SYLLABUS: ASTRONOMY 1010, FALL 2009

ASTRONOMY OF THE SOLAR SYSTEM

Prof. Paul J. Wiita

Lecture Timings: Tuesdays & Thursdays 1:00–2:15 PM
Room: 200 General Classroom Building

To contact Dr. Wiita: Rm. 715 One Park Place; Ph: 404-413-6022;
e-mail: wiita@chara.gsu.edu; URL: www.chara.gsu.edu/~wiita/
Office Hours: Tuesdays, Wednesdays and Thursdays, 11:00 AM – noon, &
by appointment. Note that I will not normally be in the office on Fridays
this semester, as I will be spending most weekends in Princeton, NJ with
my wife. If you need to contact me on those Fridays or any evening you can
call me at 609-273-7177 or, preferentially, e-mail me. I will be reading my
e-mail frequently on all Fridays and sporadically on Saturdays and Sundays.
I will communicate with you via your student e-mail account at GSU, so you
should either check it frequently or arrange to forward mail sent there to
your preferred e-mail address.

Required Textbook: The Cosmic Perspective, 5th Edition, by J. Ben-
nett, M. Donahue, N. Schneider, & M. Voit, Pearson / Addison Wesley (2008)

GENERAL INFORMATION:

The Cosmic Perspective is an excellent text, but it does not include all
the material in my lectures and, I will not cover everything in the text. Many
of you might also benefit from looking at texts with different viewpoints;
another excellent book is Astronomy Today by Chaisson & McMillan.

All students are expected to be familiar with the Policy on Academic
Honesty, section 1380 (pages 83–87) of the Undergraduate Catalog, which
can be downloaded from the web at:
http://www.gsu.edu/es/catalogs_courses.html ;
furthermore, you are expected to abide by it. If you are caught cheating you
will earn a zero on that assignment, quiz or exam, and the penalties can be
substantially more severe.

You are expected to be considerate and respectful of other students; talk-
ing (other than to ask questions of me) or eating in class are patent forms of
discourtesy. **Computers, mobile phones and other electronic devices are to be turned off while in class.** I will confiscate any devices making noise during class. If you find yourself distracted by the behavior of other students and I do not notice that disruption, please bring that discourtesy to my attention.

COURSE GOALS:

This is the first of two introductory astronomy courses that include a weekly laboratory. You will begin your study of the nature of the entire universe, starting with the basic knowledge of the night sky that most civilizations here on earth managed to acquire. We will then discuss the revolutionary view that the Sun, not the Earth, is the center of the solar system. Fundamental physics, including the basics of gravity, will next be introduced, since this is the force that rules the structure and orbits of planets, stars and galaxies. We will then discuss the properties of light, since it is mainly through radiation that astronomers can gather information about planets, asteroids, stars, galaxies and the universe as a whole. The remaining topics are: properties of and history of the solar system; nature of the terrestrial planets; nature of the giant planets and their moons and rings; smaller bodies within the solar system; extrasolar planets. Aside from learning a significant amount of exciting and important factual material, comprising a summary of our best current knowledge of astronomy, students should come away from this course with an appreciation of the techniques and thinking styles employed by scientists when they attempt to understand what is going on in very distant places which they cannot actually visit to perform experiments. **As this is a natural science course, quantitative reasoning will be used frequently;** however, the only mathematics you are expected to know is basic algebra.

COURSE REQUIREMENTS:

You are responsible for all the material in the assigned readings and in the lectures unless you are specifically told otherwise. While attendance at every lecture is not required, it is expected, and prompt attendance will be a factor in grading. It will be difficult for any student to get a grade better than a C if (s)he does not attend nearly every class. If you must miss a lecture, you should be certain to hand copy the notes of another student as soon as possible. This active copying is far more conducive to learning the
material than making an electronic copy and just reading it.

A summary of most class notes, as well as assignments and answers to assignments, will be posted directly to my web-site, at http://www.chara.gsu.edu/~wiita/teaching.html. These abbreviated notes will not substitute for the need to attend (and pay attention in) class, but they will allow you to check that you have not made significant errors in your personal notes and to fill in any gaps in that note taking. Note that I do not use uLearn; my personal web-site, along with the website for Mastering Astronomy, provides optimum functionality for this course.

