Neutron Stars & Pulsars

Equation of State: "Intermediate density" from
\(\rho_{\text{nuc}} = 2.8 \times 10^{14} \text{ g cm}^{-3}\) is probably well modeled by Baym-Bethe-Pethak EoS. Nuclei, e's & free \(n\)'s all contribute, but as \(\rho\) nuclei get more & more n rich, nuclei's stability \(\nabla \rho \to 0\) dissolve \(\to\) whole star is a giant nucleus.

Impressions on SEMF of HW:
1) Matter inside nuclei \& free n gas outside ... "Compressible liquid drop" assumed.
2) Surface energy includes free \(n\)'s \(\Rightarrow\) reduced surface energy term.
3) Nuclear lattice Coulomb energy included \(\nabla\) properly.

Above \(\approx 5 \times 10^{14} \text{ g cm}^{-3}\) can't try to use liquid drop ... \(\nabla\) but even before must try to incorporated NUCLEAR FORCE

Unfortunately, nuclear forces are non-linear \& don't obey superposition. \(\Rightarrow\) 3-body \& multi-body effects enter. But for \(\rho \approx \rho_{\text{nuc}}\) 2-body forces do dominate. Experiments \(\Rightarrow\) force invariant w.r.t. rotations, inversions \& time reversal; also not very \(\nabla\) dependent \(\Rightarrow\) \(\nabla \to 0\) \(\nabla\)

\[
V = V_1(r) + V_2(r)(\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_3(r)\left[3(\vec{\sigma}_1 \cdot \vec{n})(\vec{\sigma}_2 \cdot \vec{n}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2\right]
\]

\(\vec{\sigma}_i = (\sigma_x, \sigma_y, \sigma_z)\), \(\sigma_x = (0,1), \sigma_y = (0,-1), \sigma_z = (1,0)\)

\(\sigma \cdot \sigma = 2\). \(\vec{\sigma}^2 = 2\).

\(\sigma\) are Pauli spin matrices.

But additional exchange interactions changing isospin.

\(T = 0 \Rightarrow T_3 = 0\): np only, \(T = 1\) (symmetric) \(\Rightarrow T_3 = \pm 1\)

\(\forall \) np, \(\forall n\).
All this \Rightarrow force must saturate \Rightarrow energy & volume $\propto A$. (Analogous to $2H \Rightarrow H_2$ but H_3 not stable). Nuclear force based on 3 aspects: 1) Exchange forces 2) Pauli exclusion principle 3) Repulsive core of the potential.

Above 10^{15} g cm$^{-3}$ relativistic effects & resonances are important - more uncertainty, but less important.

Simple form of nucleon-nucleon interaction:

Attractive outer part & repulsive core: Fix params. from N-N scattering & other experiments on compressibility, saturation energy, symmetry energy.

Examples: Reid pot is "soft" or very attractive.

Betho & Johnson, Welecko, Pandharipande & Smith have "stiffer" EoS w/ repulsive part dominant for $p > \rho_{\text{ave}}$.

Stiffer EoS \Rightarrow 1) More support against collapse: M_{max}, $a)$ $p_c \downarrow$ $b)$ $\rho_c \uparrow$ $c)$ crust thicker. We hope that data on NAs will constrain models in ways nuclear physics experiments can't.

Interaction Energy \textbf{\textit{Yukawa potential}}

$$V_{1,2} = \frac{\pm g^2 e^{-r/\lambda}}{r} \quad \lambda = \text{Compton wavelength} \quad \text{of field quanta.}$$

\pm : repulsive, vector; $-$ attractive, scalar

General form $\phi = \frac{\pm g^2 e^{-r/m}}{r} \quad (m = \frac{1}{2}) \quad (1)$

Note: $\lambda = 1.4 \, \text{fm} \Rightarrow m_{\text{quanta}} = 140 \, \text{MeV} \Rightarrow \lambda = 137$ for E_cm

A STRONG FORCE: $8^{-3} A \sim 5-20$ while $\frac{e^2}{\hbar c} = \frac{1}{\lambda}$ for E_cm
Simple analysis: \(E_{\text{tot}} = \sum E_{\text{pair}} \). Assume a uniform distribution, so ignore correlations from interactions.

