounted, along with the
theoretical understanding of the behaviour of wavefront tilt due to atmospheric
turbulence, an analysis of servo behaviour and performance was undertaken in
Chapter 4. Using Laplace transforms, Z transforms and transfer functions a
model of the servo system was constructed and fitted to experimental data. This
showed that the bandwidths predicted by the atmospheric model could easily
be accommodated by the tilt servo. Further experimental results demonstrated
that the servo performs well within the tolerances specified. The residual tilt in
the beams after passing through the tilt correction system (that is about 0.17)
should contribute no more than 2% error to the visibility measurements made

by SUSI for all but the largest aperture sizes available.

Having described the servo system and demonstrated that it more than
meets its design criteria, some preliminary results based on data collected while
tracking stellar objects were presented in Chapter 5. A small sample of see-
ing disc measurements was analysed, yielding a median ry value of 7.1X1.3cm
at 440nm for the Narrabri site, a value consistent with similar seeing studies
at other observatories. Tilt spectra were also measured and compared to the
theoretical predictions in Chapter 2. While the theory fails at high frequencies,
excellent correspondence was found amongst the low frequencies, the component

that contains a majority of the power in the spectrum.

6.1 Hardware Improvements

Even though the tilt servo performs within specification, a number of areas re-
main in which the hardware could be improved. The first, and probably most
important, of these is the area of quantum efficiency. As discussed in section
(3.3.1), the number of photons registered in each cycle is an order of magnitude
less than the predicted value for both the visibility and wavefront tilt detectors.
As both of these systems display this behaviour we must assume that this is a

problem of telescope throughput rather than detector quantum efficiency. It is
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very likely that the old and faulty surfaces of the tilt correction mirrors are re-
sponsible for a large part of the losses. In future these mirrors should be replaced
with one of the more modern tip/tilt mirrors now available. This would have the
added advantage of incorporating piezos with hysteresis correction which, while
probably not improving the bandwidth, would improve the phase response of the
entire system. Experiments are planned to determine where losses are taking
place within SUSI by using the reference laser and measuring light intensities at

different points along the optical chain.

As well as replacing the mirrors themselves, the mounts used and mount-
ing position can also be improved. Adding micrometer adjusters to the mount
to enable the fine positioning of the mirrors’ central position would significantly
aid in interferometer adjustment. It would also be of benefit to move the mirrors
themselves to a position immediately after the BRT. In this way the alignment
of the central position would be less critical and this would mean that the beams
are tilt corrected as early in the optical path as possible. This was where these
mirrors were originally intended to go. Unfortunately, however, the size of the

mirrors meant that they interfered with the OPLC carriage.

Performance improvements are also possible with minor changes to other
parts of the system. The polarising cubes on the optical table can create mul-
tiple images of the reference pin hole during optical alignment, forcing us to
purposefully misalign these cubes (refer to Appendix A). Replacing these cubes
with standard beam splitters or some other device could solve this problem and
simplify many alignment procedures. Many software additions are also possible,
principally the automation of servo tuning and alignment of both beams to the

reference detector.

6.2 Future Work

Due to time constraints on the interferometer and research time for this thesis
there remain a number of areas in which more work would be advantageous.

These can be broken up into theoretical and experiment areas as set out below.

6.2.1 Theoretical Investigation

The power spectra analysis presented in Chapter 2, while providing simple and

useful expressions for Zernike coefficient temporal power spectra, fails at very
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low and high frequencies. This is a result of the simplifying assumptions made
in order to achieve these results, primarily those of the inertial subrange and
Taylor’s hypothesis. The theory predicts infinite energy at zero hertz in the
low order power spectra. This is because we have let the outer scale length
approach infinity. At high frequencies the Taylor hypothesis breaks down, as
the smallest eddies will not remain ‘frozen’ as they pass by the aperture. While
other authors, including Colavita et al (1987), have investigated these effects,
a reformulation of these ideas in the mathematical framework of the theory in
section (2.3) would perhaps produce a model that is easier to apply directly to

adaptive optical systems.

One way of adapting these power spectra models would be to use more
complex expressions for the spatial power spectrum of refractive index changes.
Since the Kolmogorov model used in this thesis produced more than adequate
results for the production of the tilt correction servo and data analysis, a more
complex model was not investigated. Turbulence models including finite inner
and outer scale lengths and multiple turbulent layers (for example McKechnie (a)
(1991), McKechnie (b) (1991) and Andrews (1992)) would improve the predictive
power of this theory. As pointed out in section (2.3.2), any suitable expression

could be used and the same method followed to achieve a solution.

