Parallel Transport for Tensors & Vectors

For vectors, if $A^i @ P(x^i) & Q(x^i + \delta x^i)$ is neighbouring, how do we shift A^i from P to Q without changing its magnitude or direction?

$$\delta A^i = -\Gamma^i_{jk} A^i \delta x^j$$

(1)

Affine connection of T-T or Christoffel symbols.

If δ is given by $x^i(\lambda)$ so that $A^i @ X_\lambda$ on $\lambda & \lambda_1$, when transported \parallel to itself is:

$$\frac{dA^i}{d\lambda} = -\Gamma^i_{jk} A^k \frac{dx^j}{d\lambda}$$

(if $\frac{dx^j}{d\lambda}$ exists) (2)

For covariant components, since a scalar shouldn't change under \parallel trans:

$$0 = \delta(A^i B_i) = \delta A^i B_i + A^i \delta B_i =$$

$$-\Gamma^i_{jk} A^k \delta x^j B_i + A^i \delta B_i$$

e.g. $A^k(\delta B_k - \Gamma^i_{kl} B_i \delta x^l) = 0 \rightarrow$

$$\delta B_k = \Gamma^i_{kl} B_i \delta x^l$$

(3) (as $A^i B_i$ are arbitrary)

N.B. Since $A_i : A^i$ is unchanged under \parallel trans, the magnitude of A is preserved.
Generalize to Tensors of Arbitrary Rank:

\[\delta T_{ik} = \Gamma^l_{im} T_{lk} \delta x^m + \Gamma^l_{km} T_{il} \delta x^m \] \tag{4}

Covariant Differentiation

For a vector field \(A^i @ P(x^i) \& Q(x^i+\delta x^i) \): the genuine change isn't: \(dA^i = \frac{\partial A^i}{\partial x^0} \delta x^0 \) but by:

\[dA^i - \delta A^i = \left(\frac{\partial A^i}{\partial x^k} + \Gamma^i_{kl} A^l \right) \delta x^k \]

The genuine change should be coordinate independent, trans. like a vector. As \(\delta x^k \) is a contra vector:

\[A^i_{,l} = \frac{\partial A^i}{\partial x^k} + \Gamma^i_{kl} A^k \equiv A^i_{,l} + \Gamma^i_{kl} A^k \] \tag{5}

The covariant derivative \(\cdot \cdot \) is a mixed tensor

Similarly:

\[\phi_{,l} = \phi_{,l} \]

\[B_{,l} = B_{,l} - \Gamma^k_{il} B^k \]

\[T_{ik,l} = T_{ik,l} - \Gamma^m_{ik} T_{lm} - \Gamma^m_{il} T_{km} \] \tag{6}

Transformation Law for \(\Gamma^i_{km} \): Let \(A^i \rightarrow A'^i \) as \(x^i \rightarrow x'^i \):

\[A'^i = \frac{\partial x'^i}{\partial x^m} A^m \Rightarrow A'^i_{,l} = \frac{\partial x'^i}{\partial x^m} \frac{\partial x^m}{\partial x'^j} A'^j_{,l} \]

as covar. deriv. is mixed 2nd rank tensor.
But (5) + 1st relation on last line →

\[A'_{jle} = \frac{\partial}{\partial x'^{l}} \left(\frac{\partial x'^{i}}{\partial x^{m}} A^{m} \right) + \Gamma'_{li} \quad \text{[\textit{r}]} \]

\[= \frac{\partial}{\partial x^{n}} \left(\frac{\partial x'^{i}}{\partial x^{m}} A^{m} \right) \frac{\partial x^{n}}{\partial x'^{l}} + \Gamma'_{li} \frac{\partial x'^{p}}{\partial x^{m}} A^{m} \]

\[= \frac{\partial x^{n}}{\partial x'^{l}} \frac{\partial x'^{i}}{\partial x^{m}} \frac{\partial A^{m}}{\partial x^{n}} + \left(\frac{\partial x^{n}}{\partial x'^{l}} \frac{\partial x'^{i}}{\partial x^{m}} + \Gamma'_{li} \frac{\partial x'^{p}}{\partial x^{m}} \right) A^{m} \]