You are strongly encouraged to ask questions before, during or after class if something is not clear. If my office hours conflict with your schedule, just make an appointment to meet with me. You are also welcome to ask questions of your laboratory instructors at the end of a lab period. I strongly urge you to read the assigned chapter before the corresponding lecture(s). As you do so, note the points with which you have difficulty, so that if they are not clarified during the class you can immediately raise questions. Soon after the lecture, carefully (re-)read the corresponding text sections to reinforce the material. DO NOT WAIT UNTIL A DAY OR TWO BEFORE AN EXAM TO TRY TO CRAM THIS MATERIAL INTO YOUR BRAIN. It won’t work!

I hope that most students will attend my office hours during the semester. Office hours are designed to accomplish these purposes: students who are very interested in the subject can discuss advanced topics with the professor; the professor can answer questions from students that were not adequately clarified by a careful rereading of the text and notes; we can discuss how best to improve your results in this course.

There will be three one-hour exams. All of the questions will be of a short answer (true/false, multiple choice, matching, fill-in-the-blank, etc.) variety. No more than 25% of any exam will be comprised of questions involving mathematics. The examination questions will stress the material covered in class, so punctual attendance and careful notetaking will be keys to doing well; however, there will typically be a few questions asked that are covered in the text but not in the lectures, so don’t neglect your reading.

The average student will do well in this course if (s)he devotes five to six hours a week (outside of lecture and lab) to reading the textbook, doing the web-based assignments and reviewing her or his notes. If you are not prepared to devote this much time to studying, you really should not be
taking a science course this semester. I will only assign a modest number
of questions to be graded, but you should be sure to answer many of the
questions at the end of each chapter to test your knowledge of the material
well in advance of exams.

GRADING:

Each of the three hour exams will count as 18% of your grade. Several pop
quizzes will count for 4% of your grade, web-based assignments will comprise
a total of 17%, and your lab work will count for the remaining 25%. (I will
be out of town during the final exam period so there will be no cumulative
final exam.)

Scheduled Exams: There will be no make-up exams; however, I will
drop the lowest of the three one-hour exam grades in computing your final
grade, so if you miss one of the hour tests that will count as your lowest score
and the other two tests will each count for 27% of your grade. If you miss
two of them, you’ll receive a zero for one, and the remaining exam will still
contribute a maximum of 27 out of 100 points, so it will be impossible to get
a B and very difficult to get a C in the course. Therefore, don’t get sick on
more than one exam date.

Quizzes: There can be no make-up for an unannounced quiz, so missing
one yields a zero; this provides an incentive for attending every class. I plan
to give each of these quizzes at the beginning of a class, so they are also an
incentive for being punctual. I won’t grade all of them, so a few will just
serve as a check that you were there, but most of them will be graded by
hand to ensure that you are keeping up with the material. The answers will
usually be given to you immediately after the quiz is collected so you will
know your grade for that quiz, and I will return them with the next exam or
during office hours.

Assignments: Note that all assignments will involve the textbook web-
site, Mastering Astronomy, at www.masteringastronomy.com where this
course ID is MAWIITA1010F09. You should register promptly, using the
code from the Student Access Kit that should have come with your book. If
you bought a used copy you will need to purchase access online at that site.
Set up your student ID for this course in the form LastnameFirstname (with
no spaces between them). The first assignment is a training exercise for the
site and won’t be graded. Subsequent assignments will be graded and must
be submitted by the deadlines associated with the assignments and posted
on our Mastering Astronomy web-page

An average grade of 93% or better guarantees an A, an average grade of \(\geq 90\% \) but \(< 93\% \) is an \(A^- \), between 90% and 87% will produce a \(B^+ \), one between 83% and 87% will give a B, while an average grade of \(\geq 80\% \) but \(< 83\% \) is an \(B^- \), below 80% and greater than or equal to 77% will produce a \(C^+ \), one between 73% and 77% will give a C, and \(\geq 70\% \) but \(< 73\% \) is an \(C^- \). At the low end, a grade between 60% and 70% is enough for a D (no plus/minus is allowed on D’s) and an average \(< 60\% \) produces an F. If the mean class grade on an exam falls below 70% I will ‘curve’ the scores so as to bring the mean up to between 70% and 75%.