6.2.2 Experimental Investigation

More long term seeing data, using either of the methods described in Chapter 5,
will be collected as part of the normal observational routine of the interferometer.
When a large amount of such data have been acquired, over at least one full
year of regular observation, a more detailed statistical analysis of seeing at the
Narrabri site should be undertaken. Understanding the characteristics of the

site will aid in preparing observational schedules and planning individual runs.

Along with the standard measurements of seeing disc, more data con-
cerning the temporal power spectra of wavefront aberrations would aid in the
theoretical work outlined above. More power spectra measurements, including
piston phase, will help test these models as well as provide rq and v, , and per-
haps Lo and [y, estimates which can be compared to more direct measurements

of wind speed and current seeing disc size.

Due to limited access to the interferometer, it was not possible to measure
the affect of wavefront tilt on the visibility measurements obtained by SUSI
directly. When SUSI is fully operational, experiments should be performed to
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estimate the effect of changing tilt servo bandwidth, including servo parameter

and sample time changes, on visibility. An empirical confirmation of equation

(1.1) would also be of benefit.

6.3 Conclusion

Even with the limitations of the theoretical model and the hardware problems
discussed above, it is clear that the wavefront tilt correction servo described
in this thesis meets, and even exceeds, the design criteria set out in Chapter 1.
The theoretical methodology developed in Chapter 2 is flexible and easily applied
to empirical data and, while at present implemented using simple Kolmogorov
spectra, is open to any model of spatial refractive index statistics at ground

level.

The servo has performed well in good and bad seeing, has been used to
track stars of up to magnitude 6.5 and is predicted to reach magnitudes of up
to 8.5. This performance compares favourably with other similar systems. The
device was also shown to be capable of producing data for use in simple seeing
studies and more complex investigations of turbulence theory. So, not only is the
system capable of tracking a stellar image to within 0.1” at bandwidths of up to
70 Hz, aid in star guidance and optical alignment of the interferometer; it also
produces data useful for studying seeing and testing predictions of atmospheric

turbulence theory.

The methods used to analyse and build this device, most notably in the
areas of turbulence theory, the design of the quadrant detectors, the control
algorithm and the servo model, have immediate application for other existing
and proposed adaptive optics systems, not only in stellar interferometers, but

in all types of modern astronomical telescopes.



Appendix A

Optical Pyramid Alignment

The optical arrangement used to align the detectors is shown in figure (A.1).
Note that a number of flats between the aperture and the tilt mirror are left
out of this diagram. The 140m of optical path at this point includes the optical
path length compensator (OPLC). This is necessary due to the placement of the
tilt mirrors on the piers at the ends of the OPLC. While the long path length
through air does introduce some beam distortion due to turbulence inside the
enclosure, it also increases the precision of autocollimation adjustment. This
setup allows two methods of looking at the beam. The theodolite is focussed on
the image plane of the pinhole in the spatial filter, while the CCD will either
display an image of the aperture plane or the pin hole, depending on the position

of the lens in front of it.

Before alignment of the detectors it is necessary to ensure that the po-
larising cube, the autocollimating flat and the theodolite are in the correct po-
sitions. With the cube removed the autocollimating flat should be placed into
the beam. By monitoring the aperture plane with the CCD this mirror can be
adjusted until the reflected beam is superimposed onto the image of the aper-
ture. The aperture size used originally was 35mm imaged across approximately
400 pixels of the CCD. Assuming superimposition of these images to within 10
pixels, the very long optical path length of 140m then means that the flat mirror
will be autocollimating to within approximately one arcsecond. The lens in front
of the CCD should then be moved so an image of the pinhole can be seen on

the monitor screen.

Now that the reference beam is properly autocollimating the polarising
cube can be put onto the table. Using the three vertical mounting screws under

the cube an iterative approach must be used to ensure that it is aligned properly.
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Figure A.1: The optical layout used to adjust the optical pyramids. The
incoming light source has been passed through an optical spatial filter
and is the same reference beam used to align all the optics of the inter-
ferometer. The extra light path of 140m includes the optical path length
compensator. The beam is folded a number of times (not shown above)
and some flats have been left out of the diagram. The CCD allows in-
spection of the pinhole image or the aperture plane while the theodolite
is focussed on the pinhole image plane.
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The two steps are:

1. Adjust the vertical face until the reflection from the side facing the spatial
filter and pinhole is correctly autocollimating. The CCD image can be
used to check this.