However, 2nd rel. on last line of (25) →

\[A'_{jle} = \frac{\partial x^{n}}{\partial x'^{l}} \frac{\partial x'^{i}}{\partial x^{m}} \left(\frac{\partial A^{m}}{\partial x^{n}} + \Gamma^{m}_{pn} A^{p} \right) \]

\[= \frac{\partial x^{n}}{\partial x'^{l}} \frac{\partial x'^{i}}{\partial x^{m}} \frac{\partial A^{m}}{\partial x^{n}} + \frac{\partial x^{n}}{\partial x'^{l}} \frac{\partial x'^{i}}{\partial x^{m}} \Gamma^{m}_{pn} A^{p} \]

[switching dummy p & m]

Comparing both \(A'_{jle} \) & recalling \(A^{m} \) is arbitrary:

\[\frac{\partial x^{n}}{\partial x'^{l}} \frac{\partial x'^{i}}{\partial x^{m}} \Gamma^{m}_{pn} = \frac{\partial x^{n}}{\partial x'^{l}} \Gamma^{m}_{pi} + \frac{\partial x^{n}}{\partial x'^{l}} \frac{\partial x'^{i}}{\partial x^{m}} \frac{\partial x^{m}}{\partial x^{n}} \]

Multiply both sides by \(\frac{\partial x'^{i}}{\partial x^{k}} \) & recall \(\frac{\partial x'^{i}}{\partial x^{k}} \frac{\partial x^{k}}{\partial x'^{l}} = \delta^{i}_{l} \); then the above reduces to:

\[\Gamma^{r}_{mk} = \frac{\partial x^{r}}{\partial x^{k}} \frac{\partial x'^{l}}{\partial x^{i}} \frac{\partial x^{p}}{\partial x^{m}} \Gamma^{m}_{pi} + \frac{\partial x^{r}}{\partial x^{k}} \frac{\partial x^{m}}{\partial x^{i}} \frac{\partial x^{p}}{\partial x^{m}} \]

\[\text{[3rd rank tensor part]} \quad \text{[non-tensor part]} \]

i.e. Christoffel symbols aren't tensors.
Riemannian Affine Connection

\[+ 64 \Gamma_{ik}^i \text{. Impose the following:} \]
\[\Gamma_{ik}^i = \Gamma_{ki}^i \quad \text{(8)} \]
\[g_{i[k;j]l} = 0 \quad \text{(9)} \]

While other geometries can exist, GR is based on Riemannian geometry; (8) & (9) hold.

Use (9) & (6) to show: \[\Gamma_{ik}^m g_{mk} + \Gamma_{ik}^m g_{mn} = g_{ik;l} \]

or \[\Gamma^{[ik]} + \Gamma^{[i}] \Gamma^{[l]} = g_{ik;l} \quad \text{(10)} \]
where, using (8): \[\Gamma^{[ik]} = g_{mk} \Gamma^{[i]} = \Gamma^{[k]} - \Gamma^{[i]} \]

Make cyclic interchanges on \(i, k, l \) to get, \(k, i, l \): \[\Gamma_{k[i} + \Gamma_{i]k} = g_{k[i} \Gamma_{i]k} \quad \text{and} \]
\[\Gamma_{ik}^m = \frac{1}{2} g_{m[l} \left[g_{ik} + g_{ik} - g_{ik} \right] \quad \text{(13)} \]

Add (12a)+(12b); subtract (10), then get
\[\Gamma_{ik} = \frac{1}{2} \left[g_{ik} + g_{ik} - g_{ik} \right] \quad \text{and} \]
\[\Gamma_{ik} - \frac{1}{2} g_{m[l} \left[g_{ik} + g_{ik} - g_{ik} \right] \quad \text{(13)} \]

.: The Riemannian affine connection is completely specified by S-T metric & 1st derivatives; instead of 64 \(\rightarrow \) 40 algebraically independent components.