For \(R \gg \lambda \):

\[
E_V = \frac{1}{2} \sum V_{ij} = \frac{1}{2} n^2 g^2 \int \frac{e^{-m r}}{r_{ij}} \, dV_i dV_j
\]

Pick origin \(O \) & integrate on shells. Ignore surf. effects \((R>>m)\).

\[
\int_0^\infty e^{-\frac{m r}{R}} \frac{4\pi r^2 \, dr}{r} = 4\pi \int_0^\infty e^{-\frac{m r}{R}} \frac{dr}{r} = \frac{4\pi}{m R}
\]

\[
E_V = \frac{1}{2} n^2 g^2 \pi^2 V \Rightarrow E = E_{\text{kin}} + 2n^2 g^2 \pi^2 V^2
\]

But:

\[
E_{\text{kin}} = \frac{n m c^2 + \frac{3}{10} \left(\frac{3 m^2}{5} \right)^{\frac{5}{3}} \pi^2}{\mu} n^5/3 \quad (NR)
\]

\[
= \frac{(3m)^{\frac{5}{3}}}{\pi^2} \, \frac{4\pi}{3} n^5/3 \quad (UR)
\]

Now: \(P = n^2 \frac{dE}{dn} \) so inc. both \(\text{kin} \) \& \(V \) terms:

\[
P = Kn^5/m^2 + 2n^2 g^2 \pi^2 V^2
\]

\begin{itemize}
 \item A.\, For \(P \)\, the attractive part of the nuclear force softens the eqn, speeding collapse. But later, the repulsive part enters, hardening the EoS.
 \item As \(n \to \infty \), \(P = E_{\text{kin}} \to \infty \) & \(n \)\, and \(P \to E = P c^2 \).
 \item But since: \(c_s = (\frac{dE}{dp})^{1/2} \), \(c_s \to c \) while for an ideal relativistic gas (e.g., photons) \(P \to \frac{E}{3} \Rightarrow c_s \to \sqrt{3} \).
\end{itemize}

This high \(c_s \) allows high total masses, but constraining \(c_s \leq c \) then, depending on \(m \), up to which you assume EoS is well known, Ruffini & Rhodes (1974) set from UML for \(M_T \) from \(3-5M_0 \).

Interesting to note that lowest order QM approach (Heitler) exactly the same result, i.e., if spin exchange allowed: \(E = E_{\text{kin}} \pm \mu \nu g^2 \pi^2 R^2 \). Lower spin force repulsive, but raises for attractive force.
Improvements require including multi-particle wave functions via perturbation or cluster analysis. Most general is a variational technique, with assorted Yukawa-like terms.

\[P = 364 \, \text{N} \, \text{m}^{-1} \, \text{MeV} \, \text{fm}^{-3} = 5.85 \times 10^{25} \, \text{N} \, \text{m}^{-1} \, \text{dyne} \, \text{cm}^{-2} \]

\[C_s^2 = \frac{4P}{3\rho} = \frac{1}{1.01 + 0.568 \, \rho} \]

\[\text{with} \, \rho \geq 1.54 \quad \text{for} \quad 0.1 \leq \rho \leq 3 \, \text{fm}^{-3} \]

\[\text{Try to include } N, Z \text{ & } \Delta \text{ particles: net effect slight softens EoS -- probably ... but hard to be sure.} \]

Real problems involve:

1) \((\Delta, 1236 \, \text{MeV}, t = \frac{1}{2}, J = \frac{3}{2})\) resonance \(\Rightarrow\) stiffer EoS & \(n \rightarrow p + n^-\) when \(m_n < m_p < m_n \Rightarrow\) softer EoS & faster N\# cooling by \(\gamma\)'s.

2) Since \(\pi^-\)'s have \(S = 0\), are bosons, \(\ldots\) can condense \(\Rightarrow\) by softening via solidification of inner core of N\# \(\Rightarrow\) inner starquakes & superfluidity.

3) If \(p \approx \rho\) & relativistic potentials, poorly understood.