2. Ensure that the beam going out to the quadrant detector is parallel to the

optical table surface. This can be done using a height gauge.

Repeat these two steps until both criteria are satisfied.

Two problems were encountered using these cubes. The reflection from
the side of the cube facing the spatial filter can cause confusion during alignment.
The cube was therefore rotated so that this reflected beam was offset slightly
with respect to the laser beam. In this way it is possible to distinguish between
the very bright image due to the autocollimating flat and the faint spot due
to the cube surface. This slight misalignment of the cube does not affect the
image quality, although it may shift the beam slightly to one side as the two
faces of the cube are parallel. This should have no bearing on the operation of
the tilt system or the interferometer as a whole. Secondly, when the reference
laser is sent through the cube an extra beam is reflected onto the detectors via
the splitting surface from the face of the cube opposite the detector. This extra
beam was removed by placing a dispersive gel (petroleum jelly) on the outside of

this face. Thus the beam hitting this surface is dispersed rather than reflected.

Once the cube is installed and properly aligned the theodolite has to be
positioned and centred on the pinhole. Place another flat mirror in the position
of the quadrant detector and remove the lens from in front and adjust it until it
is autocollimating. With the CCD still focused on the pinhole, multiple images
can be seen if the second flat mirror is not in the correct position. These extra
images are due to the fact that a light path exists via the cube such that the
two flat mirrors face one another. The second flat should be adjusted until only
one image of the pinhole is present on the CCD display. The theodolite can now
be put in place and set so that the cross hairs are centred on the image of the
pinhole. Note that you should always place neutral density filters into the beam
before looking through the theodolite. These cross hairs become the reference
position for all further alignment. At this point the alignment optics are ready,

and the alignment of the detectors themselves can commence.

The first stage of detector adjustment is to ensure that the horizontal

knife edge is parallel to the optical table and that the front face of the prism
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containing the horizontal edge is correctly autocollimating. Illuminate the de-
tector from behind using a diffuse light source and remove the lens and vertical
edge assembly from the detector table. Using a microscope on a sliding assembly
set at the correct height of 182mm, view the horizontal edge through the two
input holes at the front of the box containing the horizontal prism. The two
adjustment screws at the rear of the levelling table can be used to set the hori-
zontal edge at the cross-hairs of the microscope on both sides. With the diffuse
light source and the microscope removed, place the detector onto the table with
the central front input hole in the centre of the collimated beam. While looking
through the theodolite, centre the reflected light from the prism onto the cross
hairs by

1. rotating the detector bodily,

2. using the microcontrol screw on the front of the detector assembly to tilt

the prism.

These steps must be repeated until the horizontal edge is at the correct height,
parallel to the optical table, and the front surface is autocollimating. The entire

assembly should then be clamped onto the table.

Stage two of detector alignment is to place the vertical edge assembly
into position and ensure that the vertical edge is imaged onto the horizontal
edge and the prism containing the vertical edge is autocollimating. Once again
a two step iterative procedure is used. The first step is to focus the microscope
onto the horizontal edge through one of the four output holes at the back of
the detector with the diffuse light source at the front of the detector. The
vertical edge assembly can slide backwards and forwards. Move the vertical
edge assembly until the vertical edge is also in focus. The next step is to twist
the vertical edge assembly while observing the image in the theodolite, until the
prism is autocollimating in azimuth. If the elevation is incorrect the vertical
assembly can be levelled using the three adjustment screws on the mounting
frame. These steps must be repeated until the two edges, as viewed from the

rear of the detector, are sharply in focus with both prisms autocollimating.

A final adjustment of the vertical edge prism is required to ensure that the
optical axes of the two small lenses connected to the rear of the assembly block
are on axis in a vertical direction and that the vertical edge is perpendicular to
the horizontal edge. The microscope cross hairs should be set to the same height
used while adjusting the horizontal edge. View the two detector edges from the
front while back-lighting the pyramid with the diffuse light source. Two possible
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problems can be found in this manner. Firstly, the horizontal edge can appear
to be at the wrong height. This is caused by the lenses being off-axis in the
vertical direction. The three adjustment screws on the vertical assembly can
be used to correct this error. Secondly, the horizontal edge may appear to be
discontinuous through the vertical edge. This error is due to a tilt of the vertical
prism and is also corrected by using the three adjustment screws on the vertical
edge assembly. Once again these steps are repeated until the horizontal edge
appears at the correct position and is continuous through the vertical edge and

the vertical edge prism remains correctly autocollimated.