Use (13) & differential of determinant: \(dg = g^{-1} \text{d}g \text{ik} \) to show:
\[\Gamma_{ik} = \frac{2}{2} \left[\ln \sqrt{-g} \right] \quad \text{and} \]
\[g_{ik}^{-1} \text{d}g_{ik} = - \frac{1}{\sqrt{-g}} \frac{2}{2} \left[\ln \sqrt{-g} \right] \quad \text{and} \]
\[g_{ik}^{-1} \text{d}g_{ik} = - \frac{1}{\sqrt{-g}} \frac{2}{2} \left[\ln \sqrt{-g} \right] \quad \text{(13)} \]
Locally Inertial Coordinate System:

Since the metric at any point is assumed to have signature +2, it is evidently possible to choose coods \(x^i \rightarrow P \) such that:

\[
\text{ds}^2 = g_{ik} \, dx^i \, dx^k
\]

Given a Riemannian connection we can choose a coordinate system \(\{a \text{ LIC}S\} \)

\[
g_{ik}(P) = \delta_{ik}, \quad g_{ik,l}(P) = 0 \quad (14)
\]

Minkowskian metric holds in infinitesimal neigh. of \(P \).

Proof: Suppose in \(x^i \) the coods of \(P \) are \(x'^i \) & Christoffel symbols at \(P \) are \(\Gamma^{iv}_{klo} \). Now define, in a small region containing \(P \) new coods \(x^i \):

\[
x'^i - x'^i = x^i - \frac{1}{2} (\Gamma^{iv}_{klo})_P x^k x^l
\]

\(\Gamma^{iv}_{klo} \) vanish at \(P \) we have \(x^i = 0 \) &

\[
\frac{\partial x'^i}{\partial x^k} = \delta^i_k
\]

while \(\frac{\partial^2 x'^i}{\partial x^k \partial x^l} = (\Gamma^{iv}_{klo})_P \)

Plugging these into (7) we see that in the \(x^i \) coord system the \(\Gamma \)'s \(\text{at} \ P \) vanish. Then use (10) & \(g_{ik,l} = 0 \) for these coods. Finally diagonalize the line element \(\text{at} \ P \) to yield (14).

We'll discuss the importance & significance of the LICs later.
Lie Derivative

Let A & B be 2 vector fields & f a scalar field. Define the covariant derivative of f along A by:

$$\nabla_A f = A^i f^i$$ \hspace{1cm} (16)

Similarly cov. deriv. $\nabla_A B$ of B along A is defined as a vector by components given by:

$$\left(\nabla_A B \right)^i = A^k B^i_{;k}$$ \hspace{1cm} (17)

Consider the quantity:

$$\nabla_{[B,A]} f = \nabla_B \nabla_A f - \nabla_A \nabla_B f = (B^i_{;i} A^i - A^i_{;i} B^i) f_{,k}$$

Similarly define:

$$\left[\nabla_{[B,A]} C \right] = (B^i_{;i} A^i - A^i_{;i} B^i) C_{;k}$$

The operator $\nabla_{[B,A]}$ is a generalization of Lie derivative in Euclidean space. Define the commutator $[B,A]$ or the Lie derivative of A along B by:

$$[B,A] = \nabla_B A \rightarrow (B^i A^i_{;i} - A^i B^i_{;i})$$ \hspace{1cm} (18)

where \rightarrow indicates k^{th} component of LHS vector.

Obviously:

$$\nabla^k A = -\nabla_k B$$ \hspace{1cm} (19)

Even in Minkowski $S-T$

$$\bar{P} \bar{Q} = A \bar{Q}, \bar{Q} \bar{R} = B \bar{Q}$$

but $\bar{P} \bar{S} = B \bar{P} \bar{Q} \bar{T} \equiv A \bar{Q} \bar{S}$

In general, $R \neq T$ & diff is the Lie derivative.

In curved $S-T$ the interpretation is the same but can't draw straight lines; instead must draw tangents to curves for which A & B are tangent vectors.