Hagedorn argued for asymptote: \(\text{resonance EoS} \Rightarrow P = \frac{\rho c^2}{\ln(\rho m_p)} \Rightarrow C_s^2 = \frac{c^2}{\ln(\rho m_p)} \left[1 - \frac{1}{\ln(\rho m_p)} \right] \]

\[\Rightarrow \text{C}_s \rightarrow 0 \quad \text{as} \quad \rho m_p \rightarrow \infty \]

4) Quark matter \(\Rightarrow\) \(\text{dense,} \quad \text{if} \quad P \rightarrow \frac{1}{3} \rho c^2 \rightarrow \quad C_s \rightarrow \text{SOFT}. \quad \text{But this transition likely to occur above max P for stable N\#s.} \]

5) Recent alternative EoS (Bakerall and Neufeld Phys B31, 671) has hi \(\rho\) baryons bound by strong force, not grav \& objects more massive than N\# could be stable w/ \(P < P_{\text{crit}} \)

\[\text{\# likely, just hypothetical, but if EoS needs} \] fusion, \(\text{alli} \Rightarrow \text{may weaken.} \)
Models of Neutron Stars

History: While proposed by Leendert, Gamow, Oppenheimer & Volkoff, astronomers ignored or ridiculed the idea, though thought of as source of Qasor redshift in 63. But in '67 pulsars found by J. Bell-Burnell under Ant. Hewish & T. Gold argued they were not. Not also found in most binary X-ray sources where accreted gas heats up in disk & on falling to polar caps of NS, funneled by B field.

Simplest model: Chandrasekhar-Nordheim $n = 3$
Polytrope allowing $p \rightarrow 0 \Rightarrow M_{ch} = 1.75 \, M_{\odot}$. But relativity lowers this, since max mass occurs at finite $p_c = M_{NS}$ just slightly rel. Bigger effect: M_{ch} is rest mass of M_{NS}, but total mass less since β grow, binding energy which reduces this.

Oppenheimer & Volkoff used TOV eqn & ideal n Eos to get $M_{max} = 0.7 \, M_{\odot}$, $R = 9.6 \, km$, $\rho_c = 5 \times 10^{15} \, g \, cm^{-3}$
Obtain approx model via $n = \frac{3}{2}$ (NR) polytrope:

$$R = 14.64 \left(\frac{\rho_c}{10^{15}} \right)^{-1/6} \, km \quad \& \quad M = 1.102 \left(\frac{\rho_c}{10^{15}} \right)^{4/3} \, M_{\odot}$$
with no minimum M_{NS} mass, but this ignores regular β-decay as $A \rightarrow 0$.

Energy Considerations:

\[E = E_{\text{int}} + E_{\text{grav}} + \Delta E_{\text{int}} + \Delta E_{\text{gr}} \]

One finds \(\Delta E_{\text{gr}} \) by demanding \(\frac{\partial E}{\partial \rho_c} = 0 \) for polytrope

\[(8) \quad E_{\text{int}} = \int \rho \text{d}m = \int \frac{n}{\nu^2} \text{d}m = K \gamma_{\text{c}} M \nu_{\text{c}} \int \frac{5}{3} \frac{r^{\frac{2n}{3}}}{r^{n-1}} \text{d}r \]

\[\frac{\text{grav}}{} = -G \int \frac{\nu^2}{m} \text{d}m = -\frac{3}{5-n} \frac{GM^2}{R} \]

Using an \(n = \frac{7}{2} \) polytrope for low \(\rho \), \(\nu_{\text{c}} \approx \rho_{\text{c}} \)

\[E_{\text{int}} = k_1 K \rho_{\text{c}}^{4/3}, \quad k_1 = 0.795873 \]

\[E_{\text{grav}} = -k_2 G \rho_{\text{c}}^{4/3} M^{5/3}, \quad k_2 = 0.760727 \]

\[\Delta E_{\text{int}} \] arises from change of state from NR deg. gas

The internal energy/unit mass is:

\[U = \frac{E_{\text{int}} - M \nu_{\text{c}}^2}{M_{\text{c}}} \]

\[P_0 = \frac{M \nu_{\text{c}}^2}{3 \pi^2 R_{\text{c}}^3} \]

\[U = C^2 \left(\frac{3}{10} x - \frac{5}{36} x^2 + \ldots \right) \]