The last remaining step in detector alignment is to put into place the lens
that images the star onto the vertical edge. Care must be taken to ensure that
the collimated beam goes through the centre of this lens and that the lens is not
tilted with respect to the beam. Place the lens roughly in the correct position
and, using the micrometer slides, move the detector until all the light is going
through one quadrant. Use the microscope to view the two edges through the
output hole for this quadrant and focus it onto the two edges. Adjust the lens
to give a sharply focussed image. As a final check the detector assembly can be
moved around to ensure that the image is rapidly extinguished as the edge is

moved across it.

This entire procedure was performed on all three detectors. In the case
of the reference detector care was taken to centre the pyramid on the image.
This detector was never moved again and became the position reference for the

entire interferometer.



Appendix B

Circuit Diagrams

All circuit diagrams for the electronics of the system are presented below except
for those of the power supplies. The VH to XYZ conversion and high voltage
amplifiers were designed by Stephen Owens and came directly from the prototype
interferometer. The preamplifier circuit comes from the Radio Shack data sheet
(Radio Shack, 1988). The rest of the circuits were designed by the author
with the aid of Stephen Owens. The address decoding section is for use with
the AV68000 computer used in the system manufactured by Interrupt Systems,
Melbourne Australia. All diagrams were drawn using the ‘Protel’ software suite.
After the circuit diagrams there follows a tabulation of connecters used. Refer to

figure (3.13) for a schematic representation of how the components fit together.

Read Address (HEX) | Device Write Address (HEX) | Device
420000 Counter 0 | 420020 DAC 0
420002 Counter 1 | 420022 DAC 1
420004 Counter 2 | 420024 DAC 2
420006 Counter 3 | 420026 DAC 3
420008 Counter 4 | 420028 DAC 4
42000A Counter 5 | 42002A DAC 5
42000C Counter 6

42000E Counter 7

420010 Counter 8

420012 Counter 9

420014 Counter 10

420016 Counter 11
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Control Board

Pin | Outputs Pin | Inputs

Al +5 Volts C1 +5 Volts
A2 C2 | Clock Input
A3 C3 | 'EXTBUF
A4 | V ref Output C4 | ILDS

Ab Ch

A6 | 'INT5 C6 | !AUTOVECT
AT | Reset Counters C7 | IINTACK
A8 | Latch Counters C8

A9 C9

Al10 | +15 Volts C10 | +15 Volts
All Cl1

A12 | DAC 0 Latch Cl12 | A1

Al13 | DAC 1 Latch Cl13 | A2

Al4 | DAC 2 Latch Cl4 | A3

A15 | DAC 3 Latch Cl5 | A4

Al16 | DAC 4 Latch C16

A17 | DAC 5 Latch C17 | A17 (Module Address)
Al8 C18

A19 | Counter 0 Enable | C19

A20 | Counter 1 Enable | C20

A21 | Counter 2 Enable | C21

A22 | Counter 3 Enable | C22

A23 | Counter 4 Enable | C23

A24 | Counter 5 Enable | C24

A25 | Counter 6 Enable | C25

A26 | Counter 7 Enable | C26

A27 C27

A28 | -15 Volts C28 | -15 Volts
A29 C29

A30 C30

A31 C31

A32 | GROUND C32 | GROUND
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Dual Counter Boards

Pin | Outputs Pin | Inputs

Al +5 Volts C1 +5 Volts
A2 C2

A3 C3 | Input A

A4 C4 | Output Enable A
A5 C5 | Input B

A6 C6 | Output Enable B
AT CT7 | Reset Counters
A8 C8 | Latch Load
A9 C9

A10 | +15 Volts C10 | +15 Volts
All Cl1

Al12 | EDO (LSB) C12 | Do Not Use
Al13 | ED1 C13 | Do Not Use
Al4 | ED2 C14 | Do Not Use
Al5 | ED3 C15 | Do Not Use
Al6 | ED4 C16 | Do Not Use
Al17 | ED5 C17 | Do Not Use
Al8 | ED6 C18 | Do Not Use
A19 | ED7 C19 | Do Not Use
A20 | EDS8 C20 | Do Not Use
A21 | ED9Y C21 | Do Not Use
A22 | EDI10 C22 | Do Not Use
A23 | EDI11 C23 | Do Not Use
A24 | EDI12 C24 | Do Not Use
A25 | ED13 C25 | Do Not Use
A26 | ED14 €26 | Do Not Use
A27 | ED15 (MSB) | C27 | Do Not Use
A28 | -15 Volts C28 | -15 Volts
A29 C29