THE LABORATORY COMPONENT OF THIS COURSE:

When you registered for this course you automatically signed up for one of the associated lab sections, to be held in Room 528 Kell. Before attending the first lab (on August 24th–28th) you must have the lab manual. Bring a protractor, drawing compass, cm ruler, calculator and the manual to your first lab. Dr. John Wilson (Rm. 713 One Park Place, Ph: 404-413-6052, wilson@chara.gsu.edu), is in overall-charge of the labs. Either Dr. Wilson or one of the Graduate Laboratory Assistants will be your lab instructor. If you have any questions about the labs, be sure to ask your instructor first, then Dr. Wilson (if he isn’t your instructor); contact me in this regard only after speaking with him. Computer number 80123 corresponds to a lab on Wednesdays from 2:30–4:20 PM, 80124 to Thursdays from 3:00–4:50 PM, 80125 to Fridays from 10:00–11:50 AM; and 80126 to Tuesdays from 3:00–4:50 PM, and 80127 to Mondays from 2:30–4:20 PM.

Any missed lab counts as a zero in your lab average; however, one missed lab is effectively allowed in the sense that your lowest grade will be dropped in computing your lab grade. But any missed lab in excess of one per semester counts as a zero, and will have a substantial negative impact on your lab grade, which in turn, you will recall, is worth 25% of your course grade.

You are also required to attend an observing session, the schedule of which will be announced in the labs. The smart student does this early in the semester, since they can get very crowded toward the end of term, or bad weather can cause their cancellation. Finally, note that while you are expected to complete every lab you absolutely must attend at least 7 labs and an observing session in order to get credit for this laboratory science course (i.e., if you miss half or more of the labs, you can’t pass the course,
ASTR 1010 COURSE SCHEDULE

<table>
<thead>
<tr>
<th>Date(s)</th>
<th>Topic</th>
<th>Sections or Chapter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 18</td>
<td>Introduction & The Nature of Science</td>
<td>Ch. 1, §3.4</td>
</tr>
<tr>
<td>Aug. 20, 25, 27</td>
<td>The Night Sky</td>
<td>2, S1</td>
</tr>
<tr>
<td>Sept. 1, 3, 8</td>
<td>Historical Astronomy to Kepler</td>
<td>3</td>
</tr>
<tr>
<td>Sept. 10, 15, 17</td>
<td>Motions, Gravity and Newton</td>
<td>4</td>
</tr>
<tr>
<td>Sept. 22</td>
<td>FIRST HOUR EXAMINATION</td>
<td>1–4, S1</td>
</tr>
<tr>
<td>Sept. 24, 29, Oct. 1</td>
<td>Light and Electromagnetic Radiation</td>
<td>5</td>
</tr>
<tr>
<td>Oct. 6, 8</td>
<td>Telescopes and Astronomical Instruments</td>
<td>6</td>
</tr>
<tr>
<td>Oct. 13*, 15</td>
<td>Overview of the Solar System</td>
<td>7</td>
</tr>
<tr>
<td>Oct. 20</td>
<td>Formation of the Solar System</td>
<td>8</td>
</tr>
<tr>
<td>Oct. 22</td>
<td>Planetary Interiors and Surfaces</td>
<td>9.1–9.2</td>
</tr>
<tr>
<td>Oct. 27</td>
<td>SECOND HOUR EXAMINATION</td>
<td>5–8</td>
</tr>
<tr>
<td>Oct. 29, Nov. 3</td>
<td>Geology of Terrestrial Planets</td>
<td>9.3–9.6</td>
</tr>
<tr>
<td>Nov. 5, 10</td>
<td>Terrestrial Planetary Atmospheres</td>
<td>10</td>
</tr>
<tr>
<td>Nov. 12, 17</td>
<td>Jovian Planets</td>
<td>11</td>
</tr>
<tr>
<td>Nov. 19</td>
<td>Asteroids, Comets & Meteoroids</td>
<td>12</td>
</tr>
<tr>
<td>Nov. 24, 26</td>
<td>Happy Thanksgiving!</td>
<td></td>
</tr>
<tr>
<td>Dec. 1</td>
<td>Planets around Other Stars</td>
<td>13</td>
</tr>
<tr>
<td>Dec. 3</td>
<td>THIRD HOUR EXAMINATION</td>
<td>9–13</td>
</tr>
</tbody>
</table>

*Oct. 14th is the last day to withdraw with a grade of W possible; read and understand all of Section 1332.10 of the Undergraduate General Catalog.

Of course, **modifications to the above schedule may be necessary.**

even if you have a 100% average on the exams, assignments and quizzes).