Integrating \(R \Rightarrow \int E_{\text{int}} \Rightarrow \Delta E_{\text{int}} \)

\[\Delta E_{\text{int}} = -\frac{3}{5} \frac{C^2}{2} \int x^2 \text{d}m = \gamma_{\text{c}} \frac{9}{2} \left(\frac{x}{\nu_{\text{c}}} \right)^4 \frac{M_{\text{c}}^{4/3}}{M_{\text{c}}} \]

\[\gamma_{\text{c}} \approx \left(\frac{5/3}{5-1} \right) \frac{1}{2} \int \frac{5}{3} \frac{r^{2/3}}{r^{n-1}} \text{d}r = 1.165 \]

The final term in (7), \(\Delta E_{\text{gr}} \), is quite complex. Note

\[dU = (1 - 2\mu)^{1/2} 4\pi r^2 \text{d}m \]

\[E_{\text{gr}} = \int \frac{\rho \text{d}m}{r^2} \left(\frac{1 - 2\mu}{r} - \mu \right) \text{d}V \]

\[\rho = \text{rest mass density} \quad \mu = \frac{\rho \text{c}}{1 + \nu} \]

\[E_{\text{newt}} = \int \frac{\rho \text{d}m}{r^2} \left(\frac{1 - 2\mu}{r} - \mu \right) \text{d}V \]

take off binding energy!

\[\Delta E_{\text{gr}} = -k_4 \frac{G^2}{c^2} M_{\text{c}}^{7/3} \frac{2}{15} \left(\frac{5/2 \pi}{\nu_{\text{c}}} \right)^{2} \frac{5/2}{2} \text{d}r^2 + \frac{3}{7} (r-u) \left(\frac{5/2 \pi}{\nu_{\text{c}}} \right)^{2} \frac{5/2}{2} \text{d}r^2 \]

where \(k_4 \approx 0.639725 \)
Finally, the total energy is:

\[E = AM\rho_c^{2/3} - BM\rho_c^{5/3} - CM\rho_c^{1/3} - DM\rho_c^{7/3} \]

with:
\[A = k_1 K, \quad B = k_2 G, \quad C = \frac{k_3}{\mu_0 n^2 c^2}, \quad D = \frac{k_4}{c^2} \]

Equilib\(\nu\) @ \(\frac{dE}{d\rho_c} = 0 \), or, multiplying by \(\frac{3}{2} \mu_0 \):

\[2A\rho_c^{-1/3} - BM\rho_c^{2/3} - 4C\rho_c^{1/3} - 2D\rho_c^{4/3} = 0 \]

Using only \(A \) & \(B \) terms results (6) for Newton polytopes.

Get maximum mass when energy unstable: \(\frac{d^2E}{d\rho_c^2} < 0 \)

Multiply by \(\frac{3}{2} \mu_0 \) to get:

\[-A\rho_c^{-1/3} + BM\rho_c^{2/3} - 2C\rho_c^{1/3} + DM\rho_c^{4/3} = 0 \]

Solve by adding (16) + 2x(17) to get:

\[\rho_c = \frac{BM^{2/3}}{8C} \]

Plug into (16) & let \(y = M^{4/9} \) to get:

\[2A - 3BM^{2/3} C^{4/9} y - 2Dy^3 = 0 \]

(18) Has positive root @ \(y = 6.605 \times 10^{-4} \Rightarrow M_{\text{max}} = 1.11 M_\odot \)

Plug \(M \) & \(\rho_c \) into (15) to get \(\frac{E}{c^2} = -0.08 M_\odot \Rightarrow \text{total mass} \):

\[M_{\text{poly, grav}} = 1.03 M_\odot \]

However, full, non-polytopic TOV \(\Rightarrow M = 0.7 M_\odot \)

An improvement might be n-e-p plasma:

\(M_{\text{max}} = 0.12 M_\odot, \quad R_{\text{max}} = 8.8 \text{ km}, \quad \rho_{\text{c}} = 5.8 \times 10^{15} \)

HW showed \(\exists \) minimum mass too:

\(M_{\text{min}} = 0.18 M_\odot, \quad R = 300 \text{ km}, \quad \rho_{\text{c}} = 2.6 \times 10^{13} \)
Improved EOS \Rightarrow better estimates of conditions.