A30 C30

A3l C31

A32 | GROUND C32 | GROUND




Dual Dac Boards

Pin | Outputs Pin | Inputs

Al +5 Volts C1 +5 Volts
A2 C2

A3 | Output Voltage A | C3

A4 C4 | Input Latch A
A5 | Output Voltage B | C5

A6 C6 | Input Latch B
AT C7

A8 C8 | V ref Input
A9 C9

A10 | +15 Volts C10 | +15 Volts
All Cl1

A12 | Do not use C12 | EDO (LSB)
A13 | Do not use C13 | ED1

Al14 | Do not use Cl4 | ED2

A15 | Do not use C15 | ED3

A16 | Do not use C16 | ED4

A1T7 | Do not use C17 | ED5

A18 | Do not use C18 | ED6

A19 | Do not use C19 | ED7

A20 | Do not use C20 | ED8

A21 | Do not use C21 | ED9

A22 | Do not use C22 | ED10

A23 | Do not use C23 | ED11 (MSB)
A24 C24

A25 C25

A26 C26

A27 C27

A28 | -15 Volts C28 | -15 Volts
A29 C29

A30 C30

A3l C31

A32 | GROUND C32 | GROUND
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50 Way Connecter

Pin | Data lines | Pin | Address lines
1 GROUND | 26 | GROUND

2 27

3 EDO 28 | AUTOVECT
4 ED1 29

5 ED2 30 | INTACK

6 ED3 31

7 ED4 32 | INT5H

8 ED5 33

9 ED6 34

10 | ED7 35 | Al

11 | ED8 36 | A2

12 | ED9 37 | A3

13 | EDI10 38 | A4

14 | EDI1 39

15 | EDI2 40

16 | ED13 41

17 | ED14 42

18 | ED15 43

19 44 | A17 (Module Address)
20 45

21 | 'EXTBUF | 46

22 47

23 | 'LDS 48

24 49

25 | GROUND | 50 | GROUND




Appendix C

Discriminator Weighting

Factors

In order for the tilt correction servo to function correctly, the weighting factors
described in section (3.3.1) must be measured and put into the software. The
procedure for setting these calibration factors can be broken up as follows: Set-
ting all defaults to 1 for the weighting factors, measuring the new weight factors
and implementing them as software defaults. These steps will be discussed in

order.

C.1 Measuring the Weighting Factors

The procedure for measuring the weighting factors is identical in all three de-
tector systems, so only the reference system will be discussed. With a piece of
white card placed between the photomultiplier housing and the optical pyramid,
use a flat mirror, as close as possible to the detector to avoid internal turbulence
problems, to auto-collimate the beam. This mirror should be adjusted until the
four spots of light appear to have the same intensity on the white card. Now
place some neutral density into the beam (at least ND 4, ND 5 is a safe place
to start) and remove the white card. With the wobbler software running, all
the lights off and the high voltage on, put the wobbler software into test mode.
This can be done via the menu system or by typing test on the command line.
Ensure both the north and south systems are OFF. The function you require to
measure and adjust weighting factors is called monitor. To look at the reference
system, type monitor reference. You will be faced with a display showing the

current counts, raw weighting factor (expressed as a factor of 256 in brackets)
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and the normalised weighting factors (a floating point number) for each channel.

The follow keys are also active:

e = Set number of samples over which to average count rates. The default
is 1. It is recommended that you use an average over a large number of
samples to measure weighting factors. An average over 1000 samples, that
is 1 second, seems to work well. Remember that the software only polls the
keyboard between each of these averages so if you have set the averaging
time to a large number the computer will not respond to any key strokes
for some time. The best way I have found to do this is to set the averaging
time to the required value and then immediately type the = key again.
In this way the computer will collect the required number of samples and
return to this function. You can then write down the resulting numbers

and reset the sample period to 1 to allow other functions to be used.

ESCAPE exits the monitor function.

e k increases the weighting factor for the channel currently highlighted.

o j decreases the weighting factor for the channel currently highlighted.

RETURN changes channels.