$\text{Soft-based just on TT & Reid potential } \Rightarrow M_{\text{max}} = 1.5 - 1.6$

$\& \ R_{\text{max}} = 8\text{ km}$

$\text{Hard - Bethe-Johnson w/tensor & 3N interactions } \Rightarrow M_{\text{max}} = 1.9 - 2.2$

$\& \ R_{\text{max}} = 10 - 15\text{ km}$

$\text{Stiffest - } \text{"Mean field" approx: } M_{\text{max}} = 2.7 M_{\odot} \text{ (unlikely).}$

Interior Structure of NS's

1. **Surface** $\rho \lesssim 10^6 \text{ g/cm}^3$ thick. Strong B fields & ∇T allow diff EOS to affect cooling rate.

2. **Outer crust:** $10^6 \leq \rho \leq 4.3 \times 10^7 \text{ g/cm}^3$ 0.1 - 0.5 km thick.

 Like a WD solid crust - Coulomb lattice of heavy nuclei in $\beta \text{-} w$ rel. degem. e-gas

3. **Inner crust:** $4.3 \times 10^7 \leq \rho \leq 2.2 \times 10^9 \text{ g/cm}^3$ ~ 2 - 8 km

 Neutrin rich nuclei & superfluid neutrino gas $\&$ e-gas

4. **Neutron liquid:** $2.2 \times 10^9 \leq \rho \leq \text{ Proce [dep. on EOS]}$

 ~ 8 - 12 km. Superfluid n's w/ some superfluid p's & normal e's. Most of the NS

5. **Core [in some models] $\rho \gtrsim 10^{15}$ where

 $\text{n condensation, solid } n$'s $\&$ for quarks may live.

 But for most EOS $\rho_c \lesssim 3 \times 10^{15}$ = quarks unlikely

 Minimum mass: Where $J^2 > 4\hbar^2$. Around ~ 7×10^{15} g

 Ultra well determined, so:

 $M_{\text{min}} = 0.093 M_{\odot}, \rho_c = 1.55 \times 10^9, R = 184 \text{ km}$

 But such low mass objects have no clear antecedent.
Maximum Mass: (Rhodes & Russia 1974) Since $P_0 > P_{	ext{max}}$ isn't well known, neither is this. Absolute max by assuming:

1. GR is true — use TOV eqns.
2. Microscopic stability: $\frac{\partial P}{\partial \rho} > 0 \Rightarrow$ matter won't collapse
3. Causality $\frac{\partial P}{\partial \rho} \leq \frac{c}{c}$, i.e. $c_s \leq c$
4. EOS @ $\rho \leq \rho_0$ is known well enough. If $\rho_0 \sim 10^{10} \text{g/cm}^3$

$$M_{\text{max}} \approx 3.2 \left(\frac{\rho_0}{10^{15} \text{g/cm}^3}\right)^{-1/2} M_{\odot}$$

causality: $M_{\text{max}} \approx 5.2 \left(\frac{\rho_0}{10^{15} \text{g/cm}^3}\right)^{1/2} M_{\odot}$

N.B. Rapid rotation probably allows at most 20% increase before unstable.

Observed Properties of Neuts

1. Measured Masses:
 a) PSR 1913+16 is single-line "radio binary. But precession of perihelion & transverse Doppler shift $M_{\text{psr}} - M_{\text{com}} = 1.41 \pm 0.03 M_{\odot}$. Other binary pulsars w/ mass estimates — all consistent w/ this.
 b) Pulsating X-ray binaries \Rightarrow mass fnw w/ nominal values from 1.1 to 2.31$^{+2}_{-1}$ — all consistent w/ 1.4-1.6 M_{\odot}. Recall — this is range expected from pool of w/ MS mass up to 130 M_{\odot} t/or collapse of WD over M_{\odot}.

2. Measured Radii: None good. Models of X-ray bursters using ΔX on Fe lines. $R \approx 8.5 \text{ km}$ almost certain. e$^+$$e^-$ annihilation line results also consistent w/ 10-12 km.