Before taking any measurements, set all the weighting factors to 1.0. This
must be done with a combination of the j, k and RETURN keys. Alternatively,
write 256 directly to the appropriate RTP registers listed below. You are now
ready to measure the weighting factors. Take a sample of the counts in all four
channels over a large number of samples. If the weights are correct the counts
should be the same in all four channels. If the counts are not the same the new

weighting factors are given by

Ny
Wg = —/—
B N,
Ny
We = 24
c No
Ny
Wp = —/— C.1
D N, (C.1)

where Ny are the counts received in channel X. The weighting factor of channel
A is 1.0 by definition. In order to test these new values, set the weight factors
in the software to the new values by again using the j, k and RETURN keys, take
a new sample of the count rates and check that all four channels produce the

same values. Before leaving this function, write down the raw weighting factors
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printed in brackets below those you have just entered. These are required for

inserting into the software to implement these new values as the defaults.

Repeat this procedure for all three detector systems. A good test of
the new weighting factors is to move the detector up and down and left and
right while checking that the detector output reports only vertical or horizontal

movement. Any axis coupling is the result of incorrect weighting factors.

C.2 Setting New Default Values in the Soft-

ware

Now that the new weighting factors are known they should be inserted into the
software, otherwise you will have to manually set them every time the system is
booted up or add them to the autolist. You will need the un-normalised values
written down in the last section. If you do not have these values simply multiply

the normalised weighting factors by 256. The procedure is then:

e Go to the /home/susi/wobble/av68k directory and use sccs to check out
the file wobble.c for editing.

e The first function in this file is called set up_initial values() and con-
tains the code that sets up the weight factor defaults. Edit this function

and insert the new values. The piece of code should look like:

#ifdef TEST

WGHT_B_N = 256; /* Weight of 1.0 (*278) */
WGHT_C_N = 256; /* Weight of 1.0 (*278) */
WGHT_D_N = 256; /* Weight of 1.0 (*278) %/
WGHT_B_S = 256; /* Weight of 1.0 (*278) %/
WGHT_C_S = 256; /* Weight of 1.0 (*278) %/
WGHT_D_S = 256; /* Weight of 1.0 (*278) %/
WGHT_B_R = 256; /* Weight of 1.0 (*278) */
WGHT_C_R = 256; /* Weight of 1.0 (*278) */
WGHT_D_R = 256; /* Weight of 1.0 (*278) */
#else
WGHT_B_N = 161;
WGHT_C_N = 259;
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WGHT_D_N = 164;
WGHT_B_S = 409;
WGHT_C_S = 256;
WGHT_D_S = 410;
WGHT_B_R = 64;
WGHT_C_R = 359;
WGHT_D_R = 64;

#endif

where the numbers above are the weighting factors at the time of writing.
e Recompile and release the software.
e If all has gone well check the file wobble.c back into sccs.
The new weighting factors are now the default values. It is probably best to
check the new software by completely re-booting the wobbler system.

Remember that these weighting factors can be changed at any time by
using the monitor command or by simply writing the raw normalisation factors

directly to the appropriate RTP registers. These registers are:

#define N_WGHT_B_N
#define N_WGHT_C_N

/* Weight factor (* 256) for North B */
/* Weight factor (* 256) for North C */
#define N_WGHT_D_N /* Weight factor (* 256) for North D */
#define N_WGHT_B_S /* Weight factor (* 256) for South B */
#define N_WGHT_C_S 10 /* Weight factor (* 256) for South C */
#define N_WGHT_D_S 11 /* Weight factor (* 256) for South D */
#define N_WGHT_B_R 13 /* Weight factor (* 256) for Reference B */
#define N_WGHT_C_R 14 /* Weight factor (* 256) for Reference C */
#define N_WGHT_D_R 15 /* Weight factor (* 256) for Reference D */

© N o O



Appendix D

Optimised Servo Parameters

Tabulated below are the optimised servo parameters for a range of sample times.
These values have been chosen to yield a specified frequency response while
having a resonance no greater than 3dB. Bandwidths move up in steps of 5Hz,
except for the last maximum bandwidth for each sample time. Refer to section
(4.2.5) for a detailed discussion on how these numbers can be generated. The
results tabulated below are for use with the (recommended) 35mm aperture. If
another aperture is used, multiply the C; value by the appropriate correction
value, tabulated in table (D.1).

Aperture (mm) | Cy correction term
20 1.69
25 1.39
30 1.17
35 1.00
40 0.87

Table D.1: The multiplicative correction factor of servo parameter Cy
for different aperture diameters. The numbers here are a result of the
calculations in section (3.1.3).
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Bandwidth | ;) Cy Track | Track | Track | Measure | Measure
foase Gainres | fres | f-sza | Gainres | f-34B
Hz dB Hz Hz dB Hz
5.0 0.007 | 0.08 | -0.13 <1.0] 5.9 -0.13 5.9
10.0 0.014 | 0.01 | -0.02 < 1.0 ] 139 -0.02 14.4
15.0 0.027 | 0.28 | -0.01 <1.0] 23.5 -0.01 25.8
20.0 0.034 | 0.12 0.00 < 1.0 ] 37.1 0.00 44.2
25.0 0.074 | 0.93 0.00 < 1.0 | 45.0 0.00 56.9
30.0 0.095 | 0.96 0.00 8.1 56.6 0.37 75.5
35.0 0.115 | 0.95 0.15 26.3 | 68.2 1.04 95.4
40.0 0.135 | 0.92 0.44 37.3 | 79.6 1.83 117.4
45.0 0.155 | 0.88 0.78 46.4 | 91.0 2.66 142.5
47.6 0.175 | 0.97 0.90 49.8 | 95.9 297 161.8

Table D.2: Optimal servo parameters for a range of bandwidths are shown
here for a sample time of 1ms and an aperture diameter of 35mm on the
optical table.

Bandwidth | C; Cy Track | Track | Track | Measure | Measure
foase Gainres | fres | f-sza | Gainres | f_34B
Hz dB Hz Hz dB Hz
5.0 0.014 | 0.05 | -0.11 <1.0] 6.3 -0.11 6.4
10.0 0.034 | 0.21 | -0.02 < 1.0 | 16.0 -0.01 16.8
15.0 0.047 | 0.05 0.00 <1.0] 315 0.00 35.7
20.0 0.115 | 0.84 0.00 4.6 44.5 0.15 53.3
25.0 0.162 | 0.97 0.47 28.5 | 59.6 1.24 74.1
30.0 0.203 | 0.96 1.40 40.8 | 73.5 2.73 94.4

Table D.3: Optimal servo parameters for a range of bandwidths are shown
here for a sample time of 2ms and an aperture diameter of 35mm on the
optical table.
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Bandwidth | C; Cy Track | Track | Track | Measure | Measure
f-as0 Gainres | fres | f-sza | Gainres | f-34B
Hz dB Hz Hz dB Hz
5.0 0.020 | 0.02 | -0.09 <1.0]| 6.8 -0.09 6.9
10.0 0.047 | 0.09 | -0.01 <1.0| 195 -0.01 20.7
15.0 0.114 | 0.65 0.00 5.5 36.8 0.09 41.6
20.0 0.189 | 0.93 1.01 28.6 | 53.4 1.70 61.9
22.7 0.223 | 0.95 1.99 354 | 61.2 2.96 79.7

Table D.4: Optimal servo parameters for a range of bandwidths are shown

here for a sample time of 3ms and an aperture diameter of 35mm on the

optical table.

Bandwidth | C; Cy Track | Track | Track | Measure | Measure
f-as0 Gainres | fres | f-sza | Gainres | f-34B
Hz dB Hz Hz dB Hz
5.0 0.027 | 0.00 | -0.08 <1.0| 74 -0.08 7.5
10.0 0.061 | 0.01 0.00 < 1.0 | 24.0 0.00 25.7
15.0 0.189 | 0.98 0.70 21.3 | 41.8 1.09 16.3
18.1 0.236 | 0.98 2.27 30.0 | 51.3 2.98 61.0

Table D.5: Optimal servo parameters for a range of bandwidths are shown
here for a sample time of 4ms and an aperture diameter of 35mm on the

optical table.

Bandwidth | C; Cy Track | Track | Track | Measure | Measure
J-as0 Gainres | fres f-34p | Gainres J-348
Hz dB Hz Hz dB Hz
5.0 0.041 | 0.18 | -0.07 <1.0| 7.9 -0.07 8.0
10.0 0.122 | 0.59 0.00 < 1.0 | 26.5 0.02 28.4
15.0 0.236 | 0.93 2.46 25.8 | 43.9 2.99 47.6

Table D.6: Optimal servo parameters for a range of bandwidths are shown
here for a sample time of hms and an aperture diameter of 35mm on the

optical table.
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Bandwidth | C; Cy Track | Track | Track | Measure | Measure
J-as0 Gainres | fres J-34p | Gainres J-34n
Hz dB Hz Hz dB Hz
5.0 0.047 | 0.12 | -0.05 <1.0| 838 -0.05 8.9
10.0 0.182 | 0.95 0.39 13.4 | 29.0 0.54 30.7
12.8 0.243 | 0.95 2.55 22.6 | 38.3 2.96 40.8

Table D.7: Optimal servo parameters for a range of bandwidths are shown
here for a sample time of 6ms and an aperture diameter of 35mm on the
optical table.

Bandwidth | C; Cy Track | Track | Track | Measure | Measure
J-as0 Gainres | fres J-34p | Gainres J-34n
Hz dB Hz Hz dB Hz
5.0 0.054 | 0.08 | -0.04 <1.0] 9.7 -0.04 9.9
10.0 0.216 | 0.94 1.43 17.0 | 30.5 1.67 31.9
11.2 0.243 | 0.92 2.65 20.1 34.0 297 35.7

Table D.8: Optimal servo parameters for a range of bandwidths are shown
here for a sample time of 7ms and an aperture diameter of 35mm on the
optical table.

Bandwidth | C; Cy Track | Track | Track | Measure | Measure
J-as0 Gainres | fres J-34 | Gainres J-34B
Hz dB Hz Hz dB Hz
5.0 0.061 | 0.04 | -0.03 < 1.0 | 11.0 -0.03 11.2
10.0 0.250 | 0.96 2.64 17.9 | 304 2.90 31.6

Table D.9: Optimal servo parameters for a range of bandwidths are shown
here for a sample time of 8ms and an aperture diameter of 35mm on the
optical table.
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Bandwidth | C; Cy Track | Track | Track | Measure | Measure
J-as0 Gainres | fres f-34p | Gainres J-348
Hz dB Hz Hz dB Hz
5.0 0.068 | 0.01 | -0.02 < 1.0 | 12.2 -0.02 12.5
8.9 0.216 | 0.68 2.78 16.2 | 27.5 2.99 28.4

Table D.10: Optimal servo parameters for a range of bandwidths are
shown here for a sample time of 9ms and an aperture diameter of 35mm
on the optical table.

Sample | Band- C4 Track | Track | Track | Measure | Measure
time width Gainres fres f—BdB Gainres f—SdB
ms f_4s50Hz dB Hz Hz dB Hz
0.010 8.1 0.230 | 0.77 2.77 14.8 | 25.2 2.95 25.9
0.015 5.6 0.216 | 0.62 2.90 104 | 17.7 2.99 17.9
0.020 4.3 0.236 | 0.74 2.95 8.0 13.6 3.00 13.7
0.030 2.9 0.149 | 0.09 2.96 5.4 9.2 2.98 9.2
0.035 2.5 0.142 | 0.04 291 4.6 7.9 2.93 7.9
0.040 2.2 0.142 | 0.03 2.98 4.1 7.0 2.99 7.0
0.045 2.0 0.162 | 0.17 2.97 3.6 6.3 2.99 6.3
0.050 1.8 0.142 | 0.03 2.90 3.3 5.6 2.90 5.6

Table D.11: Optimal servo parameters for and an aperture diameter of
35mm on the optical table and sample times of 10ms and greater. As the
bandwidth becomes so small at these sample times, only the ‘best’ servo
parameters have been listed.




Appendix E

Time Line and Important Dates

February 1988
April 1988

July 1988
December 1988

January-August 1989

September 1989
October 1989

November 1989
January 1990
May 1990
January 1991
March 1991

August 1991

December 1991
January-April 1992

Research work commenced.

Counters/DACs and interface electronics
constructed.

PMT housing modified and wired up.
Preamp/Discriminator design and PC board layout
finalised.

AV68000 computer integrated into system and the
programming platform developed.

Quadrant detector alignment procedure developed.
High voltage amplifiers complete. Test system in-
stalled on optical table.

First successful test of tilt servo on optical table.
Begin installation of tilt system at Narrabri.

System installation at Narrabri begins. Mirror cali-
bration experiments performed.

SUSI first light. Acquisition system and siderostats
working.

Tilt system first used to track stellar image of o Cen.
Tilt servo and star guidance system fully integrated.
Extensive tests of acquisition and tilt servo system
performed. First stellar fringes obtained with SUSI.
Quadrant detector noise tests performed.

Seeing data collection at Narrabri.
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